
1

Acceptance Tests

Determining That a Story Is

Complete

Acceptance Tests

• Also called Customer Written Tests
– Should be developed by or with the customer

• Purpose is to determine if a story has been
completed to the customer’s satisfaction

• Client equivalent of a unit test
– On the level of a story

– Black box test

• Not the same as a developer’s unit test
– On the level of methods/classes/algorithm

– White box test

2

Benefits to Acceptance Tests

• Can serve as a contract for the
client/developers
– Requires stories are testable

– User stories are understandings; acceptance
tests are requirements the developers must meet

• Client can track progress by observing the
total number of acceptance tests growing and
% of passing tests increasing

• Developers get more confidence that work is
being done and can cross stories off their list
when acceptance tests pass

Writing Acceptance Tests

• Sooner or later?

– If sooner, can help drive the development. However,
as you work on a story, the understanding may
change

– If later, can avoid changes that may result but also
reflect the story that was actually implemented

– Your call as to when to solicit acceptance tests
• Could be around story gathering, after stories are complete,

after an iteration and can be displayed to the customer, when
stories mostly complete, etc.

• If a story can’t be tested then it needs to be
clarified with the customer (or perhaps removed)

3

Acceptance Tests in Agile

Environments
• Simple version

– Customer writes the acceptance tests with help from the developer and the user

stories

– Developers write code to make the acceptance tests pass, reports results to the

customer

• Using an acceptance test framework

– Customers write acceptance tests in some format (e.g. fill in tables in a

spreadsheet)

– Framework maps tests to code stubs that will perform the tests

– Developer fills in the code for the framework that will perform the actual tests

– Upon running tests the framework automatically maps the results to a format for

the customer to understand (e.g. HTML)

– Framework makes it easier to run regression tests, allow the customer to track

progress

• Not required for this class; could run tests on top of JUnit or other framework

Sample Acceptance Test

• Writing cash register software

• Acceptance Test: Shopping cart for generating a
receipt
– Create a shopping cart with:

• 1 lb. coffee, 3 bags of cough drops, 1 gallon milk

• Prices: Coffee $6/lb, cough drops $2.49/bag, milk $4.95/gallon

• Verify total is $18.42

• Test might span multiple stories (fill shopping cart,
checkout, view receipt…)

• Other tests might verify sales tax is calculated
correctly, coupons properly discounted, etc.

• Not comprehensive tests, but specific cases to test
user stories and functionality

4

Writing Acceptance Tests

• You can write most of them just like a unit test

• Invoke the methods that the GUI would call

inventory.setPrice("milk", 4.95);

inventory.setPrice("cough drops", 2.49);

inventory.setPrice("coffee", 6.00);

order.addItem("milk", 1);

order.addItem("cough drops", 3);

order.addItem("coffee", 1);

order.calculateSubtotal();

assertEquals(order.receipt.getsubtotal(), 18.42);

• Easy to automate

Running Acceptance Tests

• You can also run them manually, such as through
a GUI interface
– Select milk from the drop down menu

– Enter 1 and Click on “add” button

– Select coffee from the drop down menu

– Enter 1 and Click on “add” button

– Select cough drops from the drop down menu

– Enter 3 and Click on “add” button

– Verify shopping cart subtotal displays $18.42

• Useful to run, avoid relying completely on this
technique as it is slow, time consuming, and
hence not feasible for regression testing

5

Automating GUIs

• Possible to automate GUI testing as well

• Program simulates (or records) clicking,

dragging, etc. on the app and re-creates

them

– Ex. Test Automation FX

• http://www.testautomationfx.com/tafx/tafx.html

– Java Robot Class

– (google others, keyword GUI testing)

Acceptance Tests Are Important

• Gives customer some satisfaction that

features are correctly implemented

• Not the same as Unit Test

– Unit tests could pass but acceptance tests fail,

especially if acceptance test requires the

integration of components that were unit-

tested

http://www.testautomationfx.com/tafx/tafx.html

6

Software Testing

Big Picture, Major Concepts and

Techniques

Suppose you are asked:

• Would you trust a completely automated nuclear

power plant?

• Would you trust a completely automated pilot?

– What if the software was written by you?

– What if it was written by a colleague?

• Would you dare to write an expert system to

diagnose cancer?

