
1

Introduction to Software

Engineering and the Software

Lifecycle

CSCE A401

Software Engineering

• Theories and practices used to construct

high-quality large-scale software

• How you may have created many

programs:

2

Code and Test

• Works fine for small problems

• Undesirable for larger problems
– No well defined phases

– How do you know you’re building the
right thing?

– Little/No time to test

– Success achieved by hacking skills
and luck

– Difficult/Impossible to repeat
successes

• Future maintenance

Large Systems – Software

Engineering
• Present day applications are big

– Curiosity Rover: 2 MLOC

– Ubuntu Linux Kernel: 14 MLOC

– Windows 7: 50 MLOC

– Are generally not developed by their users

• Relying on programming ability alone is not
adequate
– Scope too large, too many people, modules,

processes, ill-defined requirements and perspectives

• This class is not about how to program
– Software engineering is still considered an art rather

than a craft

3

Software in the 60’s

• Increasingly large software systems, increasing
problems (and still today!)
– Delivered late

– Did not behave as expected

– Not adaptable

– Have maintenance problems

• This became known as the Software Crisis

• Solution
– Develop software using a more theoretical, sound, and proven

basis, like engineers

– Hence Software Engineering

– Building software should be done like building bridges or
automobiles?

What is Software Engineering?

• First NATO Conference, 1968

– Software engineering is the establishment and use of

sound principles in order to obtain economically

software that is reliable and works efficiently on real

machines.

• IEEE Std Glossary of Software Eng.

Terminology

– Software engineering is the application of a

systematic, disciplined, quantifiable approach to the

development, operation and maintenance of software;

that is the application of engineering to software.

4

Simple Lifecycle Model

Requirements Engineering

• Objective: a description of the problem to be solved, the
requirements posed by the environment

• Requirements
– Functional (What the system should do)

– Non-functional (Hardware, users, etc)

• The description includes: functionalities, future extensions,
amount/type of required documentation, performance and
response time

• Part can be a Feasibility study

• The more careful the requirements engineering phase, the
larger the chance that the ultimate system will meet
expectations
– All people must collaborate intensively

• Resulting document is the Requirements Specification

5

Design

• A model of the whole system is developed
– Not programmed yet, but when programmed would

solve the user’s problem

– Decomposed into modules, components, interfaces

• Global description of the system captured in the
architecture
– May be evaluated, serve as template for similar

system, reusable components

• Separate the what from the how
– Annoying preamble to the real work??

– End of the design phase can include pseudocode

Implementation

• Concentrates on individual modules

– Adheres to the software architecture and

specifications from the design phase

– First goal should be well-documented, reliable, easy

to read, correct program – not one full of tricks!

• Result of the implementation phase is an

executable program

• Often eased by use of pseudocode during the

design phase

6

Testing

• Testing should actually be performed throughout

all phases, not only after implementation is

finished

– Cheaper to correct errors the earlier they are

detected; errors can occur in requirements, design,

and implementation

• Testing at phase boundaries

– Verification: transition between subsequent phases is

correct

– Validation: on track meeting system requirements

Maintenance

• Manage changes after delivery

– Perfective (changes in user requirements)

– Adaptive (changes in the environment)

– Corrective (removal of faults)

– Preventive (for future maintenance of the

system)

7

Spanning All Phases

• Project Management

– Planning, team organization, quality issues,
cost, schedule estimation, etc. to ensure the
project is delivered on time and on budget

• Documentation

– Must start early

– Often a balancing item; tends to be pushed
back for other items

– Software not well documented has higher
costs later when changes occur

Typical Effort for Each Activity

• 40-20-40 rule: Only 20% of the effort is

spent on actual coding

8

Maintenance Activities

• Not shown in previous chart

– Over lifetime of systems, maintenance grows

to 50%

• Typical percentages for maintenance

– Perfective 50%

– Adaptive 25 %

– Corrective 21%

– Preventive 4 %

Spectacular Failures – Need for

SW Engineering
• Therac-25

– Radiation treatment machine malfunction

– Delivers small doses of radiation through filters to

treat cancers, tumors

– Six deaths due to lethal dose of radiation before fixed

9

Therac-25

• Updated version of Therac-20
– Hardware interlocks stopped machine if errors

occurred

– Therac-25 designers thought the software was good
since techs never reported any problems with
Therac-20

– Software errors resulted with no ill effect, so many
errors on screen they were ignored

• Therac-25 : hardware interlocks replaced with
software
– Flag: when no errors in setup, flag set to zero

– But only 1 byte for errors, if 256 errors there was
overflow back to 0

– Machine thought tests passed when they really
failed

Therac-25

• “That means that on every 256th pass through Set-Up Test, the upper
collimator will not be checked and an upper collimator fault will not be
detected.

The overexposure occurred when the operator hit the "set" button at
the precise moment that Class3 rolled over to zero. Thus Chkcol was
not executed, and F$mal was not set to indicate the upper collimator
was still in field-light position. The software turned on the full 25 MeV
without the target in place and without scanning.

