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Abstract - We propose an authentication scheme resistant 
to eavesdropping attacks. Users select an alphanumeric 
password with a length of 9-15 symbols. They can use this 
password in the traditional manner from a secure client. 
The same password can also be used from a non-secure 
client in a manner highly resistant to eavesdropping 
attacks. Although more complex than traditional password 
entry, in our tests 11 out of 13 users had overall success 
rates of 80% and above, and 12 of the 13 users had 100% 
success rates after the initial learning stage. The average 
authentication time is 1-2 minutes, depending on the 
password length. Like all similar authentication schemes 
reported to date, this scheme is too cumbersome for general 
use, but could be useful for special situations and with 
motivated users. 

Keywords: Authentication, eavesdropping, shoulder 
surfing, peeping attacks. 

 

1 Introduction 
  Mobile users often need to authenticate from non-
trusted clients to trusted remote servers. In such situations, 
passwords are extremely vulnerable, because a shoulder 
surfer or key logger on the client can capture the password 
and give the attacker full access to the user’s remote 
account. Other authentication mechanisms such as trusted 
hardware or biometric sensors are not widely available. One 
solution is a password scheme that allows authentication 
without disclosing the password to a key logging attack.  

We propose a scheme that allows the user to enter a 
traditional password in a trusted environment and to enter 
the same password in a secure manner from a non-trusted 
client. The ability to use the same password in secure and 
non-secure environments is critical given the user’s limited 
ability to recall passwords [1]. 

While some work has been done on passwords that are 
resistant to shoulder surfing [2,3] or to general 
eavesdropping attacks [4], only one approach allows the 
reuse of the same password in both secure and non-secure 
environments [5,6].  However, this approach requires gaze-
tracking hardware and is only resistant to shoulder surfing 
attacks.  Our scheme allows the reuse of the same password 
in secure and non-secure environments with general-purpose 
hardware. 

A common characteristic of all schemes proposed to counter 
eavesdropping attacks [2-4] is that they are much more 
complex and time consuming than the traditional password 
interface. For this reason, we do not view our scheme as a 
replacement for traditional password authentication. Only in 
non-secure environments where there are no other options 
and only with motivated, savvy users is the scheme expected 
to be practical. Users must understand and accept the 
tradeoff in complexity and authentication speed in exchange 
for increased security. It is unlikely that our proposed 
scheme will ever be used on a large scale by the general 
public, for example in e-commerce applications. This 
scheme is more likely to be used by James Bond than by Jim 
Doe. 

2 Related Work 
 Password-only authentication schemes able to 
withstand eavesdropping attacks were first mentioned in 
1969 by Hoffman [7], but only detailed two decades later in 
a paper by Matsumoto and Imai [8]. This work and all 
subsequent approaches reported in the literature rely on 
requiring the users to carry out a simple hashing function in 
their head. The hashing function combines a shared secret 
(known to both the user and the authenticating server) with 
random information displayed on the computer screen 
(known to the user, the server and to any attacker observing 
the authentication session). The nature of the hashing 
function makes it difficult for the observer to extract the 
shared secret from the known user response and the known 
random component.  Also, because the correct answer 
incorporates both the shared key and the random 
component, the user input from one session cannot be used 
to authenticate in another session that uses a different 
random component.  

Matsumoto’s initial work [8] set the theoretical basis for 
several protocols that are resistant to eavesdropping that are 
based on mathematical operations or on tracing a path on a 
map. The most effective attack strategy involves collecting 
user authentication information across several sessions, 
using this data to narrow down the space of possible 
passwords, and then attempting a brute force attack on the 
remaining password space.  