– What if you are personally held liable in a case where

a patient dies because of a malfunction of the

software?

7

Fault-Free Software?

• Currently the field cannot deliver fault-free
software
– Studies estimate 30-85 errors per 1000 LOC

• Most found/fixed in testing

– Extensively-tested software: 0.5-3 errors per 1000
LOC

• Waterfall: Testing is postponed, as a
consequence: the later an error is discovered,
the more it costs to fix it (Boehm: 10-90 times
higher)

• More errors in design (60%) compared to
implementation (40%).
– 2/3 of design errors not discovered until after software

operational

Testing

• Should not wait to start testing until after
implementation phase

• Can test SRS, design, specs
– Degree to which we can test depends upon how

formally these documents have been expressed

• Testing software shows only the presence of
errors, not their absence

8

Testing

• Could show absence of errors with Exhaustive

Testing

– Test all possible outcomes for all possible inputs

– Usually not feasible even for small programs

• Alternative

– Formal methods

• Can prove correctness of software

• Can be very tedious

– Partial coverage testing

Terminology

• Reliability: The measure of success with which the

observed behavior of a system confirms to some

specification of its behavior.

• Failure: Any deviation of the observed behavior from

the specified behavior.

• Error: The system is in a state such that further

processing by the system will lead to a failure.

• Fault (Bug or Defect): The mechanical or algorithmic

cause of an error.

• Test Case: A set of inputs and expected results that

exercises a component with the purpose of causing

failures and detecting faults

9

What is this?

A failure?

An error?

A fault?

Erroneous State (“Error”)

10

Algorithmic Fault

Mechanical Fault

11

How do we deal with Errors

and Faults?

Modular Redundancy?

12

Declaring the

Bug

as a Feature?

Patching?

13

Verification?

Testing?

14

How do we deal with Errors and

Faults?

• Verification:

– Assumes hypothetical environment that does not match real

environment

– Proof might be buggy (omits important constraints; simply wrong)

• Modular redundancy:

– Expensive

• Declaring a bug to be a “feature”

– Bad practice

• Patching

– Slows down performance

• Testing (this lecture)

– Testing alone not enough, also need error prevention, detection, and

recovery

Testing takes creativity

• Testing often viewed as dirty work.

• To develop an effective test, one must have:
• Detailed understanding of the system

• Knowledge of the testing techniques

• Skill to apply these techniques in an effective and efficient manner

• Testing is done best by independent testers

– We often develop a certain mental attitude that the program

should in a certain way when in fact it does not.

• Programmer often stick to the data set that makes the

program work

• A program often does not work when tried by somebody

else.

– Don't let this be the end-user.

15

Traditional Testing Activities

Tested

Subsystem

Subsystem

Code

FunctionalIntegration

Unit

Tested

Subsystem

Requirements

Analysis

Document

System

Design

Document

Tested Subsystem

Test Test

Test

Unit
Test

Unit
Test

User

Manual

Requirements

Analysis

Document

Subsystem

Code

Subsystem

Code

All tests by developer

Functioning

System
Integrated

Subsystems

Like Agile’s

Acceptance Test

Global

Requirements

Testing Activities continued

User’s understanding

Tests by developer

Performance Acceptance

Client’s

Understanding

of Requirements

Test

Functioning

System

Test
Installation

User

Environment

Test

System in
Use

Usable

System

Validated

System

Accepted

System

Tests (?) by user

Tests by client
Not Agile’s

Acceptance Test

16

Fault Handling Techniques

Testing

Fault Handling

Fault Avoidance
Fault Tolerance

Fault Detection

Debugging

Unit

Testing

Integration

Testing

System

Testing

Verification
Configuration

Management

Atomic

Transactions

Modular

Redundancy

Correctness

Debugging

Performance

Debugging

Reviews
Design

Methodology

Quality Assurance Encompasses Testing

Usability Testing

Quality Assurance

Testing

Prototype

Testing

Scenario

Testing

Product

Testing

Fault Avoidance Fault Tolerance

Fault Detection

Debugging

Unit

Testing

Integration

Testing

System

Testing

Verification
Configuration

Management

Atomic

Transactions

Modular

Redundancy

Correctness

Debugging

Performance

Debugging

Reviews

Walkthrough Inspection

17

Types of Testing

• Unit Testing:
– Individual subsystem

– Carried out by developers

– Goal: Confirm that subsystems is correctly
coded and carries out the intended
functionality

