
9/9/2014

1

Agile Planning

The problem with documentation

• Argument: “Heavy” documentation too much
for most business-style projects

9/9/2014

2

Documentation

English Documentation

• Can be ambiguous (one reason for more formal
documentation styles, e.g. ER diagram instead of
English)
– The man who hunts ducks out on weekends
– Fat people eat accumulates
– We painted the wall with cracks

– “This agreement shall be effective from the date it is made
and shall continue in force for a period of five (5) years
from the date it is made, and thereafter for successive five
(5) year terms, unless and until terminated by one year
prior notice in writing by either party.”

9/9/2014

3

User Stories vs. Spec/Requirements

9/9/2014

4

Agile User Stories

• Short descriptions of feature(s) the customer
would like to see in their software

• Usually fits on an index card

Elements of Good User Stories

• In language the customer understands

• Cuts end-to-end through layers of the
architecture

• Independent of other user stories (as much as
possible)

• Are negotiable, tradeoffs possible

• Are testable

• Are small and estimable

9/9/2014

5

Extracting User Stories

• May need to do lots of brainstorming, draw
lots of pictures, model the workflow

In-Class Exercise

• I am the client and all of you are the
development team

• Help develop user stories for a thin section
photomicrograph pixel counter

9/9/2014

6

Check Stories

• Check INVEST

– Independent, Negotiable, Valuable, Estimable,
Small, Testable

• Can something be re-cast as a constraint?

– E.g. “Must be fast” to “Must load within 2
seconds”

• Scrub list, look for duplicates, consolidation or
splitting of user stories

Analysis and Estimation

• You now have a stack of user stories

• Identify stories that require clarification

• Next we want to estimate how long they will
take

9/9/2014

7

Relative Estimation

• Estimate coding time required for each story,
but not in actual time, but in “units”.

– Joshua Kerievsky uses NUTs: Nebulous Units of
Time

– Idea is to convey the relative sizes of stories

– Tough to do because you don’t know what units
represent until a few iterations are done, but they
will shape up as time goes on

How Long?

9/9/2014

8

Relative Estimation

Estimation
• Humans are better at relative than absolute

estimation

• Agile estimation is to size our stories relative
to each other and keep track of time taken

9/9/2014

9

Units of Time

• Say a story we estimated to take 3 days really
took 4 days

• We could adjust actual calendar days to
“programming days” by multiplying
programming days by 1.333

Endless
rejiggering?

False
precision?

Point System

• Can avoid problems by using a point system

• Focus on relative sizes of the stories

– Reminds us that estimates are guesses

– Measure of pure size

– Simple

9/9/2014

10

Estimating Stories

• To estimate the user stories it may help to
break them into tasks; discrete steps to
complete the story
– E.g. to save a document, you may have the task of

creating the GUI to initiate the task, another task
for the disk operation

• Brainstorm with your team for an estimate of
units

• Tasks aren’t shared with the client

In-Class Exercise

• Estimate units for thin section pixel counter
user stories

9/9/2014

11

Estimating NUTS

• If you have the same amount of time to
devote to the project every week you don’t
need to convert to person-hours; you can just
use NUTS/iteration as your velocity

• Go to client and say how many NUTS you
estimate you can do the first week based on
the perceived difficulty

Determining Workload

• Clients are initially not happy to get estimates in terms
of units
– Client: What’s a unit?
– Developers: We don’t know.
– Client: How many units can you do this week?
– Developers: We don’t know, but we can make an initial

estimate, and it will get better every iteration and even
within an iteration.

• If you estimated 20 NUTS the first iteration but you only
completed 10 NUTS then you can generate a better
estimate for the second iteration
– Project spike useful here to get an initial estimate
– Project velocity = NUTS completed / iteration

9/9/2014

12

Estimating NUTs from Person Hours

• If your time varies each week estimate for the first iteration
how many person-hours the group can collectively commit
per week
– Allow for time when you’re not coding and not working
– Make an estimate; the next one can be better

• Go to client and say how many units you can do per week
– Consider how many people you have and how many hours each

person can actually work
– After the iteration is over you can make an estimate of units per

hour
– E.g. if 20 person hours and you were able to do 20 units per

week then 1 unit/hour

Client Reevaluation

• Give client the user stories, estimates, and the
total number of units you can do per week

• Client gets to pick the stories that add up to the
total number of units

• Client doesn’t get to add more stories beyond the
total number of units
– Important not to let the client get away with this,

remind the client they can do different stories the next
iteration

– Have to prioritize and drop something if another being
added

9/9/2014

13

In-Class Exercise

• Estimate total units per week (optional to map
from hours) for the thin section pixel counter
project

• Client to prioritize

Dealing with Disappointment

• After a week perhaps you see your estimates
weren’t accurate
– Usually programmers underestimate the time

required
– Reassess where you are with your group and

immediately go to the client so he or she can
determine how you should spend your remaining time

• Sometimes this is good news
– If you only got to finish 10 units and you estimated 40,

then you have better data for the next iteration
– Estimates should get better each iteration; “surprises”

are early, not later

9/9/2014

14

Rinse and Repeat

• Even if you didn’t complete as many stories as
estimated the first iteration, the client should be
happy with your honesty

• As the project progresses you should get better at
knowing what you can do in an iteration

• Continue to keep the client informed and track
where you are at all times

• Client may be unhappy the product is going
slowly, but it’s hard to argue with the data you
are gathering and sharing

Communication

• Use BlackBoard wiki or forum to share
information with your team members

• Good place to keep track of

– Meeting notes

– Issues or problems

– Assigned tasks, estimates, actual time taken

• Compare with actual time

9/9/2014

15

Rules

1. The developers will be truthful in their estimates
and the customers will believe these estimates

2. The developers will refine their estimates and
the customers will refine their expectations
based on the actual achievements in each
iteration

3. During the iteration the developers will update
the client as to the progress of the iteration.
The client will use this information to quickly
refine what is required in the current iteration.

Summary of Agile Planning every
Iteration

• Develop user stories with client
• Without client, break users stories into tasks to better

understand time it will take to complete
• Assign NUTs to each user story
• Estimate how many NUTs the group can complete in one

iteration
– May require conversion from Hours to NUTs

• Ask the client to prioritize user stories for the current
iteration; must fit within NUTs the group can complete in
the iteration!

• Show client your work at the end of iteration
– Repeat with modified estimate for NUTs the group can complete

