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Turing Machines and 

Computability 

Devices of Increasing Computational 

Power 

• So far: 
– Finite Automata – good for devices with small amounts of 

memory, relatively simple control 

– Pushdown Automata – stack-based automata 

• But both have limitations for even simple tasks, too 
restrictive as general purpose computers 

• Enter the Turing Machine 

– More powerful than either of the above 

– Essentially a finite automaton but with unlimited memory 

– Although theoretical, can do everything a general purpose 
computer of today can do 

• If a TM can’t solve it, neither can a computer 
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Turing Machines 

• TM’s described in 1936 

– Well before the days of modern computers but remains 

a popular model for what is possible to compute on 

today’s systems 

– Advances in computing still fall under the TM model, 

so even if they may run faster, they are still subject to 

the same limitations 

• A TM consists of a finite control (i.e. a finite state 

automaton) that is connected to an infinite tape. 

Turing Machine 

• The tape consists of cells where each cell holds a symbol from the tape 
alphabet.  Initially the input consists of a finite-length string of 
symbols and is placed on the tape.  To the left of the input and to the 
right of the input, extending to infinity, are placed blanks.   The tape 
head is initially positioned at the leftmost cell holding the input. 

Finite control 

…    B   B   X1   X2    …           Xi       Xn   B  B  … 
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Turing Machine Details 

• In one move the TM will: 
– Change state, which may be the same as the current 

state 

– Write a tape symbol in the current cell, which may be 
the same as the current symbol 

– Move the tape head left or right one cell 

– The special states for rejecting and accepting take effect 
immediately 

• Formally, the Turing Machine is denoted by the 8-
tuple:   
– M = (Q, , Γ, δ, q0, B, qa, qr) 

Turing Machine Description 

• Q = finite states of the control 

•  = finite set of input symbols, which is a subset of Γ below 

• Γ = finite set of tape symbols 

• δ = transition function.  δ(q,X) are a state and tape symbol X. 
– The output is the triple, (p, Y, D) 

– Where p = next state, Y = new symbol written on the tape, D = 
direction to move the tape head 

• q0= start state for finite control 

• B = blank symbol.  This symbol is in Γ but not in . 

• qaccept = set of final or accepting states of Q. 

• qreject  = set of rejecting states of Q 
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TM Example 

• Make a TM that recognizes the language L = { w#w | w  
(0,1)* }.  That is, we have a language separated by a # 
symbol with the same string on both sides. 

• Here is a strategy we can employ to create the Turing 
machine: 
– Scan the input to make sure it contains a single # symbol.  If not, 

reject. 

– Starting with the leftmost symbol, remember it and write an X into its 
cell.  Move to the right, skipping over any 0’s or 1’s until we reach a 
#.  Continue scanning to the first non-# symbol.  If this symbol 
matches the original leftmost symbol, then write a # into the cell.  
Otherwise, reject. 

– Move the head back to the leftmost symbol that is not X. 

– If this symbol is not #, then repeat at step 2.  Otherwise, scan to the 
right.  If all symbols are # until we hit a blank, then accept.  
Otherwise, reject. 

 

TM Example 

• Typically we will describe TM’s in this informal fashion.  The 
formal description gets quite long and tedious.  Nevertheless, 
we will give a formal description for this particular problem. 

• We can use a table format or a transition diagram format.  In 
the transition diagram format, a transition is denoted by: 

  Input symbol   Symbol-To-Write   Direction to Move 

For example: 

  0  1 R 

• Means take this transition if the input is 0, and replace the cell 
with a 1 and then move to the right. 

• Shorthand: 

  0  R   means  0  0 R 
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TM for L={w#w:w0,1} 

a Start 

0R, 1R 

#R 
b 

0R, 1R 

BL 
c 

0L, 1L, #L 

BR 

Check for # 

f 0X R 1X R e 

0R, 1R 

g 

0R, 1R 

d 
#R 

#R 

h 
#R 

## 

i 
0# L 1# L 

0L, 1L, #L 

XR 

j 

0X R 1X R 

#R 
k 

#R 

l 
BR 

Match symbols 

 

 

Return to left 

 

No input left 

Instantaneous Description 

• Sometimes it is useful to describe what a TM does in terms of 
its ID (instantaneous description), just as we did with the 
PDA.   