• Integration Testing:
– Groups of subsystems (collection of classes)

and eventually the entire system

– Carried out by developers

– Goal: Test the interface among the
subsystem

System Testing

• System Testing:

– The entire system

– Carried out by developers

– Goal: Determine if the system meets the

requirements (functional and global)

• Acceptance Testing:

– Evaluates the system delivered by developers

– Carried out by the client. May involve executing

typical transactions on site on a trial basis

– Goal: Demonstrate that the system meets customer

requirements and is ready to use

• Implementation (Coding) and Testing go hand in

hand

18

Testing and the Lifecycle

• How can we do testing across the

lifecycle?

– Requirements

– Design

– Implementation

– Maintenance

Requirements Testing

• Review or inspection to check whether all aspects of the
system are described

• Look for
– Completeness

– Consistency

– Feasibility

– Testability

• Most likely errors
– Missing information (functions, interfaces, performance,

constraints, reliability, etc.)

– Wrong information (not traceable, not testable, ambiguous, etc.)

– Extra information (bells and whistles)

19

Design Testing

• Similar to testing requirements, also look for
completeness, consistency, feasibility, testability
– Precise documentation standard helpful in preventing

these errors

• Assessment of architecture

• Assessment of design and complexity

• Test design itself
– Simulation

– Walkthrough

– Design inspection

Implementation Testing

• “Real” testing

• One of the most effective techniques is to
carefully read the code

• Inspections, Walkthroughs

• Static and Dynamic Analysis testing

– Static: inspect program without executing it
• Automated Tools checking for

– syntactic and semantic errors

– departure from coding standards

– Dynamic: Execute program, track coverage,
efficiency

20

Manual Test Techniques

• Static Techniques

– Reading

– Walkthroughs/Inspections

– Correctness Proofs

– Stepwise Abstraction

Reading

• You read, and reread, the code

• Even better: Someone else reads the code

– Author knows code too well, easy to overlook things,

suffering from implementation blindness

– Difficult for author to take a destructive attitude toward

own work

• Peer review

– More institutionalized form of reading each other’s

programs

– Hard to avoid egoless programming; attempt to avoid

personal, derogatory remarks

21

Walkthroughs

• Walkthrough

– Semi to Informal technique

– Author guides rest of the team through their

code using test data; manual simulation of the

program or portions of the program

– Serves as a good place to start discussion as

opposed to a rigorous discussion

– Gets more eyes looking at critical code

Inspections

• Inspections

– More formal review of code

– Developed by Fagan at IBM, 1976

– Members have well-defined roles
• Moderator, Scribe, Inspectors, Code Author (largely

silent)

• Inspectors paraphrase code, find defects

• Examples:
– Vars not initialized, Array index out of bounds, dangling

pointers, use of undeclared variables, computation faults or
possibilities, infinite loops, off by one, etc.

– Finds errors where they are in the code, have
been lauded as a best practice

22

Correctness Proofs

• Most complete static analysis technique

• Try to prove a program meets its specifications

• {P} S {Q}

– P = preconditions, S = program, Q = postconditions

– If P holds before the execution of S, and S terminates,

then Q holds after the execution of S

• Formal proofs often difficult for average

programmer to construct

Stepwise Abstraction

• Opposite of top-down development

• Starting from code, build up to what the function is for
the component

• Example:

1. Procedure Search(A: array[1..n] of integer, x:integer): integer;

2. Var low,high,mid: integer; found:boolean;

3. Begin

4. low:=1; high:=n; found:=false;

5. while (low<=high) and not found do

6. mid:=(low+high)/2

7. if (x<A[mid]) then high:=mid-1;

8. else if (x>A[mid]) then low:=mid+1;

9. else found:=true;

10. endif

11. endwhile

12. if found then return mid else return 0

13. End

23

Stepwise Abstraction

• If-statement on lines 7-10
7.if (x<A[mid]) then high:=mid-1;

8.else if (x>A[mid]) then low:=mid+1;

9.else found:=true;

