
1

Agile Programming

Principles

What’s wrong with software today?

• Software development is risky and difficult 

to manage

• Customers are often dissatisfied with the 

development process

• Programmers are also dissatisfied



2

One Alternative: Agile 

Development Methodologies
• Variants

– XP
– Agile Programming

– SCRUM

– Lean Software Development

• Alternative to “heavy-weight” software development 
models 
(which tend to avoid change and customers)
– "Extreme Programming turns the conventional software process 

sideways. Rather than planning, analyzing, and designing for the 
far-flung future, XP programmers do all of these activities a little 
at a time throughout development.”
-- IEEE Computer , October 1999 

Traditional Processes are ‘Heavy’

C
o
s
t 
o

f 
C

h
a

n
g

e

Requirements Design Implementation Testing Maintenance



3

Boehm’s Curve

• To accomplish this:
– We need lots of up front planning, resulting in 

“heavy” methodologies

– Every bug caught early saves money, since models 
are easier to modify than code

– Large investments are made in up front analysis and 
design models, because the of the cost of late error 
discovery

– This leads to a waterfall mentality with BDUF (Big 
Design Up Front)

• Proponents of Agile argue that logic is based on 
development in the 1970’s and 1980’s

What’s Changed?

• Computing power has increased astronomically

• New tools have dramatically reduced the 
compile/test cycle

• Used properly, OO languages make software 
much easier to change

• The cost curve is significantly flattened, i.e. costs 
don’t increase dramatically with time

• Up front modeling becomes a liability – some 
speculative work will certainly be wrong, 
especially in a business environment



4

Why Agile Helps

• Agile Programming is a “light” process that 

creates and then exploits a flattened cost 

curve

• Agile is People-oriented rather than 

process oriented, explicitly trying to work 

with human nature rather than against it

• Agile Practices flatten the cost of change 

curve.

Cost of Change Curve

C
o
s
t 
o

f 
C

h
a

n
g

e

Agile cost of

change

curve



5

Embrace change

• In traditional software life cycle models, the cost of 

changing a program rises exponentially over time

• A key assumption of Agile Programming is that the 

cost of changing a program can be hold mostly 

constant over time

• Hence Agile Programming is a lightweight process:

– Instead of lots of documentation nailing down what customer 

wants up front, Agile emphasizes plenty of feedback

– Embrace change: iterate often, design and redesign, code 

and test frequently, keep the customer involved

– Deliver software to the customer in short (2 week) iterations

– Eliminate defects early, thus reducing costs

Why does Agile Help?

• “Software development is too hard to spend time on 
things that don't matter. So, what really matters? 
Listening, Testing, Coding, and Designing.” - Kent Beck, 
“father” of Extreme Programming

• Promotes incremental development with minimal up-front 
design 

• Results in a “pay as you go” process, rather than a high 
up-front investment

• Delivers highest business value first

• Provides the option to cut and run through frequent 
releases that are thoroughly tested



6

The Agile Manifesto

• We are uncovering better ways of developing software 

by doing it and helping others do it. Through this work 

we have come to value:

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

• That is, while there is value in the items on the right, we 

value the items on the left more.

• http://agilemanifesto.org/

Twelve Agile Principles

1. Our highest priority is to satisfy the customer through 

early and continuous delivery of valuable software.

2. Welcome changing requirements, even late 

in development. Agile processes harness change 

for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of 

weeks to a couple of months, with a preference to the 

shorter timescale.

4. Business people and developers must work

together daily throughout the project.

http://agilemanifesto.org/


7

Twelve Agile Principles

5. Build projects around motivated individuals.

Give them the environment and support they need,

and trust them to get the job done.

6. The most efficient and effective method of

conveying information to and within a development

team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development.

The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

Twelve Agile Principles

9. Continuous attention to technical excellence

and good design enhances agility.

10. Simplicity--the art of maximizing the amount

of work not done--is essential.

11. The best architectures, requirements, and designs

emerge from self-organizing teams.

12. At regular intervals, the team reflects on how

to become more effective, then tunes and adjusts

its behavior accordingly.