• The ID shows all non-blank cells in the tape, pointer to the 
cell the head is over with the name of the current state 
– use the turnstile symbol ├  to denote the move.    

– As before, to denote zero or many moves, we can use ├*. 

• For example, for the above TM on the input 10#10 we can 
describe our processing as follows: 
 Ba10#10B ├  B1a0#10B ├  B10a#10B ├  B10#b10B ├  B10#b10B ├  

B10#1b0B ├  B10#10bB ├ B10#1c0B ├*  cB10#10B ├  Bf10#10B 
├*  BXX#XXBl 

• In this example the blanks that border the input symbols are 
shown since they are used in the Turing machine to define the 
borders of our input. 
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Turing Machines and Halting 

• One way for a TM to accept input is to end in a final state.   
– Another way is acceptance by halting.  We say that a TM halts if it enters a state 

q, scanning a tape symbol X, and there is no move in this situation; i.e. δ(q,X) is 
undefined. 

• Note that this definition of halting was not used in the transition diagram for 
the TM we described earlier; instead that TM died on unspecified input! 

 

• It is possible to modify the prior example so that there is no unspecified input 
except for our accepting state.   An equivalent TM that halts exists for a TM 
that accepts input via final state. 

 

• In general, we assume that a TM always halts when it is in an accepting 
state. 

• Unfortunately, it is not always possible to require that a TM halts even if it 
does not accept the input.  Turing machines that always halt, regardless of 
accepting or not accepting, are good models of algorithms for decidable 
problems. Such languages are called recursive.   

Turing Machine Variants 

• There are many variations we can make to the basic TM 
– Extensions can make it useful to prove a theorem or perform some 

task 

– However, these extensions do not add anything extra the basic TM 
can’t already compute 

• Example: consider a variation to the Turing machine where 
we have the option of staying put instead of forcing the 
tape head to move left or right by one cell.   
– In the old model, we could replace each “stay put” move in the 

new machine with two transitions, one that moves right and one 
that moves left, to get the same behavior. 
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Multitape Turing Machines 

• A multitape Turing machine is like an ordinary 
TM but it has several tapes instead of one tape. 

• Initially the input starts on tape 1 and the other 
tapes are blank.  

• The transition function is changed to allow for 
reading, writing, and moving the heads on all the 
tapes simultaneously.   

– This means we could read on multiples tape and move 
in different directions on each tape as well as write a 
different symbol on each tape, all in one move. 

Multitape Turing Machine 

• Theorem:  A multitape TM is equivalent in power to an 
ordinary TM.  Recall that two TM’s are equivalent if they 
recognize the same language. We can show how to convert a 
multitape TM, M, to a single tape TM, S: 

• Say that M has k tapes.   
– Create the TM S to simulate having k tapes by interleaving the 

information on each of the k tapes on its single tape 

– Use a new symbol # as a delimiter to separate the contents of each 
tape 

– S must also keep track of the location on each of the simulated heads 
• Write a type symbol with a * to mark the place where the head on the 

tape would be 

• The * symbols are new tape symbols that don’t exist with M 

• The finite control must have the proper logic to distinguish say, x* and x 
and realize both refer to the same thing, but one is the current tape 
symbol. 
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Multitape Machine 

… 0    1    0    1     0    B            …

… a    a     a    B                       …

… b    a     B                            …

M

Equivalent Single Tape Machine: 

Single Tape Equivalent 

• One final detail 

– If at any point S moves one of the virtual tape 
heads onto a #, then this action signifies that M 
has moved the corresponding head onto the 
previously unread blank portion of that tape.   