10. endif

• Summarize as:
– Stop searching (found:=true) if x=A[mid] or shorten the

interval [low..high] to a new interval [low’..high’] where
high’-low’ < high-low

– (found = true and x=A[mid]) or

(found = false and xA[1..low’-1] and

x A[high’+1..n] and high’-low’ < high-low)

Stepwise Abstraction

• Consider lines 4-5
4. low:=1; high:=n; found:=false;

5. while (low<=high) and not found do

• From this it follows that in the loop
– low<=mid<=high

• The inner loop must eventually terminate since
the interval [low..high] gets smaller until we find
the target or low > high

• Complete routine:
if Result > 0 then A[Result] = x

else Result=0

24

Dynamic Testing

• Black Box Testing

• White Box Testing

Black-box Testing

• Focus: I/O behavior. If for any given input, we

can predict the output, then the module passes

the test.

– Almost always impossible to generate all possible

inputs ("test cases")

• Goal: Reduce number of test cases by

equivalence partitioning:

– Divide input conditions into equivalence classes

– Choose test cases for each equivalence class.

(Example: If an object is supposed to accept a

negative number, testing one negative number is

enough)

25

Black-box Testing (Continued)
• Selection of equivalence classes (No rules, only

guidelines):

– Input is valid across range of values. Select test cases from 3

equivalence classes:

• Below the range

• Within the range

• Above the range

– Input is valid if it is from a discrete set. Select test cases from 2

equivalence classes:

• Valid discrete value

• Invalid discrete value

• Another solution to select only a limited number of test

cases:

– Get knowledge about the inner workings of the unit being tested

=> white-box testing

White-box Testing

• Focus: Thoroughness (Coverage). Every
statement in the component is executed at least
once.

• Four types of white-box testing
– Statement Testing

– Loop Testing

– Path Testing

– Branch Testing

26

• Statement Testing
– Every statement is executed by some test case (C0 test)

• Loop Testing:
– Cause execution of the loop to be skipped completely.

(Exception: Repeat loops)

– Loop to be executed exactly once

– Loop to be executed more than once

• Path testing:
– Make sure all paths in the program are executed

• Branch Testing (C1 test): Make sure that each possible
outcome from a condition is tested at least once

if (i == TRUE) printf("YES\n"); else printf("NO\n");
Test cases: 1) i = TRUE; 2) i = FALSE

White-box Testing (Continued)

/*Read in and sum the scores*/

White-box Testing Example
FindMean(float Mean, FILE ScoreFile)

{ SumOfScores = 0.0; NumberOfScores = 0; Mean = 0;

Read(ScoreFile, Score);

while (! EOF(ScoreFile) {

if (Score > 0.0) {

SumOfScores = SumOfScores + Score;

NumberOfScores++;

}

Read(ScoreFile, Score);

}

/* Compute the mean and print the result */

if (NumberOfScores > 0) {

Mean = SumOfScores/NumberOfScores;

printf("The mean score is %f \n", Mean);

} else

printf("No scores found in file\n");

}

27

White-box Testing Example: Determining the Paths

FindMean (FILE ScoreFile)

{ float SumOfScores = 0.0;

int NumberOfScores = 0;

float Mean=0.0; float Score;

Read(ScoreFile, Score);

while (! EOF(ScoreFile) {

if (Score > 0.0) {

SumOfScores = SumOfScores + Score;

NumberOfScores++;

}

Read(ScoreFile, Score);

}

/* Compute the mean and print the result */

if (NumberOfScores > 0) {

Mean = SumOfScores / NumberOfScores;

printf(“ The mean score is %f\n”, Mean);

} else

printf (“No scores found in file\n”);

}

1

2
3

4

5

7

6

8

9

Constructing the Logic Flow Diagram
Start

2

3

4 5

6

7

8 9

 Exit

1

F

T F

T F

T

28

Finding the Test Cases
Start

2

3

4 5

6

7

8 9

Exit

1

b

d e

gf

i j

h

c

k l

a (Covered by any data)

(Data set must

(Data set must contain at least one value)

be empty)

(Total score > 0.0)(Total score < 0.0)

(Positive score)

(Negative score)

(Reached if either f or
e is reached)

Test Cases

• Test case 1 : ? (To execute loop exactly

once)