More recently, Sobrado et al. [9] describe a scheme based 
on spatial relationships that requires the user to visualize 
geometrical shapes. The password is a set of graphical 



 

symbols that are displayed in random order on the computer 
monitor. To authenticate, the user must click inside the 
convex hull determined by the chosen symbols.  To achieve 
sufficient confidence in the identity of the user, several 
correct click sessions are required for any authentication 
session. The scheme underwent many generations of 
improvements to eliminate inequalities in the probability 
distribution of the correct click location (which has 
implications on the security of the scheme). In its latest 
form, the scheme was reported in a recent paper by 
Wiedenbeck et al. [3]. Study results indicate success rates 
above 90% for authentication sessions for all users, and 98% 
for individual click sessions in the authentication process. 
Reportedly, many of the authentication sessions failed 
because of a single failed click session. The time required 
for the authentication was significantly longer than for the 
conventional password: an average of 10 seconds per click 
session, which translates in times of up to a minute for a 
password requiring 6 clicks. 

One major drawback of the scheme is that the chosen 
symbols are rather difficult to distinguish from each other, 
and that they are not similar to a typical user password. 
Zhao and Li [10] extended this system so that it may be used 
with alphanumeric characters chosen from a traditional 
password instead of graphical symbols.  

Another authentication procedure resistant to shoulder 
surfing is based on mathematical operations (e.g. requiring 
the user to perform modular arithmetic), and published in a 
paper by Hopper and Blum [11]. Although this work is 
widely cited, it does not include a usability component.  

Finally, a proposed scheme based on combinations of 
graphical objects and alphanumeric characters [4] include 
only a brief mention of the usability study. Users were able 
to start using the scheme within 15 minutes of the initial 
exposure. 

A common drawback of all the proposed schemes is that 
they require additional cognitive effort on the part of the 
user, and that the authentication time is longer than 
traditional password schemes. The added cognitive load is 
required to perform the hashing operation in the user’s head, 
and the longer time results directly from the increased 
cognitive load.  

Reusing the same text-based passwords in a traditional 
password entry scheme and in a scheme resistant to 
eavesdropping attacks increases usability, because it reduces 
the number of different passwords a user must memorize. 
We present the user interface and the usability of such a 
scheme in the remainder of this paper. 

3 Proposed Scheme 
 We propose a password entry scheme that will allow 
the reuse of the same password in conventional 

authentication (when using a secure computer) and in a 
manner that is highly resistant to eavesdropping attacks 
(when using a less secure client computer). The scheme we 
propose has several direct advantages. First, users do not 
need to remember additional passwords to authenticate from 
non-secure clients. Second, the password format required by 
our proposed scheme forces the user into choosing a 
“strong” and relatively long password, yet makes the 
password relatively easy to memorize. 

When using our scheme from a non-secure client, we 
assume that the user input to the computer can be 
monitored, recorded and later processed by the attacker 
using unlimited computing power to extract the user’s 
authentication information. This situation is very different 
from the usual applications of encryption, where both the 
user and attacker have access to computing power. This 
same advantage of the attacker makes it very difficult to 
design a user interface that is simple, easy to use and that at 
the same time has any ability to protect against the attacker. 

3.1 Shared secrets to resist eavesdropping 
 The approach we take to protect the authentication 
information is to use a simple problem that the user can 
solve using only mental power. The problem is based on a 
secret shared between the user and the authentication 
computer. For an authentication session, the user input is a 
function of the problem displayed on the screen and the 
shared secret, which the attacker does not know.  Key to this 
scheme’s operation is that, given a problem on the screen, 
multiple values of the shared secret may lead to the same 
user input.  

As a simple example of this approach, consider a shared 
secret that consists of the letters “ABC”.  The screen 
displays the entire set of possible alphanumeric symbols 
with a random choice of background (either white or dark) 
for each symbol. The user input requested might be the 
number of symbols that are displayed using a dark 
background, which in this example will be a number 
between 0-3 depending on the random background colors. 
Given only this number as the user input, the attacker may 
find many possible sets of symbols that meet the 
requirement, and would have no way of knowing which of 
the sets is the shared secret. 