– To accommodate this situation, S writes a blank 
symbol on this tape cell and shifts the tape 
contents to the rightmost # by one, adds a new 
#, and then continues back where it left off 
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Nondeterministic TM 

• Replace the “DFA” part of the TM with an “NFA” 
– Each time we make a nondeterministic move, you can think of this 

as a branch or “fork” to two simultaneously running machines.  
Each machine gets a copy of the entire tape.  If any one of these 
machines ends up in an accepting state, then the input is accepted. 

• Although powerful, nondeterminism does not affect the 
power of the TM model 

• Theorem:  Every nondeterministic TM has an equivalent 
deterministic TM. 
– We can prove this theorem by simulating any nondeterministic 

TM, N, with a deterministic TM, D.    

Nondeterministic TM 

• Visualize N as a tree with branches whenever we fork off to two (or more) 
simultaneous machines.   
– Use D to try all possible branches of N, sequentially.   

– If D ever finds the accept state on one of these branches, then D accepts.   

– It is quite likely that D will never terminate in the event of a loop if there is no 
accepting state. 

• Search be done in a breadth-first rather than depth-first manner.   
– An individual branch may extend to infinity, and if we start down this branch 

then D will be stuck forever when some other branch may accept the input. 

• We can simulate N on D by a tape with a queue of ID’s and a scratch tape 
for temporary storage.   
– Each ID contains all the moves we have made from one state to the next, for one 

“branch” of the nondeterministic tree.  

– From the previous theorem, we can make as many multiple tapes as we like and 
this is still equivalent to a single tape machine.  Initially, D looks like the 
following: 
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Nondeterministic TM 

• ID1 is the sequence of moves we make from the start state.  The * 

indicates that this is the current ID we are executing.   

• We make a move on the TM.  If this move results in a “fork” by 

following nondeterministic paths, then we create a new ID and copy it 

to the end of the queue using the scratch tape.   

           Scratch Tape 

…  ID1*    

D 

Queue of ID’s 

Nondeterministic TM 

• For example, say that in ID1 we have two nondeterministic 

moves, resulting in ID2 and ID3:  

 

           Scratch Tape 

…  ID1*   #  ID2   # ID3   

D 
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Nondeterministic TM 

•  After we’re done with a single move in ID1, 

which may result in increasing the length of ID1 

and storing it back to the tape, we move on to ID2: 

           Scratch Tape 

…  ID1   #  ID2*   # ID3   

D 

Nondeterministic TM 

• If any one of these states is accepting in an ID, then the machine 
quits and accepts. 

• If we ever reach the last ID, then we repeat back with the first 
ID. 

 

• Note that although the constructed deterministic TM is 
equivalent to accepting the same language as a nondeterministic 
TM, the deterministic TM might take exponentially more time 
than the nondeterministic TM.   
– It is unknown if this exponential slowdown is necessary.  We’ll come 

back to this in the discussion of P vs. NP. 

 

• Theorem:  Since any deterministic Turing Machine is also 
nondeterministic (there just happens to be no nondeterministic 
moves), there exists a nondeterministic TM for every 
deterministic TM.   
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Equivalence of TM’s and Computers 

• In one sense, a real computer has a finite amount 
of memory, and thus is weaker than a TM. 

• But, we can postulate an infinite supply of tapes, 
disks, or some peripheral storage device to 
simulate an infinite TM tape.  Additionally, we 
can assume there is a human operator to mount 
disks, keep them stacked neatly on the sides of the 
computer, etc. 

• Need to show both directions, a TM can simulate a 
computer and that a computer can simulate a TM 

Computer Simulate a TM 

• This direction is fairly easy - Given a computer 

with a modern programming language, certainly, 

we can write a computer program that emulates 

the finite control of the TM.   

• The only issue remains the infinite tape.  Our 

program must map cells in the tape to storage 

locations in a disk.  When the disk becomes full, 

we must be able to map to a different disk in the 

stack of disks mounted by the human operator. 
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TM Simulate a Computer 

• In this exercise the simulation is performed at the level of 
stored instructions and accessing words of main memory. 
– TM has one tape that holds all the used memory locations and their 

contents. 

