
Recurrence Relations : Substitution, Iterative, and The Master Method

Divide and conquer algorithms are common techniques to solve a wide range of problems.

They use the following general plan:

1. Divide the problem instance into several smaller instances of the same problem

2. Solve the smaller instances either recursively or directly

3. If necessary, combine the solutions from the smaller instances to get a solution to

the original problem

For example, with MergeSort we divided the problem in half, solved each half, then

combined the results (merge):

In this case, the amount of time it takes to run MergeSort (T(n)) is the amount of time it

takes to solve the two subproblems (2*T(n/2)) plus the amount of time it takes to split the

big problem into the subproblems (constant time) and combine the subproblem solutions

back into the solution (O(n) time for merge).

This type of recursive formulation for the runtime is called a recurrence relation. Earlier

we said that the recurrence relation for MergeSort is:

Recurrence: T n

n

T
n

n n
()

(),

(),












  



















1 1

2
2

1

We claimed the runtime is then  (nlgn).

The next section will show how to compute these bounds. There are generally three

methods we will discuss to solve recurrence relations:

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n

 Induction

 Iterative Substitution

 Master Theorem

Note that we will typically drop out the lower order terms.

For example, if an algorithm runs in  (n) +  (1) time, the  (n) will dominate so we can

just drop the  (1) term completely.

Induction Method

 The Induction method consists of the following steps:

1. Guess the form of the solution

2. Use mathematical induction to find the constants of the solution, assume the

solution works for up to n. We need to then show the solution works for n+1;

this is a form of proof by induction.

3. Solve the base case

4. This method works best if its easy to guess the form of the answer

Example: Given

T(n)= K , i.e. (1) for n<=1 ; Where K is a constant

often not specified and left implicit

T(n)=2T(n/2) + n for n>1 ; similar to what we had for merge sort

 Let’s guess the form of the solution is O(nlgn).

 Next we need to prove that T(n) c n lg(n) for c>0 (recall definition of O(nlgn)

 This means that T(n/2) c (n/2) lg(n/2)

 Substitute back in to original guess:

 T(n)  2(c(n/2)lg(n/2)) + n

 T(n) cn lg(n/2) + n

 T(n) cn lg(n) – cnlg2 +n

 T(n)  cn lg(n) – cn +n cn lgn ; TRUE if c1

 Looks good so far, we must also show the boundary condition (or base case) fits

our guess by showing that T(constant) from the original recurrence  guess

condition.

We should start at T(2) since the recurrence T(n)=2T(n/2)+n only holds for n>1:

(Remember for Big-O we only need to show that the solution is true for n > n0 and

can ignore transients early on, so it’s ok if T(n) doesn’t hold for T(1) for example.)

 Try T(2)  c2lg2

 T(2) c2

 Orig: T(2) = 2T(n/2)+2

 T(2) = 2T(1) + 2

 T(2) = 2K + 2

 Is 2K+2c2? The guess is true for cK+1 so we are done.

In the above example, it is common to “cheat” a little bit and instead assume that

T(1) = 1 instead of T(1) = (1).

The reason is to simplify the analysis a bit. Let’s look at what we would have if

we used T(1)=1 instead and tried to solve for the base case:

 Try T(2) c2

 Orig: T(2) = 2T(n/2)+2

 T(2) = 2T(1) + 2

 T(2) = 2(1) + 2

 T(2) = 4

Is 4 c2 ? Yes, if 2  c. We can still make the base case work for T(1)= 1.

The difference is that there is a constant factor using the T(1)=K, that is missing

when we assume T(1)=1. For a slightly easier analysis, we will often assume that

T(1)=1 to simplify the process. However, remember that even if T(1) =  (1), it is

safe to assume T(1)=1 to prove the recurrence.

How to guess:

 1. It is often useful to drop the asymptotically insignificant constants.

Ex: T(n) = 2T(n/2 + 17) +n

Ignore the constants, since for a large n they are insignificant. Guess O(nlgn)

Or, prove a loose upper and lower bounds, then try to reduce the bounds.

E.g., start with O(n3), O(n2), … assume only  (n) initially in recurrence.

 2. Subtract Terms:

 T(n)=T(n/2) + T(n/2) + 1

 If you guess T(n) cn linear

 Get T(n)  cn/2 + cn/2 + 1

 T(n)  cn + 1

 This is not  cn for any value of n!

 Instead try subtracting out the lower order term that is causing problems:

 Try T(n)  cn – b ; b>= 0

 Get T(n)  (cn/2)-b + (cn/2)-b + 1

 T(n)  cn – 2b + 1

 T(n)  cn –b ; if b>=1 then this works

 3. Changing Variables:

 Consider T(n) = 2T(n) + lgn ; looks hard!

 Let m=lg n ; n = 2m

 Get T(2m) = 2T(n1/2) + m

 T(2m) = 2T(2m/2) + m

 Let S(m) = T(2m)

  S(m)=2S(m/2) + m ; We solved this already!

 = O (m lgm) = O(lgn lglgn) ; This grows very slowly!

