

Gaze-Based Password Authentication through

Automatic Clustering of Gaze Points

Justin Weaver, Kenrick Mock

Computer Science

University of Alaska Anchorage

Anchorage, AK, USA
jiweaver, kenrick@uaa.alaska.edu

Bogdan Hoanca

Computer Information Systems

University of Alaska Anchorage

Anchorage, AK, USA

afbh@uaa.alaska.edu

Abstract— Researchers have proposed systems in which users

utilize an eye tracker to enter passwords by merely looking at the

proper symbols on the computer monitor in the appropriate

order. This authentication method is immune to the practice of

shoulder surfing: secretly observing the keystrokes of a legitimate

user as he or she types a password on a keyboard. In this paper

we describe the EyeDent system—in which users authenticate by

looking at the symbols on an on-screen keyboard to enter their

password. Existing eye-tracking based authentication systems

require the user to dwell or press a trigger when looking at each

symbol. Instead, in EyeDent, gaze points are automatically

clustered to determine the user’s selected symbols; this approach

has the benefit of allowing users to authenticate at their natural

speed, rather than with a fixed dwell time. Additionally, the

absence of a visible trigger does not divulge the number of

symbols in the password. Results from preliminary

investigations indicate that quick (3 seconds for a 4 digit PIN)

authentication is possible using this scheme, but more work is

needed to account for calibration error, and to dynamically adapt
system parameters to the characteristics of individual users.

Keywords- eye tracking, authentication, gaze-based

I. INTRODUCTION

Flawless identity management remains a critical and
intractable problem, and is consequently the focus of many
intensive research efforts. Current security techniques are
weak in general, because most are easily circumvented or
fooled. For example, a password can be compromised,
cracked, or even just forgotten. A hardware key can likewise
be lost, duplicated, or stolen.

Shoulder surfing is the name given to the practice of
observing a legitimate user as he or she authenticates, to
impersonate the legitimate user later. Shoulder surfing can be
done in-person, or can also potentially be accomplished using a
simple, properly-positioned video camera.

The nefarious threat of shoulder surfing can be virtually
eliminated by literally taking the login out of the user's hands.
When the user enters their password merely by looking at the
appropriate symbols on the screen, instead of typing the
symbols on a keypad, shoulder surfing becomes practically
impossible. This advanced authentication technique is possible
to achieve using an eye tracker.

In this project we developed the EyeDent system which
presents an on-screen keyboard (or keypad) to the user, and

allows the user to authenticate by looking at the symbols in his
or her password in order. By using an on-screen keyboard we
maintain compatibility with traditional password schemes,
which may still be used in secure settings such as one’s home
or office. The user-selected symbols are determined using an
automatic clustering algorithm (described in Section III).

We implemented EyeDent using an EyeTech Digital
Systems TM3 eye tracker [1]; this is a remote eye tracker
accurate to 0.5 degrees that tolerates head motion within a 25 x
16 x 19 cm window. Prior to developing EyeDent, we created
an API wrapper in the form of a DLL that allows programs
written in .NET languages such as C# to interface with the eye
tracker using EyeTech’s QuickLink API. The source code is
publicly available under the MIT open source license at
http://code.google.com/p/quicklinkapi4net/.

II. RELATED WORK

Many authentication approaches attempt to thwart shoulder
surfing by obfuscating the shared secret between the user and
the authenticating system with some random element [2]. For
example, in the ColorLogin scheme, a user password consists
of a set of icons known only by the user and the authenticating
system. Lines of icons are randomly displayed with an icon
selected from the user’s password set and icons not in the
user’s password set. The user clicks only on the lines that
contain icons in his or her password set. A click only reveals
that one of the icons in the line is a member of the user’s
password set, but does not reveal which icon was recognized.
Subsequent logins present a different set of generated icons to
thwart a shoulder-surfer [3]. Such randomized schemes, in
which users perform some mental computation, have been
proposed by many researchers [4,5]; however, they are
vulnerable to attack, if an attacker can record multiple
authentication sessions. In particular, an intersection attack
involves looking for those icons that appear in repeated
sessions; the attacker can eliminate icons that only appear in
some of the successful login sessions, as those cannot be the
icons in the user’s password [6].