– Other TM tapes hold the instruction counter, memory address, 
computer input file, and scratch data. 

– The computer’s instruction cycle is simulated by: 

1.  Find the word indicated by the instruction counter on the memory 
tape. 

2.  Examine the instruction code (a finite set of options), and get the 
contents of any memory words mentioned in the instruction, using 
the scratch tape.  

3.  Perform the instruction, changing any words' values as needed, and 
adding new address-value pairs to the memory tape, if needed. 

TM/Computer Equivalence 

• Anything a computer can do, a TM can do, and vice versa 

• TM is much slower than the computer, though 
– But the difference in speed is polynomial 

– Each step done on the computer can be completed in O(n2) steps on 
the TM (see book for details of proof).    

• While slow, this is key information if we wish to make an 
analogy to modern computers. Anything that we can prove 
using Turing machines translates to modern computers with 
a polynomial time transformation.  

• Whenever we talk about defining algorithms to solve 
problems, we can equivalently talk about how to construct a 
TM to solve the problem.  If a TM cannot be built to solve a 
particular problem, then it means our modern computer 
cannot solve the problem either. 
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Computability 

• Slight change in direction for the course 

– We will start to examine problems that are at 

the threshold and beyond the theoretical limits 

of what is possible to compute using computers 

today.     

• We will examine the following issues with 

the help of TM’s 

Turing Languages 

• We use the simplicity of the TM model to prove formally 
that there are specific problems (i.e. languages) that the 
TM cannot solve. Three classes of languages: 
– Turing-decidable or recursive: TM can accept the strings in the 

language and tell if a string is not in the language.  Sometimes 
these are called decidable problems. 

– Turing-recognizable or recursively enumerable : TM can accept 
the strings in the language but cannot tell for certain that a string is 
not in the language. Sometimes these are called partially-
decidable. 

– Undecidable : no TM can even recognize ALL members of the 
language.  
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P and NP 

• We then look at problems (languages) that do have TM's 
that accept them and always halt;  
– i.e. they not only recognize the strings in the language, but they tell 

us when they are sure the string is not in the language. 

• The classes P and NP are those languages recognizable by 
deterministic and nondeterministic TM's, respectively, that 
halt within a time that is some polynomial in the input. 
– Polynomial is as close as we can get, because real computers and 

different models of (deterministic) TM's can differ in their running 
time by a polynomial function, e.g., a problem might take O(n2) 
time on a real computer and O(n6) time on a TM. 

 

NP Complete 

• These are in a sense the “hardest” problems in NP. 
– These problems correspond to languages that are 

recognizable by a nondeterministic TM.   

– However, we will also be able to show that in 
polynomial time we can reduce any NP-complete 
problem to any other problem in NP.   

• This means that if we could prove an NP Complete problem to 
be solvable in polynomial time, then P = NP.   

 

– We will examine some specific problems that are NP-
complete: satisfiability of boolean (propositional logic) 
formulas, traveling salesman, etc.  
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Hilbert’s Problems 

• In 1900, mathematician David Hilbert identified 23 
mathematical challenges 

• Problem 10:  Devise an algorithm to determine if a given 
diophantine polynomial has integral roots 

• We know now that no algorithm exists for this task!  It is 
algorithmically unsolvable.  
– 1970 by Yuri Matijasevic 

– Tools didn’t exist in 1900 to adequately describe an algorithm to 
prove that no such algorithm exists 

– Church’s Lambda Calculus and Turing’s Turing machines 
formalized computation and have been shown to be equivalent 

• The Church-Turing Thesis 

Intuitive Notion of Algorithms =  Turing Machine Algorithms 

Hilbert’s Problem as a TM 

• D = { p | p is a polynomial with an integral root } 
– Determine whether the set D is decidable 

– (Can’t do it) 

• We can show that D is Turing-recognizable 

• Consider Hilbert’s problem only for variable X 
– D1 = {p| p is a polynomial over x with integral roots} 

– TM(D1) : Evaluate p with x set successively to the values 0, 1, -1, 2, -3, 3, -
3, …  if at any point the polynomial evaluates to 0, accept 

– If D1 has an integral root, this TM will eventually find it 

– If D1 has no integral root, this TM will run forever 

– This TM is a recognizer not a decider 

• We can convert it to a decider if we set bounds, but Matijasevic showed 
calculating such bounds for multivariable polynomials is impossible 
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Decidable Languages 

• Review:  What is a decidable language? 