The authenticating server can easily verify whether the user 
input is compatible with the shared secret. There is no way 
to know whether the user actually knew the shared secret, or 
whether some randomly generated input happened to match 
the expected input. The confidence in the user’s identity can 
be increased by repeating the process. If the user is able to 
solve several successive problems consistent with the shared 
secret, the probability of a random guess can be made 
arbitrarily small at the expense of a longer authentication 
session. 



 

The attacker has access to the problem displayed on the 
screen and to the user response. Based on this information, 
the attacker can reverse engineer the user’s input to 
determine a set of possible values for the shared secret. The 
security of our scheme rests on having sufficiently many 
elements of this set. One way for the attacker to narrow 
down the set of possible shared secrets is to gather user 
input over several authentication sessions. 

3.2 User interface considerations 
 An important consideration in the usability of the 
interface is the cognitive load involved in determining the 
user input, given the shared secret and the displayed 
problem on the screen. A very simple input (for example, 
binary valued) is easier to calculate, but gives only 50% 
assurance that the user actually knows the secret. This 
requires a large number of repeated trials to ensure high 
confidence in the authentication. The likelihood that the user 
will make a mistake increases with the number of trials, 
overall reducing the chance that the user will authenticate 
correctly. Additionally, a large number of trials implies a 
long authentication time.  

A similar consideration applies to the complexity of the 
shared secret involved. A more complex shared secret is 
more difficult to guess, but the user will have a more 
difficult time recalling it and operating on it to determine the 
required input in response to a problem on the screen. A 
simpler secret allows the attacker to guess more easily. 

In a balance of these conflicting requirements, our proposed 
scheme uses a longer shared secret. We force users to 
choose shared secrets composed of several triplets of 
alphanumeric symbols. For each triplet in the shared secret 
the user must determine the required input, which is another 
alphanumeric symbol. 

3.3 Design rules for creating a shared secret 
 Our scheme requires that the shared secret consist of 
an integer number of triplet symbols. In a secure 
environment, this shared secret is entered as the user 
password. From a non-secure client, the user will enter one 
symbol for each triplet using the technique described in 
section 3.5. 

One way to create a shared secret consisting of easy to recall 
triplets is to choose a series of 3-5 words each containing at 
least three letters. The shared secret could be a series of the 
first three letters in each word. The words can form a phrase 
or may be in a series that is easy to recall for the user. For 
example, if starting with the phrase “maintain your 
password secure,” the resulting password would be 
“maiyoupassec” to authenticate from a secure machine.  The 
triplets to authenticate from a non-secure machine would be 
“mai”, “you”, “pas”, and “sec”.  Such passwords are 
generally accepted as difficult to guess [12], unless the user 

chooses a very common phrase. This approach ensures that 
each triplet has meaning independent of the rest of the 
shared secret. Users can hold in their mind one triplet at the 
time and determine the corresponding entered symbol. 

Each triplet corresponds to only one correct entered symbol, 
but each entered symbol could have been determined from a 
number of different triplets. In our proposed scheme, if the 
interface has N possible symbols then the number of 
possible triplets for a given “entered symbol” is N2 (see 
section 3.6). For a usable interface, this must be a small 
number. The protection afforded by this small number is 
that an attacker cannot tell which of the different possible 
triplets is part of the shared secret. Most accounts would 
lock out if the attacker attempts a brute force attack of all 
possible triplets. 

3.4 User interface 
 In our experiment, only lowercase letters and digits are 
displayed in random order on a grid of 6x6 symbols. For 
added security, the scheme could use a larger set of 
characters, for example both lowercase and uppercase 
letters, digits and other characters. However, a larger set of 
symbols would make it more difficult for the user to locate 
the “password triplet symbols” on the grid. Another 
disadvantage is that letters would either be capitalized at the 
start of the word (i.e. the first letter in the triplet), not at all, 
or in a manner that would require additional recall effort on 
the part of the user.  Although we chose to use a square 6x6 
grid, the grid does not need to be square. 