Graphical implementations of passwords resistant to
shoulder surfing have also been proposed. In Sobrado and
Birget’s scheme, the shared secret consists of a set of icons
randomly distributed on the screen [7,8,9]. The user
authenticates by clicking anywhere inside the convex hull
define

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any c urrent or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

http://code.google.com/p/quicklinkapi4net/

d by the icons in the user’s password. The attacker cannot
easily find out which icons define the hull, because there are
multiple possibilities for any given click point. The scheme is
easy to understand in principle, but has several weaknesses.
First, locating the icons on the screen can be difficult, because
several icons may look similar. Second, the authentication
process tends to be lengthy to avoid false positives, where a
random guess matches the required entry. Thirdly, even with a
lengthy authentication process, the attacker has a relatively
high chance of authenticating by randomly guessing at click
points. Finally, the scheme is still vulnerable to repeat
observations and intersection attack.

More recently, eye tracking technologies have been used
for password entry to protect users from shoulder surfing
attacks under the assumption that it is difficult for an attacker
to correlate eye movements to symbols on the screen. Hoanca
and Mock proposed utilizing an eye tracker in combination
with a graphical password [10]. Simpler techniques use eye
gestures as passwords that decrease the authentication time, but
at the cost of a relatively small password space (eight input
strokes–or symbols), and still require users to recall and
perform special tasks to authenticate [11].

In Kumar et al.’s approach, a user’s gaze is tracked while
looking at an on-screen keyboard. Successive symbols in the
password are entered by dwelling on an on screen key, or by
pressing a trigger key with a finger while looking at a symbol
on the screen [12]. Kumar et al. found that the gaze + trigger
method suffers from high error rates due to variance in eye-
hand coordination: some users press the trigger before looking
at the target area or after leaving the target area. To address
this problem, researchers have implemented trigger correction
algorithms, inserted focus points to attract gaze [13], and
collected multiple gaze points while holding down the trigger
key to calculate a gaze centroid [14,15].

Both Kumar et al. [12] and Forget et al. [14] focused their
efforts on dwell-time algorithms that require the user to
consciously pause the movement of their eyes and continue to
gaze at each symbol for a predetermined amount of time. With
the dwell based schemes, a shorter dwell time leads to less
accurate authentication for those users that would naturally
prefer a longer dwell time. The matching approaches
employed in this project overcome this limitation by analyzing
the user's gaze pattern in a way that is more adaptive to the
user’s natural gaze speed. Finally, our scheme does not
disclose the number of symbols in the password and the
associated entry timing, as in Kumar et al.’s method, which
requires a visually observable trigger, or an audio tone to cue
users that a symbol had been entered.

III. EYEDENT OVERVIEW AND DESIGN

EyeDent presents a simple GUI with an on-screen keyboard
in which the buttons are sized so the keyboard’s window fits
within the width of the screen. Each button on the keyboard is
a large circle with a symbol in the center (Fig. 1). The intent of
this design is to draw the user’s gaze to the center of the circle
representing each symbol [13].

EyeDent begins with a calibration step. While we used a
somewhat time-consuming 16-point calibration, a 1-step

calibration or other faster version is also possible [14]. Once
calibrated, the eye tracker settings are stored per user, and re-
calibration is not necessary, unless the eye tracker has moved
with respect to the screen. Next, as the user looks at the
password symbols, EyeDent takes a constant stream of data
from the eye tracker (30 samples per second), and places each
data sample on a queue. Each sample consists of the user’s
gaze coordinates along with other information about their eye
(see Section III-D, Data Logging and Average Error Analysis).

To authenticate, a user must look briefly at each symbol in
his or her password, without interruption, and in sequence; and
then look at the END button to signal the completion of the
process. As each user has a longer or shorter dwell time on
successive symbols, this protocol allows the user to follow their
natural dwell time preferences, and also to look at different
symbols (not in their password) without penalty, as long as the
last set of symbols viewed matches the user’s password.

Once the END button has been triggered, EyeDent stops taking
new data, and processes the current queue of samples. First, it
partitions the data samples into clusters (see Sections III-A and
III-B, Cluster Partitioning). Next, it performs the password
matching by using the location and temporal order of the
clusters. A cluster within a symbol’s circle triggers that
symbol (see Password Matching). EyeDent will then indicate
whether the password was accepted or rejected.

We compared the performance of two different clustering
algorithms: one based on a fixed minimum number of points
per cluster (Section III-A), and one based on a dynamic
minimum number of points per cluster (Section III-B).