• Theorems: 

– ADFA = {<B,w> | B is a DFA that accepts input string w 

} 

• This is the language that corresponds to any DFA we could 

build 

• We can make a TM that simulates DFA B on w and indicates 

if we should accept or reject 

– ANFA can be proven similarly 

– AREX can be proven similarly 

< > Indicates description of DFA 

Decidable Problems 

• ACFG= {<G,w> | G is a CFG that generates w} 

– This is decidable 

– Can’t go through all derivations to see if one of them is w, 
since there may be an infinite number of derivations 

– But we can convert G to Chomsky Normal Form, any 
derivation for w has at most 2|w| – 1 steps, so we can 
generate all derivations using 2|w| - 1 steps and see if one 
of these matches w 

• We can also show that every CFG is decidable 

– See text 
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Relationship among classes of 

Languages 

Turing Recognizable 

Decidable Context-Free Regular 

Let’s look at some undecidable languages… 

Intuitive Argument for an 

Undecidable Problem 
• Given a C program (or a program in any programming 

language, really) that prints “hello, world” is there another 
program that can test if a program given as input prints 
“hello, world”?  

• This is tougher than it may sound at first glance.  For some 
programs it is easy to determine if it prints hello world.  
Here is perhaps the simplest: 

 

  #include “stdio.h” 

  void main() 

  { 

      printf(“hello, world\n”); 

  } 
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Not as easy as it looks… 

• It would be fairly easy to write a program to test to see if 

another program consisting solely of printf statements will 

output “hello, world”.   But what we want is a program that 

can take any arbitrary program and determine if it prints 

“hello, world”.   

• This is much more difficult.  Consider the following 

program: 

Obfuscated Hello World Program 
#include "stdio.h" 

#define e 3 

#define g (e/e) 

#define h ((g+e)/2) 

#define f (e-g-h) 

#define j (e*e-g) 

#define k (j-h) 

#define l(x) tab2[x]/h   

#define m(n,a) ((n&(a))==(a)) 

long tab1[]={ 989L,5L,26L,0L,88319L,123L,0L,9367L }; 

int tab2[]={ 4,6,10,14,22,26,34,38,46,58,62,74,82,86 }; 

 

main(m1,s) char *s; { 

    int a,b,c,d,o[k],n=(int)s; 

    if(m1==1){ char b[2*j+f-g]; main(l(h+e)+h+e,b); printf(b); } 

    else switch(m1-=h){ 

        case f: 

            a=(b=(c=(d=g)<<g)<<g)<<g; 

            return(m(n,a|c)|m(n,b)|m(n,a|d)|m(n,c|d)); 

        case h: 

            for(a=f;a<j;++a)if(tab1[a]&&!(tab1[a]%((long)l(n))))return(a); 

        case g: 

            if(n<h)return(g); 

            if(n<j){n-=g;c='D';o[f]=h;o[g]=f;} 

            else{c='\r'-'\b';n-=j-g;o[f]=o[g]=g;} 

            if((b=n)>=e)for(b=g<<g;b<n;++b)o[b]=o[b-h]+o[b-g]+c; 

            return(o[b-g]%n+k-h); 

        default: 

            if(m1-=e) main(m1-g+e+h,s+g); else *(s+g)=f; 

            for(*s=a=f;a<e;) *s=(*s<<e)|main(h+a++,(char *)m1); 

        } 

} 
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Aside 

• From Wikipedia, the International Obfuscated C Code 
Contest 

• Some quotes from 2004 winners include: 
– To keep things simple, I have avoided the C preprocessor and 

tricky statements such as "if", "for", "do", "while", "switch", and 
"goto". 