Second induction example:

Given : T(n) =  (1) if n=1

 T(n) = 4T(n/2) + n if n>1

 Let’s guess that the solution is O(n lgn)

 So we need to show that T(n)  cn lgn

 Show: T(n)  4 (c(n/2)lg(n/2)) + n

 T(n)  2cn lg(n) - 2cn lg2 + n

 T(n)  2cn lgn - 2cn + n

 T(n)  2cn lgn - (2c+1) n

This is NOT of the form cn lgn for any value of c! Must match the exact form of

the induction hypothesis or the result is not valid. Additionally, this result is not 

cnlgn for all n n 0 .

 New try: Guess solution is O(n2)

 So we need to show that T(n)  cn2

 Show: T(n)  4(c(n/2)2) + n

 T(n)  4c(n2/4) + n

 T(n)  cn2 + n

 Does not work either! But its close.

 Off by a factor of n, so lets try subtracting off that term.

 Try: T(n)  cn2 –n

 T(n)  4((cn2/4) – (n/2)) + n

 T(n)  cn2 – 2n +n

 T(n)  cn2 – n

 This is a match! c = any value > 0.

 We also need to show the base case:

 In our guess, T(2)  4c – 2

 In original, T(2) = 4T(2/2) + 2

 T(2) = 4+2

 T(2) = 6

 So our guess is safe as long as c>=2.

Be careful! The solution must match the EXACT form of the induction hypothesis.

Ex: Given T(n) = 2T(n/2) + n

 Guess T(n)  cn

 Show T(n) 2c(n/2) + n

 T(n) cn + n

 It looks like this works, since we have cn+n which is O(n) and something O(n) is

cn but it is not the exact same form as our guess. It has an extra n in there that the guess

does not. (The ultimate solution may still be O(n) though! But this doesn’t prove it. For

this problem, a guess of T(n)  nlgn would work).

Iterative Substitution Method: Expand the terms into a summation, and solve

algebraically

Example:

T(n)= Theta(1) for n=1

T(n) = 3T(n/4) + n for n>1

T
n

T
n n

4
3

4 4 4









 









 

*

We can plug this back into the original recurrence relation:

 T n T
n n

n








 









 3 3

16 4

We can keep on going:

 T n T
n n n

n








 









 









 3 3 3

64 16 4

If we stop at this point and do some math:

T(n) = 27T(n/64) + 9(n/16) + 3(n/4) + n

T n n
n n

T
n

()    










3

4

9

16
27

64

There’s a pattern here! If we consider i as the index, where i=1 gives us n+(3/4)n, then

we can generalize this as i increases:











i

i

j

j n
T

nnn
nnT

4
3...

4

3
...

16

9

4

3
)(

How far does i go? Does it increase to infinity? NO at some point we will have to stop.

But we already know when we stop – we stop at T(1) because at this point there is no

more recursion, we just return a constant number for the amount of work to do.

If we stop at T(1), this means we will stop when 1=(n/4i).

i

n

4
1 n i 4 log4 n i

So we can now express the recurrence relation as:

)1(3...
4

3
...

16

9

4

3
)(4log











n

i

n
nn

nnT

substituting ()1 for T(n/4i) since we will only do a constant amount of work on the last

iteration.

We can summarize this as a single summation. First recall that

 3 4 4 3log logn n ; this is sublinear since log43 < 1

)(
4

3
)(

3log
1log

0

4

4

nnnT
n

i

i























 





)(
4

3
)(

3log

0

4nnnT
i

i























 





 ; up to infinity bigger, so <= applies

recall that x
x

k

k







1

10

 ; for x<1

T n n n() ()log




1

1
3

4

4 3

T n n n() ()log 4 4 3 ;T n n o n() () 4 ; loose upper bound so use little-o

This means that the recurrence is (n).

This method is accurate but can result in a lot of algebra to keep track of; can also get

very challenging for more complicated recurrence relations.

Second Example: T(n)=1 if n=1

 T(n)=4T(n/2)+n if n>1

T(n) =4T(n/2) + n

 =4(4T(n/4)+n/2)+n

 =4(4(4T(n/8)+n/4)+n/2)+n

 =64T(n/8) + 4n +2n +n

 =n + 2n +4n + 64T(n/8)

 =n + 2n + 4n + … +2jn + … 4iT(n/2i) ; hard part to figure out

What is the last term? When (n/2i)=1  i=lgn

T(n) = n + 2n + 4n + 8n + … 2in + … 4lgn ()1

=)1(42 lg
1lg

0















n
n

i

in

We know that x
x

x

k

m

k

m











1

0

1

1

Let’s let m=lgn-1. Then:

T(n) =)1(4
12

12 lg
11lg













n

n

n

 = n nn n2 4 1lg lg ()  

 = n2 –n + nlg4()1

 = n2 (()1 +1)–n = ()n2

Sometimes a recursion tree can help:

Recursion Tree: Help to keep track of the iterations

Given T(n) = 2T(n/2)+n2

How deep does the tree go?