Figure 1. A successful login on a numeric-style keypad with

the password “9430”. The small dots are individual gaze points. The

slightly larger circles are clusters. The dashed lines aid our visual

inspection by connecting the clusters to make the user’s gaze path

obvious. The dots and lines are not shown during actual authentication.

Notice that some gaze points are recorded near symbol “1”, but too few

points are recorded to constitute a cluster.

A. Clustering – Fixed Minimum Points per Cluster

The first step in the password matching is partitioning the
data points in the input queue. Groups of temporally
continuous data points are lumped into clusters composed of
points that lie close together.

Our initial algorithm to aggregate the data points requires a
minimum number of nearby gaze points to constitute a cluster.
We begin with an empty cluster Cx, and then add the first data
point Pn. Then we examine the next data point Pn+1. If Pn+1 is
within a specified fixed threshold distance of the centroid of
Cx, then Pn+1 is added to Cx, and we proceed to the next data
point Pn+2; otherwise Cx is sealed and placed on a special
queue, and then a new empty cluster Cx+1 is created with initial
point Pn+1. We proceed as we did with Cx, by adding points to
Cx+1, and then Cx+2, and so on until all the data points are
partitioned into clusters. The process is depicted in Fig. 2.

EyeDent allows configuration of the Minimum Points per
Cluster (MPPC) parameter used during partitioning. Clusters
with fewer than MPPC points are not considered valid dwell
points and are discarded. By default, we set MPPC to 9. At a
rate of 30 samples per second, this implies a minimum dwell
time of 0.3 seconds per cluster. The Distance Threshold is also
a configurable parameter that we set to the default value of 0.75
inches. To calculate the distance in inches on the monitor we
explicitly enter the width of the screen in inches, which allows
us to calculate pixels/inch based on the resolution setting.

B. Clustering – Dynamic Minimum Points per Cluster

We also experimented with an algorithm to dynamically
calculate the Minimum Points per Cluster parameter. The
advantage of dynamically computing this parameter is that
dwell time varies by user. A fast user could look at a symbol
for fewer than 0.3 seconds, which would be missed by the
algorithm in III-A. A slower user might dwell much longer, in
which case unintended dwelling on non-password symbols
would result in those symbols being counted in the user’s
password entry.

 Our initial analysis suggested that the cluster size typically
follows a bimodal distribution with either small or large
clusters. The larger clusters generally correspond to the
password symbols, while the small ones result from
distractions or unintended dwell on non-password symbols.
We used a hierarchical agglomerative clustering algorithm to
find a threshold between the two peaks of the distribution.

In this algorithm, cluster S is initially set to the smallest
cluster, and cluster L is initially set to the largest cluster. The
algorithm iterates through every other cluster Ci, and calculates
|Size(Ci) – AverageSize(S)| and |Size(Ci) – AverageSize(L)|. Ci
is then added into S or L respectively, whichever is closer. The
Minimum Points per Cluster parameter was then set to
(AverageSize(S) + AverageSize(L)) / 2.

C. Password Matching

The actual password matching algorithm keeps two pointers
as it operates: one pointer into the list of clusters Cx, and
another pointer into the list of expected password symbols Sn.
In each case, the pointers start at the end of the lists and
progress toward the beginning, i.e., backwards. If a cluster
point Cx is located over a keypad button B, then the symbol for
that button is compared to the next expected password symbol
Sn. If the symbol of button B is equal to Sn, then the cluster Cx
is assigned to Sn, and we proceed to the next cluster Cx-1.
Otherwise, we continue with the next expected password
symbol Sn-1. However, first we check the number of clusters
assigned to symbol Sn. If Sn contains 0 clusters, then the match
fails immediately. If the algorithm reaches the first symbol in
the expected password (S0) without failing, and at least one
cluster occurs on the symbol S0, the match is successful.

Note that, if a cluster point Cx falls into the dead-zone
between buttons, it is ignored (with one notable exception), and
the algorithm proceeds to examine Cx-1. The exception is that
those dead-zone clusters are recognized as separators between
multiple continuous occurrences of the same symbol within a
password, e.g., the double “o” in the word “poodle”. This
algorithm treats temporally contiguous clusters that translate
into the same symbol as a single occurrence of that symbol.