– Why not use the program to hide another program in the program? 
It must have seemed reasonable at the time. 

– The program implements an 11-bit ALU in the C preprocessor. 

– I found that calculating prime numbers up to 1024 makes the 
program include itself over 6.8 million times. 

 

Hello World Tester 

• Problem:  Create a program that determines if any arbitrary 
program prints “hello world”  

• We can show there is no program to solve that problem 
(i.e. it is undecidable)  

 

• Suppose that there were such a program H, the “hello-
world-tester."   

• H takes as input a program P and an input file I for that 
program, and tells whether P, with input I, prints “hello 
world” and outputs “yes” if it does, “no” if it does not 
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Hello World Tester 

H 

Hello-world tester 

I 

P 

yes 

no 

Hello World Tester 

• Next we modify H to a new program H1 that acts like H, 

but when H prints no, H1 prints “hello, world.”.   

• To do this, we need to find where “no” is printed and 

instead output “hello world” instead: 

H1 

Hello-world tester 

I 

P 

yes 

hello, world 
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Hello World Tester 

• Next modify H1 to H2 . The program H2 takes only one input, P2, 
instead of both P and I.   

• To do this, the new input P2 must include the data input I and the 
program P.   

• The program P and data input I are all stored in a buffer in program 
H2.  H2 then simulates H1, but whenever H1 reads input, H2 feeds the 
input from the buffered copy.  H2 can maintain two index pointers into 
the buffered data to know what current data and code should be read 
next: 

H2 

 
P2=P,I yes 

hello, world 
Buffer:  P     I 

H1 

Hello World Tester 

• However, H2 cannot exist. If it did, what would H2(H2 ) do? 

• That is, we give H2 as input to itself: 

H2 

Hello-world tester 
H2 

yes 

hello, world 

If H2 on the left outputs = “yes”, then H2 given H2 as input will print “hello, 

world”.  But we just supposed that the first output H2 makes is “yes” and not 

“hello world”.  

 

The situation is paradoxical and we conclude that H2 cannot exist and this 

problem is undecidable. 
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Software Verification 

• You are given a computer program and a 

precise specification of what the program is 

supposed to do. You need to verify that the 

program performs correctly to the 

specification. 

• But the general problem of software 

verification is not solvable by computer. 

– This is a general case of the Halting Problem 

The Halting Problem 

• ATM = {<M, w> | M is a TM and M accepts w } 
– i.e. Can we make a TM that can determine if another TM will 

accept a string w? 

– The problem is the TM might get stuck in a loop and go 
forever;  we could simulate the original TM, but if it loops, we 
are stuck 

• However, this problem is Turing Recognizable: 
– Simulate M on input w. 

– If M ever enters its accept state, accept.  If M ever enters its 
reject state, reject. 

• M might loop; if it had some way to determine that M was not halting 
on w, it could reject. 

To show that the Halting Problem is unsolvable, first, counting… 
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Countability 

• Countability described by Georg Cantor in 1873.   

• If we have two infinite sets, how can we tell 
whether one is larger than the other?    (e.g. floats 
larger than ints) 
– Obviously we can’t start counting with each element or 

we will be counting forever.   

• Cantor’s solution is to make a correspondence to 
the set of natural numbers.   

• A correspondence is a function f: AB that is one-
to-one from A to B.  Every element of A maps to a 
unique element of B, and each element of B has a 
unique element of A mapping to it. 

Countability Example 

• The set of natural numbers, N = { 1, 2, 3, 4, … }. 

• The set of even numbers excluding 0, E = { 2, 4, 6, … } 

 

• It might seem that N is bigger than E, since we have values 

in N that are not in E (by one measure, we have twice as 

many.)  However, using Cantor’s definition of size both 

sets have the same size. 

N E=F(N) 

1 2 

2 4 

3 6 

Etc. 
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Countability 

• Definition:  A set is countable if it is finite 

or if it has the same size as the natural 

numbers. 

• For example, as we saw above, E is 

countable. 

