
1

Common Architectures and

Design Patterns

Architectural Styles

• High-level abstractions of components and

communication

– Even higher than data types, algorithmic pseudocode

– Also known as design patterns or architectural

patterns

• Architectural styles become reusable for

different problems

– Collections of modules or classes that are often used

in combination to provide a useful abstraction

2

Some common architectural styles

Non-Object Based

• Main with Subroutines and Shared data

• Data abstraction

• Implicit invocation

– Modules independent/parallel

– Respond to events and raise events

• Pipes and Filters

• Repository

• Layered

• Client Server

Module Diagram

3

Main Program Style

• What do you think is good about the main program
style?

• What do you think is bad?

Second Architecture: Abstract Data

Types

• Previous decomposition required that each
module had knowledge about the precise
storage of data
– Data representation must be selected early

– What if wrong representation picked? E.g. fixed char
array, perhaps too small, etc.

• One solution: Use abstract data types so that
these data representation decisions are made
locally within a module instead of globally
– Implement Get/Set methods that input or return data

in the desired format

4

ADT Module Diagram (Simplified)

Control

Input Output

Input Output

Store Shift Sort

S
o
rt

e
d
L
in

e

S
o
rt

S
h
if
tL

in
e
s

C
o
m

p
u
te

S
h
if
ts

A
d
d
L
in

e
s

In
it
ia

liz
e

Each module also has

its own data table

Third Architecture: Implicit

Invocation

• Event-based processing

• We can loosen the binding between modules by
implicitly invoking modules
– If something interesting happens, an event is raised

– Any module interested in that event may react to it

– Example: perhaps we would like to process data
concurrently line by line

• Raise an event when a line is ready to be processed by the
next module

5

Implicit Invocation Diagram

Control

Input Output

Input Output

Store Table Shift Table

S
h
if
tL

in
e
s

C
o
m

p
u
te

S
h
if
ts

A
d
d
L
in

e
s

In
it
ia

liz
e

Store Sort

Implicit Invocation

Fourth Architecture: Pipes and

Filters
• Directly feed the output from one module to the input of

the next

• Pipes and Filters model in UNIX
– KWIC < input | Shift | Sort | Output > output

– Data stream format of internal structure must be known from one
program to the next

– Enhancements are easy by adding another filter (e.g. filtering out
stop words)

6

Pipes and Filters Diagram

Repository Architecture

• Central data store

• Components to store, access, retrieve

data in the data store

7

Layered Architecture

• Build system in terms of hierarchical layers

and interaction protocols

• E.g. TCP/IP Stack, Data Access

Client-Server

• Popular form of distributed system architecture
– Client requests an action or service

– Server responds to the request

8

Evaluation of the Architectures

• All of the proposed architectures may work for
some problem but the architect should evaluate
the architectures with respect to
– Changes in data representation

– Changes in algorithms

– Changes in functionality

– Degree to which modules can be implemented
independently

– Comprehensibility

– Performance

– Reuse

Design Patterns

• A design pattern is a template solution that
developers have refined over time to solve
a range of recurring problems

– Name that uniquely identifies the pattern

– Problem description that describes situations
it can be used

– Solution stated as a set of classes and
interfaces

– Consequences that describes tradeoffs and
alternatives

9

Model-View-Controller (MVC)

• Archetypical example of a design pattern

• Three components
– Model : Encapsulates system data and operations on the data

– View : Displays data obtained from the model to the user

– Controller : Handles events that affect the model or view

• Separating user interface from computational elements
considered a good design practice

Exercise

• Consider a program that displays an

analog clock; what could correspond to

the model, view, and controller?

10

Adapter Pattern

• “Convert the interface of a class into another interface clients expect.”

• The adapter pattern lets classes work together that couldn’t otherwise

because of incompatible interfaces

• Used to provide a new interface to existing legacy components

(Interface engineering, reengineering).

• Also known as a wrapper

• Two adapter patterns:

– Class adapter:

• Uses multiple inheritance to adapt one interface to another

– Object adapter:

• Uses single inheritance and delegation

• Object adapters are much more frequent. We will only cover object

adapters (and call them therefore simply adapters)

• Delegation is used to
bind an Adapter and an Adaptee

• An Adapter class implements the ClientInterface expected by the
client. It delegates requests from the client to the LegacyClass and
performs any necessary conversion.