D. Data Logging and Average Error Analysis

During authentication, the average error is computed by
performing a best-fit analysis of the clusters and password
symbols. The algorithm works in much the same fashion as the
password matching algorithm, i.e., it matches clusters to
password symbols (from back to front). However, as the
algorithm progresses, clusters are assigned to the user’s
password symbols based on which symbol they are closest to,
rather than which button they are on. Then, the algorithm
calculates the average distance (in inches) between the center
of each symbol and the clusters we assigned to it. Finally, the
results of all of those calculations are averaged, and the final
value is reported

Although the Average Error value is a flawed metric (on its
own), since it does not describe the specifics of the distribution,
it does provides an approximate idea of just how far a login
attempt was from being successful. If the average error
displayed is NaN (Not a Number), it means the attempt was not

Figure 2. The clustering algorithm in action. The point Pn+1

lies outside the distance threshold for the cluster Cx. The algorithm would
seal cluster Cx, and make a new cluster Cx+1, with Pn+1 as its initial point.

even close, because at least one symbol of the expected
password was left without any corresponding clusters.

To further aid in data analysis, every authentication attempt
generates two log files. The main log file contains the raw data
from the eye tracker (the gaze point samples), in CSV text
format. This data consists of flags indicating if the eyes are
found and calibrated, coordinates of the glint points in the
camera image (the reflections from the tracker’s infrared
lights), pupil diameter, and gaze coordinates on the screen.
The secondary log file contains data about the analysis of the
login attempt, and configuration information for the
authentication session.

IV. PRELIMINARY INVESTIGATION

We have only conducted preliminary work to evaluate the
algorithm. In this section, we present results on repeated
authentication attempts by the three authors on an
alphanumeric keyboard layout. The experiments were run on a
desktop computer with a 19-inch screen width. EyeDent was
configured to display 1.3-inch diameter buttons, with 0.125-
inches of padding between each button. Calibration was
performed at the beginning of each session.

We used a QWERTY layout for users to enter the password
of “ZOMBIESQ”. We specifically chose this password
because it requires looking near all four corners of the virtual
keyboard (where the eye tracker error is typically highest),
includes symbols from all the letter rows, and has three
symbols close to each other (i.e., “Z”, “S”, and “Q”). Fig.3
shows a screen capture of the layout for a successful
authentication attempt. We also tested a numeric keypad
layout with the password “9430”.

Our initial study used a fixed MPPC of 7, which resulted in
successful authentication rates ranging from 35-75% by the
three authors. Many of the unsuccessful attempts were due to

extra inserted characters in the entered password. We
calculated the average cluster size for the extra characters to be
8.25, which was just barely above our chosen threshold of 7;
this directly suggested that we could use a larger threshold,
such as 9, to eliminate these errors. Furthermore, the larger
cluster size should not influence performance, since the
shortest average dwell time for successful authentications was
over 500ms, which corresponds to a cluster size of about 16
points.

A. Alphanumeric Password Entry, 9 MPPC

Table I summarizes results for the scheme using a fixed
Minimum Points per Cluster of 9. The table displays the
percentage of successful authentications out of N attempts,
average total authentication time for the accepted attempts,
average dwell time per symbol for accepted attempts, and
average error per symbol (distance of cluster centroid from the
center of the button).

TABLE I. “ZOMBIESQ” ACCEPTED AUTHENTICATION RESULTS

Success Ave Total

Time

Ave Dwell

Time

Ave

Error

User 1

(N=12)
83% 7.3s 820ms 0.26”

User 2

(N=12)
83% 7.9s 745ms 0.31”

User 3

(N=12)
83% 5.8s 612ms 0.37”

Table II provides further detail about the rejected

authentication results. Out of R rejected attempts, the
percentage of rejected cases is broken down by single error or
multiple errors. The errors are categorized by cases M, W, and
E. Case M refers to the situation where a character is missing
from the password. For example, given the password of
“ZOMBIESQ”, the entry of “ZOMBIEQ” (missing an “S”) is a
case of a missing character. Case W refers to the situation
where a wrong character was substituted for a correct
character; for “ZOMBIESQ”, the entry of “ZOMBUESQ”
(“U” is substituted for “I”) is an example of this case. Finally,
Case E refers to the situation where an extra character is
inserted into the password; for “ZOMBIESQ”, the entry of
“ZOMNBIESQ” (an extra “N”) is an example of this case.