– For every number in N, there is a corresponding 

number in E 

Countability 

• Example:  The set of positive rational numbers, Q,  
is countable.  That is,   

  Q = { m/n | m, n  N }. 

• To show that this is countable, we need to make a 
1:1 correspondence between the rational numbers 
and the natural numbers. We must make sure that 
each rational number is paired with one and only 
one natural number.     

• Consider the mapping as shown in the following 
matrix: 
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Countability Matrix - 

Diagonalization 

• Would miss assignments if we went along one row 

or column, instead count diagonally 

6/66/56/46/36/26/1

5/65/55/45/35/25/1

4/64/54/44/34/24/1

3/63/53/43/33/23/1

2/62/52/42/32/22/1

1/61/51/41/31/21/1

6/66/56/46/36/26/1

5/65/55/45/35/25/1

4/64/54/44/34/24/1

3/63/53/43/33/23/1

2/62/52/42/32/22/1

1/61/51/41/31/21/1 …

.

.

.

11/1 

22/1 

31/2 

43/1 

2/2    skipped 

51/3 

Continuing in this way, we can obtain a list for all elements of Q and therefore 

Q is countable. 

Uncountable Sets 
• Since we have seen infinite sets that are countable, it might seem like any 

infinite set is countable.  However, this is not the case. 

• Example:  The set of real numbers, R,  is not countable. 

• Suppose that R is countable.  Then there is a correspondence between members 
of R and members of N.  The following table shows some hypothetical 
correspondences: 

  

  N R 

  1 3.14159… 

  2 55.555… 

  3 0.12345… 

  4 0.50000… 

 

Given such a table, we can construct a value x that is in R but that has no pairing 
with a member in N.   
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Uncountable Sets 

• To construct x, we ensure it has a digit that is different from all 
values listed in the table.   
– Start with the first fractional digit of 3.14159.    This is the digit 1.  So we 

pick something different, say we pick 4.   

– Move to the second value.  The second fractional digit of 55.555 is 5.    So 
we pick something different, say 6.   

– The third fractional digit of 0.12345 is 3.   So we pick something different, 
say 1.  

• We can continue in this way, to construct x = 0.4612 … 

• The value x is in R.  However, we know that x has no 
corresponding value in N because it differs from n in N by the 
nth fractional digit.   

• Since x has no corresponding value in N, the set of real numbers 
is not countable. 

Uncountable Sets 

• This result is important because it tells us there is 
something our TM’s and computers cannot 
compute.   

• For example, it is impossible to exactly compute 
the real numbers – we must settle for something 
else, e.g. a less precise answer or computation. 

 

• Corollary: There exist languages that are not 
recognizable by a Turing Machine. 
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Languages and TM’s 

• First, the set of all Turing machines is countable.   
– We can show this by first observing that the set of all 

strings * is countable, for a finite alphabet .  With 
only finitely many strings of each length, we may form 
a list of * by writing down all strings of length 0, all 
strings of length 1, all strings of length 2, etc. 

• The set of all TM’s is countable because each TM 
may be encoded by a string s.  This string encodes 
the finite control of the TM.  If we omit those 
strings that are not valid TM’s, then we can obtain 
a list of all TM’s. 

Languages and TM’s 

• To show that the set of all languages is not countable, 
observe that the set of all infinite binary sequences is 
uncountable.  The proof for this is identical to the proof we 
used to show that the set of real numbers is uncountable. 

• The set of all languages has a correspondence to the set of 
all infinite binary sequences.   
– For the alphabet of {0,1} they are the same.  For languages with 

more than two symbols, we use multiple bits to represent the 
symbols. 

• Therefore, the set of all languages is also uncountable and 
we conclude that since the set of TM’s is countable but the 
set of all languages is uncountable, there are languages that 
are not recognized by any Turing machine. 
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Back to the Halting Problem 

• ATM = {<M, w> | M is a TM and M accepts w } 

 

• Assume that this is Decidable 

– This means that H is a TM that decides for ATM 

• H(<M,w>) = {accept if M accepts w, reject if M doesn’t accept w} 

– Construct a new Turing machine D, with H as a subroutine.  D 

calls H to determine what M does when the input to M is its 

own description.  Once D has this information, it does the 

opposite. 