• ClientInterface could be a Java interface, or an abstract class

Adapter pattern

Client
ClientInterface

Request()

LegacyClass

ExistingRequest()

Adapter

Request()

adaptee

The client sees only

the target interface

The adapter

implements the

target interface

The adapter

delegates

requests to the

Adaptee

11

Adapter Pattern

• Example: Implementing a set using a

hashtable (e.g. if Java had no set class but

does have a hashtable class)

Set

add(element)

adaptee

Hashtable

put(key,element)

MySet

add(element)

Client

Exercise

• Our client code uses a Calculator library with an Add method that takes two

integers and returns the sum. We upgraded the library and now it takes two

floats. Rather than change all the code in the client show using UML how

the Adapter pattern could be used instead.

12

Bridge Pattern

• Use a bridge to “decouple an abstraction from its

implementation so that the two can vary independently”.

(From [Gamma et al 1995])

• The bridge pattern is used to provide multiple

implementations under the same interface.

– Examples: Interface to a component that is incomplete, not yet

known or unavailable during testing

• Also known as a Handle/Body pattern.

• Allows different implementations of an interface to be

decided upon dynamically.

Bridge Pattern

Abs tra ct ion

Ope ra tion()

imp

Clien t

Imp ->Op erationImp();

Con crete Implemen tor B

Ope ra tionI mp l()

Refi ned Ab straction 2

Ope ra tion()

Refi ned Ab straction 1

Ope ra tion()

Con crete Implemen tor A

Ope ra tionI mp l()

Impl ementor

OperationImpl()

13

Bridge Pattern Example

• Abstracting how to perform database

activity for storing tournaments

LeagueStoreImplementorLeagueStore

imp

XML Store

Implementor

Stub Store

Implementor

JDBC Store

Implementor

Arena

Adapter vs Bridge

• Similarities:

– Both are used to hide the details of the underlying

implementation.

• Difference:

– The adapter pattern is geared towards making unrelated

components work together

• Applied to systems after they’re designed (reengineering, interface

engineering).

– A bridge, on the other hand, is used up-front in a design to let

abstractions and implementations vary independently.

• Green field engineering of an “extensible system”

• New “beasts” can be added to the “object zoo”, even if these are not

known at analysis or system design time.

14

Exercise

class Main

Names n = new Names()

n.add("Myra Mains")

n.add("Terry Aki")

n.add("Stu Pidd")

class Names

private List namelist = new ArrayList()

// private List namelist = new LinkedList()

void add(string name)

namelist.add(name)

int count()

return namelist.count

interface List

void add(string name)

int count()

class ArrayList implements List

private data[]

void add(string name)

data[i] = name

…

int count()

return size

class LinkedListList implements List

private Node next

void add(string name)

head.data = name

head.next = new Node()

…

int count()

return nodeCount

Draw the UML diagram for this pseudocode and identify the pattern

Strategy Pattern

• The Strategy Design Pattern is similar to
the Bridge pattern, but context drives
selection of which implementation to use

• Consider a mobile application that needs
to switch its wireless protocol based upon
context

– Bluetooth

– 802.11B

– Mobile phone network

15

Strategy Pattern

Policy decides which Strategy is best given the current Context

Strategy
AlgorithmInterface

Context

ContextInterface()

ConcreteStrategyC

AlgorithmInterface()

*

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy

Strategy Example

NetworkInterface

open()

close()

send()

receive()

NetworkConnection

send()

receive()

setNetworkInterface()
LocationManager

Application

Ethernet

open()

close()

send()

receive()

WaveLAN

open()

close()

send()

receive()

UMTS

open()

close()

send()

receive()

LocationManager configures NetworkConnection with a specific

NetworkInterface based on the current location.

Application uses send/receive independent of concrete interface.

16

Applying a Strategy Pattern in a

Database Application

Strategy
Sort()

Database

Search()

Sort()

Strategy *

BubbleSort

Sort()

QuickSort

Sort()

RadixSort

Sort()

Facade Pattern
• Provides a unified interface to a set of objects in a subsystem.

• A facade defines a higher-level interface that makes the subsystem

easier to use (i.e. it abstracts out the gory details)

• Facades allow us to provide a closed architecture

17

Design Example
• Subsystem 1 can look into the

Subsystem 2 (vehicle

subsystem) and call on any

component or class operation

at will.