TABLE II. “ZOMBIESQ” REJECTED AUTHENTICATION RESULTS.
M=MISSING CHARACTER, W=WRONG CHARACTER SUBSTITUTED, E=EXTRA

CHARACTER, COMBO=COMBINATION OF M,W, OR E. NUMBERS IN EACH ROW

ADD UP TO 100% (ASIDE FROM ROUNDING ERRORS)

 Single Error Multiple Errors

 M W E M W E Combo

User 1

(R=2)
50% 50%

User 2

(R=2)
 100%

User 3

(R=2)
50% 50%

The results from Table II consisted of consecutive

authentication attempts performed in one session. Under these
circumstances, it seemed that establishing a visual rhythm
based on short-term muscle memory might affect the results.
To investigate long-term vs. short-term muscle memory, the
investigators also performed a single daily authentication over
five days. User 1 successfully authenticated on the first
attempt on four out of five days; the remaining attempt
succeeded on the second try. User 3 successfully authenticated
on the first attempt on three out of five days; the remaining two
attempts were successful on the second try.

Figure 3. Alphanumeric keyboard layout showing a

successful login attempt for the password “ZOMBIESQ”.

B. Dynamically Calculated Minimum Points per Cluster

The authors also attempted to authenticate using the
password of “ZOMBIESQ”, but using the dynamic algorithm
described in Section III-B to calculate the Minimum Points per
Cluster (MPPC). Results are given in Tables III through V.
The authentication time varies since several users intentionally
dwelled on symbols for a very short time or for a very long
time to see if the algorithm would generate an appropriate
threshold.

TABLE III. DYNAMIC MINIMUM POINTS PER CLUSTER - “ZOMBIESQ”

ACCEPTED AUTHENTICATION RESULTS

Success Range - Total

Time

Ave Error

User 1

(N=15)
47% 3.9-13.5s 0.38”

User 2

(N=9)
44% 7.4-10.9s 0.44”

User 3

(N=12)
42% 5.1-17.0s 0.42”

TABLE IV. DYNAMIC MINIMUM POINTS PER CLUSTER - “ZOMBIESQ”

REJECTED AUTHENTICATION RESULTS. M=MISSING CHARACTER,
W=WRONG CHARACTER SUBSTITUTED, E=EXTRA CHARACTER,

COMBO=COMBINATION OF M,W, OR E. NUMBERS IN EACH ROW ADD UP TO

100% (ASIDE FROM ROUNDING ERRORS)

 Single Error Multiple Errors

 M W E M W E Combo

User 1

(R=8)
38% 25% 25% 12%

User 2

(R=5)
80% 20%

User 3

(R=7)
14% 43% 29% 14%

C. Numeric Password Entry, Four-Digit PIN, 9 MPPC

We also tested used the password of “9430” on a numeric
keypad layout (Fig. 1) to simulate entering a PIN at an ATM.
Users 2 and 3 both had two single errors under case W.

TABLE V. “9430” ACCEPTED AUTHENTICATION RESULTS

Success Ave Total

Time

Ave Dwell

Time

Ave

Error

User 1

(N=12)
100% 2.7s 652ms 0.32”

User 2

(N=12)
83% 2.7s 557ms 0.50”

User 3

(N=12)
83% 2.7s 627ms 0.31”

V. ANALYSIS AND DISCUSSION

A. Nine Minimum Points per Cluster

Using the fixed MPPC of 9 each user achieved an
authentication rate of 83% (see Table I). Further improvements
are possible. First, a majority of the rejected authentications
are due to single errors – a single character missing, inserted, or

substituted. If the authentication process were relaxed to allow
a single error then the successful authentication rate would
remain unchanged for user 2 but would rise to 100% for users 1
and 3 (see Table II), but at the expense of a smaller password
space.

There were no errors where a single incorrect character was
substituted in place of a correct password character (see Table
II – case W). This type of error would be expected if the eye
tracker was poorly calibrated and a nearby symbol was
erroneously entered instead of the actual gaze symbol. The
errors were case M where a character was missing from the
password, or case E where an extra character was inserted into
the password. The case of the missing character suggests the
user did not dwell on a symbol long enough to create a cluster
– a problem that could potentially be addressed with a smaller
MPPC. The case of the extra character suggests a spurious
cluster that was registered as the user searched or scanned the
keys – a problem that could potentially be addressed with a
larger MPPC. None of the authentication attempts included
both missing and extra characters. These errors could not be
addressed by adjusting the MPPC.