3.5 Determining the “entered symbol” 
 To authenticate, the user enters one “Entered symbol”, 
which we refer to as E, for each group of three consecutive 
symbols in the “Password Triplet Symbols”, which we refer 
to as PTS. The symbol E is such that it completes a 
parallelogram on the displayed grid with the PTS.  Given 
any PTS on the grid, there are three different parallelograms 
that could be formed. Of these three parallelograms, the user 
must choose the one parallelogram where E is located 
diagonally opposed to the first symbol in the PTS. To select 
E the user clicks on the button displaying the symbol or 
could enter the symbol via the keyboard.  The process is 
shown in Figure 1. 

 

Figure 1.  Selecting the Entered Symbol “9”, for three 
Password Triplet Symbols, “0v2”. 



 

In Figure 1 the triplet is “0v2” and the fourth symbol to 
complete the parallelogram is the circled “9”.  The 
highlighted parallelogram on the PTS is shown in the figure 
only to illustrate the scheme, but is not displayed in the 
actual user interface. 

We expect some readers may feel rather confused about the 
explanation above.  Fortunately, there is a sequence of 
simple rules that can be followed to locate E.  Given three 
alphanumeric symbols, start at the first symbol and count 
the distance in rows (up or down) and in columns (left or 
right) to the second symbol. Then, starting at the third 
symbol, count the same number of rows/columns and in the 
same direction as before (up or down, and right or left).  In 
Fig. 1, the first symbol is “0”.  The second symbol, “v”, is 
two columns to the left and two rows above the first symbol.  
To locate E we start at the third symbol, “2”, and count two 
columns left and two rows up resulting in “9”. 

In some cases the location of E will fall outside of the 
displayed grid.  When this occurs the user must visualize the 
displayed grid as a torus that wraps around the edges. An 
example is given in Figure. 2. The password triplet symbols 
set is “5oh.” If the grid were to extend beyond the 
alphanumeric squares, then E would be the top position in 
the second column, two positions above the “h”, as 
indicated.  Since there is no button at this location, the user 
must visualize wrapping the top of the grid back to the 
bottom (forming a torus) and must click on the “y”.    

 

Figure 2. Illustration of the scenario where the entered 
symbol determined by the password triplet symbols 
falls outside of the grid of symbols displayed.  

3.6 Capability to withstand eavesdropping 
 We assume that an eavesdropping observer will have 
full access to the user input to the computer (through a key 
logger or screen recorder on the user’s computer). The 
attacker may record several authentication sessions and 
correlate user entered data across all sessions captured. This 
is the worst case, a case often ignored or dismissed in the 
literature. 

The position of E is dependent on the positions of the PTS. 
Because these three PTS will be displayed in a different 

position on the grid every time the user authenticates, E will 
likely be different for each authentication session. Thus, an 
attacker must record a large number of authentication 
sessions to see a repeated arrangement of the PTS.  The total 
number of configurations of the 6x6 grid is of the order of 
36! (reduced by the possible symmetries), making it 
unlikely that the attacker can expect to see an identical 
configuration in a reasonable time frame. 

For the proposed scheme each E is a function of the same 
three PTS. This “decouples” the password, and allows the 
attacker to solve for each PTS set separately. Fortunately, 
for any given E selected by the user there is a large number 
of PTS that could have determined the selection of that 
symbol. The degrees of freedom are the positions of two of 
the symbols in the triplet (the third one is uniquely 
determined by the position of the first two symbols and the 
one selected by the user).  With two degrees of freedom in 
an array of 36 symbols, the number of possibilities is 36*36 
= 1296. 

Armed with only the knowledge of where the user clicked in 
one particular authentication session, the attacker will not be 
able to authenticate in place of the user in a subsequent 
session. Indeed, the next time the attacker attempts to log in, 
the distribution of symbols on the log in screen will be 
different than in the previous session. The new arrangement 
of the PTS in the grid will correspond to another E and the 
attacker will need to know the actual triplet, not the 
previously selected symbol to authenticate at this time.  