• This is “Ravioli Design”

• Why is this good?

– Efficiency

• Why is this bad?

– Can’t expect the caller to

understand how the

subsystem works or the

complex relationships within

the subsystem.

– We can be assured that the

subsystem will be misused,

leading to non-portable code

Subsystem 2

Subsystem 1

AIM

Card

SA/RT

Seat

Realizing an Opaque Architecture with a

Facade

• The subsystem decides

exactly how it is

accessed.

• No need to worry about

misuse by callers

• If a facade is used the

subsystem can be used

in an early integration test

– We need to write only a

driver

VIP Subsystem

AIM

Card

SA/RT

Seat

Vehicle Subsystem API

18

Abstract Factory Motivation

• Consider a pizza store that makes different

types of pizzas

Pizza pizza;

if (type == CHEESE)

pizza = new CheesePizza();

else if (type == PEPPERONI)

pizza = new PepperoniPizza();

else if (type == PESTO)

pizza = new PestoPizza();

pizza.prepare();

pizza.bake();

pizza.package();

pizza.deliver();

This becomes unwieldy

as we add to our menu

This part stays the same

Idea: pull out the creation code and put it into an object

that only deals with creating pizzas - the PizzaFactory

Abstract Factory Motivation

Pizza pizza;

PizzaFactory factory;

...

pizza = factory.createPizza(type);

pizza.prepare();

pizza.bake();

pizza.package();

pizza.deliver();

public class PizzaFactory

{

public Pizza createPizza(int type)

{

Pizza pizza = null;

if (type == CHEESE)

pizza = new CheesePizza();

else if (type == PEPPERONI)

pizza = new PepperoniPizza();

else if (type == PESTO)

pizza = new PestoPizza();

return pizza;

}

}

Replace concrete instantiation with

call to the PizzaFactory to create a

new pizza

Now we don’t need to mess with this

code if we add new pizzas

19

Pizza Classes

PizzaStore PizzaFactory Pizza

Pepperoni Pesto Cheese

Not quite the Factory pattern, to do so we would need an abstract

PizzaFactory class.

First, the pattern:

20

Factory Pattern

Product

Concrete

Product

All products must implement the same

interface so that the classes that use the

products can refer to the interface, not

the concrete class

Creator

factoryMethod()

anOperation()

ConcreteCreator

factoryMethod()

The ConcreteCreator is the only class

that can create concrete products

returned by factoryMethod()

The Creator class contains

implementations for all methods to

manipulate products, except for creating

them via factoryMethod

Pizza Factory Classes
Pizza

Conglomerate Abstract

PizzaFactory

Pizza

Pepperoni Pesto Cheese

Chicago Pizza

Factory

Alaska Pizza

Factory

21

Command Pattern: Motivation

• Say you have a remote control with three
buttons

– You would like to be able to walk around and
press the buttons to turn on/off different
devices

– However, each device you want to control has
a different interface for the power command

• Ceiling Fan: OnOff();

• Garage Door: OpenClose();

• Television: TogglePower();

Command Pattern Motivation

• Approach that works but very static:

if (buttonPress == 0)

TogglePower(); // TV

else if (buttonPress == 1)

OpenClose(); // Garage

else if (buttonPress == 2)

OnOff(); // Fan

Etc.

More flexible and easier to use: Create an object, the command object, that

encapsulates the desired request, and have the user invoke the request

from the command object. In this case we may have 3 command objects in

an array:

Button[buttonPress].execute();

22

Command pattern

• Client creates a ConcreteCommand and binds it with a Receiver.

• Client hands the ConcreteCommand over to the Invoker which

stores it.

• The Invoker has the responsibility to do the command (“execute” or

“undo”).

Command

execute()

Receiver

action()

Client

Invoker

ConcreteCommand

execute()

binds

Command Pattern for Remote

Remote Loader
RemoteControl

Button()

Command

execute()

CeilingFan

Command

TV

Command

GarageDoor

Command

execute()

GarageDoor

OpenClose()

Creates command objects,

binds with devices

Invokes execute() method of

the button command object

execute() for each concrete command

would use delegation to the

corresponding device, e.g.

garagedoor.OpenClose()

or tv.TogglePower()

23

Applying the Command design

pattern to Game Matches

GameBoard

«binds»

TicTacToeMove

execute()

ChessMove

execute()

Move

execute()

Match *

replay()

play()

Match only calls Move, which executes, undoes, stores commands

Command pattern Applicability

“Encapsulate a request as an object, thereby

letting you

– parameterize clients with different requests,

– queue or log requests, and

– support undoable operations.”