• Test case 2 : ? (To skip loop body)

• Test case 3: ?,? (to execute loop more

than once)

These 3 test cases cover all control flow

paths

29

Comparison of White & Black-

Box Testing
• White-box Testing:

– Potentially infinite number of

paths have to be tested

– White-box testing often tests

what is done, instead of what

should be done

– Cannot detect missing use

cases

• Black-box Testing:

– Potential combinatorical

explosion of test cases (valid

& invalid data)

– Often not clear whether the

selected test cases uncover a

particular error

– Does not discover extraneous

use cases ("features")

• Both types of testing are

needed

• White-box testing and black

box testing are the extreme

ends of a testing continuum.

• Any choice of test case lies in

between and depends on the

following:

– Number of possible logical

paths

– Nature of input data

– Amount of computation

– Complexity of algorithms and

data structures

Fault-Based Test Techniques

• Coverage-based techniques considered
the structure of code and the assumption
that a more comprehensive solution is
better

• Fault-based testing does not directly
consider the artifact being tested

– Only considers the test set

– Aimed at finding a test set with a high ability to
detect faults

– Really a test of the test set

30

Fault-Seeding

• Estimating the number of salmon in a lake:

– Catch N salmon from the lake

– Mark them and throw them back in

– Catch M salmon

– If M’ of the M salmon are marked, the total number of

salmon originally in the lake may be estimated at:

• Can apply same idea to software

– Assumes real and seeded faults have the same

distribution

'

'
M

N
MM

How to seed faults?

• Devised by testers or programmers
– But may not be very realistic

• Have program independently tested by two
groups
– Faults found by the first group can be considered

seeded faults for the second group

– But good chance that both groups will detect the same
faults

• Rule of thumb
– If we find many seeded faults and relatively few others,

the results can be trusted

– Any other condition and the results generally cannot be
trusted

31

Mutation Testing

• In mutation testing, a large number of variants of the
program is generated
– Variants generated by applying mutation operators

• Replace constant by another constant

• Replace variable by another variable

• Replace arithmetic expression by another

• Replace a logical operator by another

• Delete a statement

• Etc.

– All of the mutants are executed using a test set

– If a test set produces a different result for a mutant, the mutant is
dead

– Mutant adequacy score: D/M
• D = dead mutants, M = total mutants

• Would like this number to equal 1

• Points out inadequacies in the test set

Error-Based Test Techniques

• Focuses on data values likely to cause errors
– Boundary conditions, off by one errors, memory leak,

etc.

• Example
– Library system allows books to be removed from the list

after six months, or if a book is more than four months
old and borrowed less than five times, or ….

– Devise test examples on the borders; at exactly six
months, or borrowed five times and four months old, etc.
As well as some examples beyond borders, e.g. 10
months

• Can derive tests from requirements (black box) or
from code (white box) if code contains if (x>6) then
.. Elseif (x >=4) && (y<5) …

32

Integration Testing Strategy

• The entire system is viewed as a collection of

subsystems (sets of classes) determined during the

system and object design.

• The order in which the subsystems are selected for

testing and integration determines the testing strategy

– Big bang integration (Nonincremental)

– Bottom up integration

– Top down integration

– Sandwich testing

– Variations of the above

Integration Testing: Big-Bang Approach

Unit Test

F

Unit Test

E

Unit Test

D

Unit Test

C

Unit Test

B

Unit Test

A

System Test

Don’t try this!

33

Bottom-up Testing Strategy

• The subsystem in the lowest layer of the call

hierarchy are tested individually

• Then the next subsystems are tested that call

the previously tested subsystems

• This is done repeatedly until all subsystems are

included in the testing

• Special program needed to do the testing, Test

Driver:

– A routine that calls a subsystem and passes a test

case to it

Bottom-up

Integration
A

B C D

GFE

Layer I

Layer II

Layer III

Test F

Test E

Test G

Test C

Test D,G

Test B, E, F

Test

A, B, C, D,

E, F, G

34

Pros and Cons of bottom up

integration testing

• Bad for functionally decomposed systems:

– Tests the most important subsystem (UI) last

• Useful for integrating the following systems

– Object-oriented systems

– real-time systems

– systems with strict performance

requirements

Top-down Testing Strategy

• Test the top layer or the controlling subsystem first

• Then combine all the subsystems that are called by the

tested subsystems and test the resulting collection of

subsystems

• Do this until all subsystems are incorporated into the test

• Special program is needed to do the testing, Test stub :

– A program or a method that simulates the activity of a missing

subsystem by answering to the calling sequence of the calling

subsystem and returning back fake data.