…

AECL described the technical "fix" implemented for this software
flaw as simple: The program is changed so that the Class3
variable is set to some fixed nonzero value each time through
Set-Up Test instead of being incremented. ”

An Investigation of the Therac-25 Accidents

Leveson & Turner

10

Therac-25

• Two errors here: human process and

accuracy

– Took two years to diagnose and fix

– Lesson: Can’t separate software process from

hardware

– Need for robust software testing

Mars Climate Observer

• Observer lost 9/99

• Lockheed Martin provided thrust data in
pounds, JPL entered data in Newtons

• Ground control lost contact trying to settle
observer into orbit

• Process/Communications/Human error,
not really a software problem

11

Real-Time Anomaly

• Example: Mars Pathfinder

– Lander/relay for Sojourner robot

– Onboard computer would spontaneously reset

itself

– Reported by the media as a “software glitch”

– Used embedded real-time operating system,

vxWorks

Pathfinder Problem – Priority

Inversion

• Pathfinder contained an information bus
– Data from Pathfinder’s sensors, Sojourner went on bus toward

earth

– Commands from earth send along the bus to sensors

• Must schedule the bus to avoid conflicts
– Used semaphores

– If high-priority thread was about to block waiting for a low priority
thread, there was a split-second where a medium-priority thread
could jump in

– Long-running medium priority thread kept low priority thread from
running which kept the high-priority thread from running

• Good news: watchdog timer noticed thread did not finish
on time, rebooted the whole system

• Noticed during testing, but assumed to be “hardware
glitches”. The actual data rate from Mars made the
“glitch rate” much higher than in testing

12

Pathfinder

• Fortunate that JPL engineers left debugging code that
enabled the problem to be found and remotely invoke
patch

• Patch: Priority Inheritance
– Have the low priority thread inherit the priority of the high priority

thread while holding the mutex, allowing it to execute over the
medium priority thread

• Such race conditions hard to find, similar problem
existed with the Therac-25

• Reeves, JPL s/w engineer: “Even when you think you’ve
tested everything that you can possibly imagine, you’re
wrong.”

Mars Rover : Spirit

• “Spirit began acting up last week, when it
stopped sending data and began rebooting its
computer, resetting it roughly 130 times. At one
point, the rover thought it was 2053.”

• Bug Description
– Engineers found that the rover's 256 megabyte flash

memory had retained hundreds of files containing
flight data and was still juggling them along with the
daily flood of new data from its activities in Mars'
Gusev Crater.

13

Spirit

• Workaround
– By commanding Spirit each morning into a mode that

avoids using the flash memory, engineers plan to
begin deleting hundreds of unneeded files to make
the memory more manageable for the rover's RAM.

• WHY WASN'T THIS CAUGHT IN TEST?
– The bug had not been detected in operational tests

of the rover on Earth because the longest tests lasted
only eight or nine days.

Approximation/Accuracy

• Patriot Missile Example

– More embedded software

– Fault in the guidance software

– Cumulative timing fault

• Radar detects missile, calculates where

the Scud will be within its range gate

• Requires accurate determination of

velocity

14

Patriot Missile

• Patriot’s internal clock: 100 ms

• Time: 24 bit integer

• Velocity: 24 bit float

• Loss of precision converting from integer to
float!
– Precision loss proportional to target’s velocity and

the length of time that the system is running

• When running for over 100 hours, range gate
shifted by a whopping 687 meters

• Perhaps just even worse: bug known
beforehand, not fixed until after incident due to
lack of procedures for wartime bug fixes

Failures

• These could have been caught by:

– Software environments to detect errors

– Better requirements and specifications

– Better design

– Better testing

– Closer involvement between programmers

and stakeholders

15

Lifecycle Models

• Simple Model

– Document Driven

• Next phase reached as

documents are produced

– Problems

• Feedback lacking

• Maintenance is often really

evolution

• Other models are available

– We will focus on a different

model, Agile Programming, in

this class

Waterfall Model

• Slight variation of simple model

• Verification (meets specs) and Validation (meets user requirements)

• Emphasis on a careful analysis before the system is actually built

16

Waterfall Model

• Verification and Validation after each step
– Attempts to find and fix errors early

• Like building a house
– Ensure a solid foundation, frame, build your way up

from there

• Problems
– Too rigid, developers cannot move between phases

– User might not be able to express what they want

– Imagine putting in an order for a software system
upon entering the store; no opportunity to look
around, try things out, customize, etc.

Prototyping

• Motivation: Requirements elicitation is difficult
– Software is developed because the present situation

is unsatisfactory

– However, the desirable new situation may be as yet
unknown

• Aspects
– Prototyping is used to obtain the requirements of

some aspects of the system

– Prototyping should be a relatively cheap process

– Use rapid prototyping languages and tools

– Not all functionality needs to be implemented

– Production quality is not required

17

Prototyping as a Tool for

Requirements Engineering

Types of Prototyping

• Throwaway prototyping
– The nth prototype is followed by a waterfall-like

process (as shown on the previous slide)

– Recommended but rarely used; difficult to discard a
(partly) working system

• Evolutionary prototyping
– The nth prototype is delivered

– More common

• Pro’s and Con’s of both approaches?

18

Prototyping Advantages

• The resulting system is easier to use

• User needs are better accommodated

• The resulting system has fewer features

• Problems are detected earlier

• The design is of higher quality

• The resulting system is easier to maintain

• The development incurs less effort

Prototyping Disadvantages

• The resulting system has more features

• The performance of the resulting system is

worse

• The design is of less quality

• The resulting system is harder to maintain

• The prototyping approach requires more

experienced team members

19

Prototyping Recommendations

• Use prototyping when the requirements are
unclear or ambiguous. Good way to clarify the
requirements.

• Particularly useful for systems with emphasis on
the user interface.

• The users and the designers must be well aware
of the approach and its pitfalls. Users must
realize the prototype is not production-quality.

• Prototyping needs to be planned and controlled
to avoid limitless iterations.

Incremental Development

• A software system is delivered in small

increments

– E.g. a few features at a time

– Avoids the “big bang” effect

• The waterfall model is employed in each phase

• The user is closely involved in directing the next

steps

– additional functionality is added if and when it is really

needed; this prevents over-functionality