User 1 experienced the lowest average error (see Table I) –
defined as the average distance of the cluster’s centroids from
the actual center of their associated buttons. This may be due
to environmental circumstances (e.g., better camera focus) or
user behavior (e.g., head remained more motionless resulting in
better accuracy). However, each user’s error was within the
cluster distance threshold of 0.75 inches.

Finally, the authentication rate appears similar when
authenticating once daily compared to authenticating
sequentially in the same session. This implies that short-term
muscle memory controlling the eye does not play a significant
factor in authentication success.

B. Dynamically Calculated Minimum Points per Cluster

The scheme to dynamically calculate the MPPC has the
potential to alleviate some of the errors encountered by the
static scheme. However, as shown in Table III and Table IV,
the algorithm needs improvement, because the success rate was
much lower. However, if single errors are allowed the success
rate increases to 93%, 89%, and 50% respectively. User 3
experienced many errors due to a MPPC value that was often
too large; as a result, multiple valid clusters were discarded.

Despite the errors, there are some promising results where
the algorithm performed as expected. The total authentication
time in Table III is given as a range, because users tried
authenticating both quickly and slowly. For example, in Table
III, user 1 authenticated as quickly as 3.9 seconds, and as
slowly as 13.5 seconds. The 3.9-second authentication had a
MPPC of 5, and is approaching the authentication speed of a
keyboard. During the slow authentication, the user was able to
look at non-password symbols quickly, but they were discarded
due to the longer dwell time on the password symbols.

A more sophisticated analysis of the cluster size histogram
should lead to a better MPPC, and thus improve the
authentication results. For example, rather than assume a
bimodal distribution, we might check for a normal distribution
and if found then set the MPPC to a value below the median.

Another possibility is to use the cluster size of correctly
matched password symbols to help determine an appropriate
MPPC. For example, if the first symbol in the password is “Z”,
and the log begins with 15 samples in the vicinity of the
symbol “Z”, then 15 might factor into the MPPC threshold
calculation for the other symbols.

C. Numeric Password Entry, 9 MPPC

As expected, authentication was more successful and
quicker using a short 4-digit PIN on the numeric keypad layout
than the longer password on the QWERTY layout. Three of
the four errors resulted from dwelling on a blank area outside
the keypad symbols – a more likely situation than the
QWERTY layout due to the fewer number of symbols. In this
case, we could likely eliminate some of these errors by
mapping clusters outside the keypad to the closest symbol.

VI. CONCLUSIONS

The goal of EyeDent is to authenticate users via eye
tracking without the need for special triggers or predefined
dwell times. Our initial results suggest that this goal can be
achieved. Using a fixed Minimum Points per Cluster of 9
resulted in mostly successful authentication attempts by the
authors. More work needs to be done to determine if this
success translates to general users and to account for
calibration error, accuracy, and variation in user dwell times.
Our results indicate that dynamically determining the
Minimum Points per Cluster does support user variation in
dwell times, but more work is required to adjust the algorithm
to increase the authentication rate. A dynamic algorithm would
also improve portability to other eye trackers with a different
sampling rate. A related topic for consideration is a more
optimal clustering algorithm than the greedy in-order clustering
algorithm shown in Fig. 2.

Other considerations include an allowance for single errors
or probabilistic acceptance based on distance from the target
symbol instead of a discrete match of clusters to symbols. For
example, if the mean squared error of all authentication points
is within a threshold, then the algorithm might deem the
attempt as successful. This could allow a cluster to be far from
its target if all other clusters are close to their target.

Another item for future work is to compute the MPPC from
our log data that maximizes success and minimizes error and
see how it compares to the selected value of 9.

Finally, in this project we performed a separate calibration
step before performing authenticating. One approach to
integrate calibration into the authentication process is to
highlight different buttons on the virtual keyboard. This would
also have the benefit of calibrating specifically for the
keyboard being displayed while familiarizing users with the
layout. It may also be possible to eliminate calibration, if the
raw glint data from the eyes can be proportionally mapped to
the same vector motions that the eyes would make when gazing
at symbols in the password.

ACKNOWLEDGMENT

We would like to acknowledge Liz Weaver and Kenneth
Kelley for their assistance testing EyeDent, and the University

of Alaska Anchorage’s College of Arts & Sciences and the
University Honors College for financial support.