35

Top-down

Integration

Testing

A

B C D

GFE

Layer I

Layer II

Layer III

Test A

Layer I

Test A, B, C, D

Layer I + II

Test

A, B, C, D,

E, F, G

All Layers

Pros and Cons of top-down

integration testing

• Test cases can be defined in terms of the functionality of

the system (functional requirements)

• Writing stubs can be difficult: Stubs must allow all

possible conditions to be tested.

• Possibly a very large number of stubs may be required,

especially if the lowest level of the system contains many

methods.

36

Sandwich Testing Strategy

• Combines top-down strategy with bottom-up strategy

• The system is view as having three layers

– A target layer in the middle

– A layer above the target

– A layer below the target

– Testing converges at the target layer

• Need stubs/drivers if there are more than three layers;

the stubs/drivers would approximate one “middle” layer

Sandwich Testing

Strategy

A

B C D

GFE

Layer I

Layer II

Layer IIITest E

Test D,G

Test B, E, F

Test F

Test G

Test A

Bottom

Layer

Tests

Top

Layer

Tests

Test

A, B, C, D,

E, F, G

Test A,B,C, D

37

Performance Testing
• Stress Testing

– Stress limits of system (maximum #

of users, peak demands, extended

operation)

• Volume testing

– Test what happens if large amounts

of data are handled

• Configuration testing

– Test the various software and

hardware configurations

• Compatibility test

– Test backward compatibility with

existing systems

• Security testing

– Try to violate security requirements

• Timing testing

– Evaluate response times and

time to perform a function

• Environmental test

– Test tolerances for heat,

humidity, motion, portability

• Quality testing

– Test reliability, maintain- ability

& availability of the system

• Recovery testing

– Tests system’s response to

presence of errors or loss of

data.

• Human factors testing

– Tests user interface with user

Acceptance Testing
• Goal: Demonstrate system is

ready for operational use

– Choice of tests is made by

client/sponsor

– Many tests can be taken from

integration testing

– Acceptance test is performed

by the client, not by the

developer.

• Majority of all bugs in software is

typically found by the client after

the system is in use, not by the

developers or testers. Therefore

two kinds of additional tests:

• Alpha test:

– Sponsor uses the software at the

developer’s site.

– Software used in a controlled

setting, with the developer

always ready to fix bugs.

• Beta test:

– Conducted at sponsor’s site

(developer is not present)

– Software gets a realistic workout

in target environment

– Potential customer might get

discouraged

38

Testing has its own Life Cycle

Establish the test objectives

Design the test cases

Write the test cases

Test the test cases

Execute the tests

Evaluate the test results

Change the system

Do regression testing

Test

Team

Test

Analyst

TeamUser

Programmer

too familiar
with code

Professional

Tester

Configuration

Management

Specialist

System

Designer

39

Summary

• Testing is still a black art, but many rules and heuristics
are available

• Test as early as possible

• Testing is a continuous process with its own lifecycle

• Design with testing in mind

• Test activities must be carefully planned, controlled, and
documented

• We looked at:
– Black and White Box testing

– Coverage-based testing

– Fault-based testing

– Error-based testing

• Phases of testing (unit, integration, system)

• Wise to use multiple techniques

IEEE Standard 1012

• Template for Software Verification and
Validation in a waterfall-like model

1. Purpose

2. References

3. Definitions

4. Verification & Validation Overview
4.1 Organization

4.2 Master Schedule

4.3 Resources Summary

4.4 Responsibilities

4.5 Tools, techniques, methodologies

40

IEEE Standard 1012

5. Life-cycle Verification and Validation
5.1 Management of V&V

5.2 Requirements V&V

5.3 Design V&V

5.4 Implementation V&V

5.5 Test V&V

5.6 Installation & Checkout V&V

5.7 Operation and Maintenance V&V

6. Software V&V reporting

7. V&V Administrative Procedures
7.1 Anomaly reporting and resolution

7.2 Task iteration policy

7.3 Deviation policy

7.4 Control procedures

7.5 Standards, practices, conventions

Test Plan

• The bulk of a test plan can be structured as follows:

• Test Plan
– Describes scope, approach, resources, scheduling of test activities.