However, the strength of the scheme is limited under repeat 
observations. An attacker who records multiple 
authentication sessions, each with a different, random 
distribution of symbols on the screen will know that the 
actual triplet of password symbols is in the intersection of 
possible “triplet password symbols” leading to the E 
observed in the authentication sessions. For a given E in one 
session, the number of possible triplets that could have led 
to that symbol is 1296. If the attacker observes the same E 
across two sessions, the number of possible triplets that 
could have led to the two “entered symbols” is reduced to 
36. For three or more sessions, the attacker can on average 
determine the exact triplet in the password.  

The situation in reality is not as dire as this summary 
analysis might indicate. First, each password will comprise a 
series of 5-8 E values that correspond to the same number of 
PTS sets. To uncover the user password, the attacker will 
need to observe E in several sessions, and will need to run 
the intersections above for each set of PTS. The level of 
sophistication required to mount such an attack is 
significantly higher than that required by current phishing 
attacks. This complexity will lead to a decrease in the 
number of attacks, but will not deter all attackers. 

There are several solutions to handle the determined 
attackers that might target the limitations of the proposed 



 

scheme. Because the vulnerability arises when the same 
attacker is able to capture several successful sessions from 
the same user, one protection mechanism is for users to not 
use the same non-secure computer to log in more than once. 
As a second solution, the scheme can be made more secure 
(although even less user friendly) by using 4-tuples or 5-
tuples to determine the click symbol. The cognitive load in 
such cases would be even greater, which limits the 
usefulness of such an approach. Finally, a third approach 
allows the user to make errors in the authentication session. 
Such a “noise” component will i) make it significantly more 
difficult for the attacker to uncover the PTS corresponding 
to the observed E symbols, ii) make it easier for the user to 
authenticate (if the system tolerates some of the user errors) 
and iii) only slightly increase the authentication time for a 
given confidence level.  

In order to achieve the benefits described above in terms of 
resistance to attack, the proposed password entry scheme 
requires a significantly increased cognitive load on the users 
when compared to the conventional password entry scheme. 
In addition to the challenges to recall the password, users of 
our proposed scheme will need to be able to segment the 
password in groups of three symbols and recall which group 
they are currently dealing with.  

To assess the challenges imposed by our scheme we 
conducted a small usability study that examined the ability 
of users to locate the correct “entered symbol,” given a 
triplet in the password. 

4 Experimental Methodology 
 A total of 20 users were invited to participate in the 
main study. All users were contacted by email and sent a 
personal access code that allowed us to identify their data. 
Users were asked to test the software as a favor, and not to 
spend more than 30 minutes on testing, regardless of the 
outcome of the testing. No incentives were offered for 
completing a certain number of sessions, nor for achieving 
higher accuracy. Users were advised to practice the scheme 
only until they felt comfortable with it.  

In the email contact users were directed to follow a link to a 
web site where the authentication scheme could be tested 
online. The web site includes a validation screen (where 
participants were instructed to enter their access code) and a 
usage scenario of logging into a secure server from an 
unfamiliar Internet café as motivation for the scheme. 

Out of the 20 users invited to participate in the study, 13 
provided data. According to personal follow-up questions, 
the other users did not get a chance to even consider the 
application. Almost all 13 users are college students or have 
completed college, and four have doctoral degrees. They all 
use computers at work and have a wide range of levels of 
familiarity with computer technologies, but none of the 
users had been exposed to our password application before 

the study. Many of the users were not “techies,” but rather 
administrative staff, techno-phobes, or health care workers. 
Five of the users are male and eight are female. The mean 
age is 41 years, and the age range is 24-62. 