• Uses:

– Undo queues, can add now since each command is

sent through a command object and we can create a

history of commands within this object

– Database transaction buffering

24

Proxy Pattern: Motivation

Proxy Pattern

• A proxy acts as an intermediary between the

client and the target object

– Why? Target may be inaccessible (network issues,

too large to run, resources…)

• The proxy object has the same interface as the

target object

– The proxy has a reference to the target object and

forwards (delegates) requests to it

• Useful when more sophistication is needed than

a simple reference to an object (i.e. we want to

wrap code around references to an object)

25

Proxy pattern

• Interface inheritance is used to specify the interface

shared by Proxy and RealSubject.

• Delegation is used to catch and forward any accesses to

the RealSubject (if desired)

• Proxy patterns can be used for lazy evaluation and for

remote invocation.

Subject

Request()

RealSubject

Request()

Proxy

Request()

realSubject

Example: Virtual proxy

• Say your application needs to sometimes
load and display large images

– Expensive to load an image each time

• Virtual proxy

– One instance of the complex object is
created, and multiple proxy objects are
created, all of which contain a reference to the
single original complex object. Any operations
performed on the proxies are forwarded to the
original object.

26

Image Proxy (1 or 3)

interface Image {

public void displayImage();

}

class RealImage implements Image {

private String filename;

public RealImage(String filename) {

this.filename = filename;

System.out.println("Loading "+filename);

}

public void displayImage() { System.out.println("Displaying "+filename); }

}

Image Proxy (2 of 3)

class ProxyImage implements Image {

private String filename;

private RealImage image = null;

public ProxyImage(String filename) { this.filename = filename; }

public void displayImage() {

if (image == null) {

image = new RealImage(filename); // load only on demand

}

image.displayImage();

}

}

27

Image Proxy (3 of 3)

class ProxyExample {

public static void main(String[] args) {

ArrayList<Image> images = new ArrayList<Image>();

images.add(new ProxyImage("HiRes_10GB_Photo1"));

images.add(new ProxyImage("HiRes_10GB_Photo2"));

images.add(new ProxyImage("HiRes_10GB_Photo3"));

images.get(0).displayImage(); // loading necessary

images.get(1).displayImage(); // loading necessary

images.get(0).displayImage(); // no loading necessary; already done

// the third image will never be loaded - time saved!

}

}

Observer pattern

• “Define a one-to-many dependency between

objects so that when one object changes state,

all its dependents are notified and updated

automatically.”

• Also called “Publish and Subscribe”

• Uses:

– Maintaining consistency across redundant state

– Optimizing batch changes to maintain consistency

28

Observer pattern (continued)

9DesignPatterns2.ppt

Observers Subject

Change name to Foo

Observer pattern (cont’d)

Observer
update()

Subject
attach(observer)

detach(observer)

notify()

ConcreteSubject
getState()

setState(newState)

subjectState

ConcreteObserver
update()

observerState

observers

subject

*

• The Subject represents the actual state, the Observers

represent different views of the state.

• Observer can be implemented as a Java interface.

• Subject is a super class (needs to store the observers

vector) not an interface.

29

Sequence diagram for scenario:

Change filename to “foo”

getState()

update()

update()

aListViewanInfoViewaFile

setState(“foo”)

notify()

Attach()
Attach()

“foo”

Subject goes through all its

observers and calls update() on

them, asking for the new

state is decoupled from

the notification

Which Design Pattern Applies?

Phrase Design Pattern

“Manufacturer independence”,

“Platform Independence”

“Must comply with existing interface”,

“Must reuse existing component”

“Must support future protocols”

“All commands should be undoable”,

“All transactions should be logged”

“Policy and mechanisms should be

decoupled”, “Must allow different

algorithms to be interchanged at

runtime”

Abstract Factory

Adapter

Bridge

Command

Strategy

30

Conclusion

• Design patterns

– Provide solutions to common problems.

– Lead to extensible models and code.

– Can be used as is or as examples of interface inheritance and

delegation.

• Design patterns solve all your software engineering

problems