Refinement of V&V

• Test Design
– Specifies for each software feature the details of the test approach and

identify the associated tests for that feature

• Test Cases
– Specifies inputs, expected outputs

– Execution conditions

– Test Procedures
• Sequence of actions for execution of each test

– Test Reporting
• Results of tests

41

Sample Test Case 1
• Test Case 2.2 Usability 1 & 2

• Description: This test will test the speed of PathFinder.

• Design: This test will verify Performance Requirements 5.4 Usability-1
and Usability-2 in the Software Requirements Specification document.

• Inputs: The inputs will consist of a series of valid XML file containing
Garmin ForeRunner data.

• Execution Conditions: All of the test cases in Batch 1 need to be
complete before attempting this test case.

• Expected Outputs:

• The time to parse and time to retrieve images for various XML Garmin
Route files will be tested.

• Procedure:

• 1. The PathFinder program will be modified to time its parsing and
image retrieval times on at least 4 different sized inputs and on both
high-speed and dial-up internet.

• 2. Results will be tabulated and options for optimization will be
discussed if necessary.

Sample Test Case 1 (continued)

• Test Case 2.2 Usability 1 & 2

• Completed 12/9/04.

• Results:

• File File Size* DataPoints Dialup (56Kbps) Broadband(128Kbps)

• tinyrun.xml 2428 6 @12 seconds <2 seconds

• walk.xml 5840 16 @12 seconds <2 seconds

• exit.xml 366705 1152 @13 seconds @2.5 seconds

• run2.xml 654417 3000 @13 seconds @2.5 seconds

• According to this test data, the main delay in retrieving and displaying the data
is entirely dependent upon the user’s connection speed rather than on the
parsing of the DataPoints (which seemed to introduce almost no delay, as
evidenced by the minimal difference in times between the delay for tinyrun,
which consists of 6 data points, and run2, which consists of 3000 data points).
Optimization of the code was therefore deemed unnecessary.

42

Sample Test Case 2
• Test Case 1.6 - GetImage

• Description: This test will test the ability of the GetImage module to
retrieve an image from the TerraServer database given a set of
latitude and longitude coordinate parameters.

• Design: This will continue verification of System Feature 3.1 (Open
File) of the software requirements specification functions as
expected. This test will verify the ability of the GetImage module to
retrieve and put together a MapImage from a given set of latitude
and longitude parameters.

• Inputs: The input for this test case will be a set of Data Points as
created by the File modules in the above test case scenarios.

• Execution Conditions: All of the execution conditions of Test Case
scenarios 1.0-1.5 must be met, and those test cases must be
successful. Additionally, there must be a working copy of the
GetImage class, and the TerraServer must be functioning properly,
and this test case must be run on a computer with a working internet
connection.

Sample Test Case 2 (continued)
• Expected Outputs: The View will display the given MapImage retrieved from

the TerraServer. This image will be compared to the image retrieved from the
PhotoMap program to make sure that the latitude and longitude coordinates are
correct.

• Procedure:

1. The User will open Pathfinder and will call the File class with the name of the XML
file to be parsed by selecting “F)ile, O)pen” from the menu and finding the test file.

2. The File class will open the XML Parser.

3. The File class will call the XML Parser with the name of the XML file to be opened.

4. The XML Parser will open the file.

5. The XML Parser will create a new Data Point from the XML data returned and will
insert each Data Point into a LinkedList.

6. The XML Parser will return the LinkedList to the File class when finished.

7. Using the Route’s Get method, the File class will update the LinkedList instance of a
Route class.

8. The Route class, by way of its Notify method, will notify the GetImage class that its
data has changed.

9. The GetImage class will retrieve the appropriate Image(s) from the TerraServer
database.

10. The GetImage class will modify a MapImage’s image to be that of the Images
satisfying the given parameters, using the MapImage’s Set methods.

11. The MapImage will notify its observers (View).

12. View will redraw its bottom Image to be that of the Map.

13. The User will close the program.