The users were given the following instructions and a 
graphical example similar to Fig. 1: “Given three 
alphanumeric symbols, count from the first symbol to the 
second symbol -- the distance in rows (up or down) and in 
columns (left or right). Then, starting at the third symbol, 
count the same number of rows/columns and in the same 
direction as before (up or down, and right or left). “ 

For each user attempt, the computer generated a random 
“password triplet symbols” set and displayed this set on the 
screen, along with a random grid of 6 x 6 buttons with 
lowercase letters and digits. The user was instructed to 
locate the appropriate button with the “entered symbol” and 
to click on it. We collected the timestamp of the moment 
when the “entered symbol” was selected, as well as 
information about the correct symbol and the actual symbol 
selected. Because most of the attempts occurred in 
sequence, we used the difference between timestamps as a 
measure of the time users spent authenticating. 

5 Results 
 Most users found the scheme difficult to understand at 
first, but they quickly learned to locate the “entered symbol” 
for a given triplet. In the discussion below, each triplet entry 
point counts as one authentication session (the analog of the 
click session in Wiedenbeck [3]). In practice, a secure 
password would require 3-5 triplet points, corresponding to 
the 3-5 words that make up the password. Having to handle 
several triplets in sequence will likely further reduce the 
figures of success rate we report and further increase the 
login time.  

Summary data for all users is included in Table 1. Among 
the 13 users, only one had an overall success rate below 
50% (49% for User ID 6 in the table).  

The time users took to complete each authentication attempt 
is significantly longer than the typical 2-10 seconds it takes 
to type in a traditional password. Users took an average of 
20 seconds per triplet, similar to time reported by 
Wiedenbeck [3]. The range of authentication times is 10-30 
seconds per triplet. In a practical situation, for a password 
requiring 3-5 clicks, a user would need to spend between 30 
seconds and 2 minutes to validate their password. This is an 
acceptable value for users according to Wiedenbeck [3] (ten 
seconds per click session) and Tan et al. [2] (50 seconds for 
an average password). Even if the time is too long for daily 
use, it might be acceptable for authenticating from a non-
secure client. 

It is reassuring that some of the users were able to 
authenticate in a much shorter time than the average. In 



 

some cases users took less than one second per triplet and 
almost all users were able to correctly choose at least some 
of the click points correctly in 10 seconds or less.  User #10 
required an average of 10.3 seconds per triplet. 

There was some statistical correlation between average time 
and success of the authentication. We ran a paired t-test 
comparing the mean times for all sessions with the mean 
times for only the successful sessions for each user. The 
difference was 0.5 seconds (p=0.098). Interestingly, the 
average time for correct attempts was shorter than the 
average time for all attempts.   

User ID #7 provided close to 200 click points, allowing us 
to see a trend in decreasing authentication time. As shown in 
Figure 3, there is a trend for the authentication time to 
approach 10 seconds, although this user initially started with 
much slower authentication times.  The overall average time 
for the user is 13.9 seconds.  

 

Figure 3. Time per click in seconds for a “high 
persistence” user. Actual times displayed are clipped 
at 80 seconds. 

We attribute the low initial authentication times (bottom left 
corner of Figure 3) to attempts to understand how the data 
entry worked. It is unlikely that the user actually considered 
the possible click point, given the extremely short 

authentication time taken.  The success rate is close to zero 
for these initial points. 

We expected a rather steep learning curve, so we focused on 
the success rate after sufficient learning has occurred, not on 
how quickly users would be able to master the scheme.  Our 
data indicates that after the initial learning period most users 
do achieve almost error-free performance. To quantify the 
situation we measured success for the last 10 attempts; all 
but two of the 13 users achieved 100% success rates. The 
other two users had 90% and 80% accuracy, respectively for 
these last 10 attempts. Choosing a different metric, for 
example the success in the last 5 or 15 attempts leads to 
similar results.  Notably, User ID #6 with an overall success 
rate of 49% has a 100% success rate over the last 10 
attempts. 