• It rejects if M accepts and accepts if M does not accept 

 

 

 

Halting Problem 

• D(<M>) = { accept if M does not accept <M> 

    reject if M accepts <M> } 

• What happens when: 

– D(<D>) = { accept if D does not accept <D> 

    reject if D accepts <D> } 

  

No matter what D does, it is forced to do the opposite, 

which is a contradiction.  Therefore, neither D nor H can 

exist. 
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Where’s the Diagonalization? 

• Entry i,j is the value of H on input <Mi, <Mj>> 

<M1> <M2> <M3> <M4> … 

M1 A R A R 

M2 A A A A 

M3 R R R R 

M4 A A R R 

… 

A = Accept, R = Reject 

D is the opposite of the diagonals: 

• Entry i,j is the value of H on input <Mi, <Mj>> 

<M1> <M2> <M3> <M4> … <D> 

M1 A R A R 

M2 A A A A 

M3 R R R R 

M4 A A R R 

… 

D R R A A  ? 
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Non-RE Languages 

• There are infinitely many more languages that are 
not recognized by TM’s than languages that are 
recognized by TM’s.   
– Fortunately, most of the time we don’t care about these 

other languages, but are only interested in ones that 
TM’s can recognize. 

• The property of enumerability is one reason why 
we call languages recognizable by TM’s to be 
recursively enumerable.   
– The “recursion” part is historical, from using recursion 

to describe many of these problems  

Problem Reducibility 

• Once we have a single problem known to be undecidable we 
can determine that other problems are also undecidable by 
reducing a known undecidable problem to the new problem.   
– We could also show that the Hello-World Tester problem could be 

used to solve the Halting Problem, but the Halting Problem is proven 
to be undecidable 

• Essentially we would have to run the program to test if it prints Hello-
World, but running the program might run into an infinite loop 

– We will use this same idea later when we talk about proving problems 
to be NP-Complete.   

• To use this idea, we must take a problem we know to be 
undecidable.  Call this problem U.  Given a new problem, P, 
if U can be reduced to P so that P can be used to solve U, then 
P must also be undecidable. 
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Problem Reducibility 

• Important – we must show that U reduces to P, not 
vice versa 
– If we show that our P reduces to U then we have only 

shown that a new problem can be solved by the 
undecidable problem 

– It might still be possible to solve problem P by other 
means; e.g. we might be taking the tough path to solve 
P 

• But if we can show the other direction, that P can 
solve U, then P must be at least as hard as U, 
which we already know to be undecidable. 

Reducibility Example 

• Does program Q ever call function foo?  

– This problem is also undecidable 

• Just as we saw with the ‘hello world’ problem, it 
is easy to write a program that can determine if 
some programs call function foo.   

• But we could have a program that contains lots of 
control logic to determine whether or not function 
foo is invoked.  This general case is much harder, 
and in fact undecidable  
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Reducibility Example 

• Use the reduction technique for the Hello-World 
problem 

– Rename the function “foo” in program Q and all calls to that 
function. 

– Add a function “foo” that does nothing and is not called. 

– Modify the program to remember the first 12 characters that it 
prints, storing them in array A 

– Modify the program so that whenever it executes any output 
statement, it checks the array A to see if the 12 characters 
written are “hello, world” and if so, invokes function foo. 

– If the final program prints “hello, world” then it must also 
invoke function foo.  Similarly, if the program does not print 
“hello, world” then it does not invoke foo.   

Foo Caller 

• Say that we have a program F-Test that can 
determine if a program calls foo.   

• If we run F-Test on the modified program above, 
not only can it determine if a program calls foo, it 
can also determine if the program prints “hello, 
world”.   

• But we would then be solving the “hello-world-
tester” problem which we already know is 
undecidable, therefore our F-Test problem must be 
undecidable as well  