REFERENCES

[1] EyeTech Digital Systems. Retrieved February 23, 2011 from
http://www.eyetechds.com/

[2] Tari, F., Ozok, A. A., and Holden, S. H. A comparison of perceived and

real shoulder surfing risks between alphanumeric and graphical
passwords. In Proceedings of the Second Symposium on Usable Privacy

and Security (Pittsburgh, Pennsylvania, July 12 - 14, 2006). SOUPS '06,
vol. 149. ACM Press, New York, NY, 2006, 56-66.

[3] Haichang Gao, Xuewu Guo, Xiaoping Chen, Liming Wang, and Xiyang

Liu. YAGP: Yet Another Graphical Password Strategy. In Proceedings
of the 2008 Annual Computer Security Applications Conference

(ACSAC '08). IEEE Computer Society, Washington, DC, USA, 2008,
121-129.

[4] Matsumoto, T. Human-computer cryptography: An attempt, 3rd ACM

Conference on Computer and Communications Security, pp. 68-75, New
Delhi, March 1996.

[5] Hopper, N. and Blum, M. A Secure Human-Computer Authentication

Scheme, CMU Tech Report CMU-CS-00-139, 2000. Retrieved January
25, 2008, from http://reports-archive.adm.cs.cmu.edu/anon/2000/CMU-

CS-00-139.pdf

[6] Hoanca, B. and Mock, K. A Theoretical Framework for Assessing
Eavesdropping-Resistant Authentication Interfaces. The 2009 Hawaii

International Conference on System Sciences, Waikoloa, HI, Jan. 5-8,
2009.

[7] Sobrado, L. and Birget, J.-C. Shoulder surfing resistant graphical
passwords. 2005. Retrieved January 27, 2008, from

http://clam.rutgers.edu/~birget/grPssw/srgp.pdf

[8] Sobrado, L. and Birget, J.-C. Graphical passwords, The Rutgers Scholar,
vol 4, 2002. Retrieved January 25, 2008 at

http://rutgersscholar.rutgers.edu/volume04/sobrbirg/sobrbirg.htm

[9] Wiedenbeck, S., Waters, J., Sobrado, L., and Birget, J. Design and
evaluation of a shoulder surfing resistant graphical password scheme. In

Proceedings of the Working Conference on Advanced Visual interfaces
(Venezia, Italy, May 23 - 26, 2006). AVI '06. ACM Press, New York,

NY, 177-184.

[10] Hoanca, B. and Mock, K.. Secure Graphical Password System for High
Traffic Public Areas. In Proceedings of ETRA - Eye Tracking Research

and Applications Symposium. San Diego, California, USA: ACM Press.
pp. 35, 2006.

[11] De Luca, A., Denzel, M., and Hussman, H. Look into my eyes!: can you

guess my password? SOUPS '09: Proceedings of the 5th Symposium on
Usable Privacy and Security, 2009.

[12] Manu Kumar, Tal Garfinkel, Dan Boneh, and Terry Winograd.

Reducing shoulder surfing by using gaze-based password entry. In
Proceedings of the 3rd symposium on Usable privacy and security

(SOUPS 2007). ACM, New York, NY, USA, 13-19

[13] Kumar, M., Klingner, J., Puranik, R., Winograd, T., and Paepcke, A.

Improving the accuracy of gaze input for interaction. Proceedings of the
2008 symposium on Eye tracking research and applications (pp. 65-68).

New York: ACM.

[14] Forget, A., Chiasson, S., & Biddle, R. Input precision for gaze-based
graphical passwords. CHI EA '10: Proceedings of the 28th of the

international conference extended abstracts on Human factors in
computing systems.

[15] Forget, A., Chiasson, S., and Biddle, R. Shoulder surfing resistance with

eye-gaze entry in cued-recall graphical passwords. CHI EA '10:
Proceedings of the 28th of the international conference extended

abstracts on Human factors in computing systems.

	I. Introduction
	II. Related Work
	III. EyeDent Overview and Design
	A. Clustering – Fixed Minimum Points per Cluster
	B. Clustering – Dynamic Minimum Points per Cluster
	C. Password Matching
	D. Data Logging and Average Error Analysis

	IV. Preliminary Investigation
	A. Alphanumeric Password Entry, 9 MPPC
	B. Dynamically Calculated Minimum Points per Cluster
	C. Numeric Password Entry, Four-Digit PIN, 9 MPPC

	V. Analysis and Discussion
	A. Nine Minimum Points per Cluster
	B. Dynamically Calculated Minimum Points per Cluster
	C. Numeric Password Entry, 9 MPPC

	VI. Conclusions
	Acknowledgment
	References