What would matter in a realistic authentication scenario is 
whether users would be able to sustain good accuracy in 
selecting the entered symbols, E, over several sessions. To 
measure this, we averaged the user success rate over a 
sliding window of 10 consecutive attempts. The last row in 
Table 1 shows the number of attempts each user took to 
achieve a windowed success rate of 100%. This 100% 
windowed success rate is reached when the user is able to 
achieve a series of 10 consecutive successful E’s in a row. 
Clearly, each user must have at least 10 attempts for such a 
metric to be defined. The metric is relevant, because a user 
who can select 10 consecutive E’s correctly is able to 
authenticate with reasonable accuracy if the password 
includes 3-5 entered symbols. For clarity, the entries in the 
last row in Table 1 are measured after the 10th attempt. For 
example, User ID #3 achieved 10 correct sessions as soon as 
completing the 10th attempt (all ten first attempts were 
correct). Seven of the users achieve 10 consecutive correct 
entries within three attempts of their 10th. Another group of 
four users reach 100% windowed success within 10-25 
attempts past their first 10, and a group of two “laggards” 
take more than 50 attempts to reach 100% success.  

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13 
Nbr. attempts 53 34 25 19 10 76 195 66 81 60 18 21 11 
Nbr. successes 51 28 25 16 8 37 171 60 64 60 16 20 11 

Success rate 96% 82% 100% 84% 80% 49% 88% 91% 79% 100% 89% 95% 100% 

Mean time per 
click [s] 18.6 18.9 21.8 33.7 20.5 20.3 13.9 16.8 19.5 10.3 27.9 24.1 18.1 

Stdev./click [s] 9.5 12.1 10.8 17.1 7.0 14.6 10.1 6.5 10.8 2.8 15.6 10.7 11.5 
Total time 
spent [min] 15.2 9.5 8.0 7.9 2.7 22.4 44.1 17.1 25.3 10.1 7.5 6.8 3.0 

Success rate 
last 10 triplets 100% 100% 100% 90% 80% 100

% 100% 100% 100% 100% 100% 100% 100% 

First series of 
10 successes 3 20 1 2 n.a. 58 24 18 52 1 3 10 1 

 
Table 1. Summary of results for all 13 users 

 



 

For all users, the success rate windowed over 10 consecutive 
attempts is a function that reaches 100% relatively fast, 
within at most 50-60 entries, and for some users even from 
the first few tries. This windowed success rate does not go 
up monotonically, but once it reaches 100% it remains 
above 70% for all users. This indicates that users have 
different learning speeds, but that once they “get” the 
scheme, the error rate is relatively low. 

6 Discussion 
 Based on observations to date, the proposed password 
entry scheme has the potential to be usable among well-
trained, savvy, and well-motivated users. All users found the 
scheme difficult at first, but once users learned how to apply 
the counting technique, “it all clicked in” and the process 
appeared much easier. 

The ability to recall a password is a critical factor for 
authentication schemes, and many users have difficulty with 
strong passwords [13]. Our scheme compounds these 
difficulties with the need to recall the actual authentication 
scheme. We do not have any data yet on how well users’ 
ability to use the scheme can persist over time. Given the 
reported experience with understanding of the scheme 
“clicking in,” we expect the scheme to be memorable. 

7 Conclusions 
 Users who have to authenticate from non-secure 
clients must understand that they need to trade off 
convenience for security. We propose and evaluate a 
scheme that allows users to authenticate with the same 
password in a non-secure environment, without disclosing 
the password to an eavesdropping attacker. To afford such 
protection, the scheme is necessarily more complex, and 
requires a longer authentication time. Informal interviews 
with test users indicate that they find the authentication 
scheme to be tedious, but usable.  

Users found the scheme complicated at first, but reported 
that it became easy to use after practice. For the scheme to 
be practical, users must devote practice time in a secure 
environment ahead of time. Our testing indicates that most 
users can get comfortable and proficient with the scheme 
within 30 minutes.  

Both the high cognitive load and the lengthy authentication 
time make the scheme unlikely to be widely adopted for the 
general population, for example, authentication into e-
commerce applications. On the other hand, we expect the 
scheme to be acceptable for specialized applications and 
motivated users. 
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