We stop at the leaf, and we know we’re at a leaf when we have a problem of size 1.

1=(n/2i)2

so n2=22i ; n=2i ; i=lgn

The amount of work done is then:

n

2

T(n/2) T(n/2)

n
2

(n/2) (n/2)
2 2

(n/4)
2

(n/4)
2
(n/4)

2
(n/4)

2

n
2

1/2n
2

1/4n
2

n
i

i

n

20

2














lg

=()n2 ; this is geometrically decreasing in size, so it won’t get any

bigger than n2.

One more example: T(n) = T(n/3) + T(2n/3) + n

Each level does work of size n; if we just know the height of the tree, i, the total work is

ni.

The tree stops when the leaf is of size 1. The hard part is to figure out the formula based

on the height:

n

i
2

3
1









  (why pick the 2/3 branch and not 1/3?)

n i

i























1

2

3

3

2

i n log /3 2

So the total work is (log)/3 2 n n or O(nlog 3/2 n).

n

(n/3) (2n/3)

(n/9) (2n/9) (2n/9) (4n/9)

n

n

n

Master Theorem Method

If the form of a recurrence is:    T n aT
n

b
f n a b









   , ,1 1

then we can use the Master Method, which is a cookbook-style method for proving the

runtime of recurrence relations that fit its parameters. Note that not all recurrence of the

above form can be solved through the master method. We won’t prove the master

method, but will give an argument as to how it works.

In the master method:

 a is the number of subproblems that are solved recursively; i.e. the number of recursive

calls.

 b is the size of each subproblem relative to n; n/b is the size of the input to the

recursive call.

 f(n) is the cost of dividing and recombining the subproblems.

Recursion tree example: T(n)=aT(n/b)+f(n)

What is the height of the tree? When f
n

b
f

n

b
n b i ni i

i

b









       () log1 1

F(n)

F(n/b) F(n/b) F(n/b)

a

F(n/b2) F(n/b2) F(n/b2)

a

... F(n/b2) F(n/b2) F(n/b2)

...

)1()1( ...

nblog

F(n)

aF(n/b)

a2F(n/b2)

)(
log abn

  














1log

0

log
n

j
j

ja
b

b

b

n
fanTotal

How many leaves are there?

a NumberLeavesheight 

a nb bn alog log

Work at the leaves is :     1 n nb ba alog log

Work of dividing and combining is: f n af
n

b
a f

n

b
() () () ...  2

2

 = a f
n

b

i

i
i

nb

()

log






0

1

this does not include the cost of the leaves.

The total work/runtime T(n) is: 





1log

0

log
)()(

n

i
i

ia
b

b

b

n
fan

The time T(n) might be dominated by:

1. The cost of the leaves

2. The cost of the divide/combine of the root

3. Evenly distributed at all the levels

The master method tells us what the asymptotic running time will be depending on which

cost is the highest (dominates).

If the form is:

   T n aT
n

b
f n a b









   , ,1 1

Then based on comparing f(n) and n b alog
we know the running time given the following

three cases:

 If f n O n b a() ()log 
 for some constant   0 then T n n b a() ()log  ; cost of leaves

dominates.

 If f n n b a() ()log  then T n n nb a() (lg)log  ; cost is evenly distributed

 If f n n b a() ()log  
for some constant   0 and if af

n

b
cf n() () for some constant

c<1 and all sufficiently large n, then T n f n() (())  ; divide/conquer or root cost

dominates

Example:

T n T
n

n() () 9
3

So a=9, b=3, f(n)=n

Case 1 works for f n O n b a() ()log 
. We need to prove this relationship by showing that:

 f n O n b a() ()log 

 n O n O n  () ()log3 9 2 

 if   1 then n=O(n) and case 1 is satisfied.

Therefore:

 T n n n nb a() () () ()log log    3 9 2

In this example, the cost of the leaves has dominated the runtime.

Example:

T n T
n

n() () 2
2

 ; Merge Sort

So a=2, b=2, f(n)=n

Check case 1:

 Is f n O n b a() ()log 
?

 n O n ()log2 2 

 n O n ()1 

 For any epsilon>0, n is bigger, so case 1 does not work.

Check case 2:

 Is f n n b a() ()log 

 n n n  () ()log2 2
 YES

 therefore:

 T n n n n n n nb a() (lg) (lg) (lg)log log    2 2

Cost is evenly distributed among leaves and upper part of tree.

Example:

T n T
n

() () 
2

3
1

So a=1, b=3/2, f(n)=1

Case 1 does not work (exercise for the reader)

Case 2:

 Is f n n b a() ()log  ?

 1 13 21 0    () () ()log /n n YES

 therefore:

 T n n n n n n n nb a() (lg) (lg) (lg) (lg)log log /      3 21 0

Cost is again evenly distributed.

Example:

T n T
n

n n() () lg 3
4

a=3,b=4,f(n)=nlgn

Case 1 and 2 don’t fit (exercise for the reader)

Case 3:

 Is f n n b a() ()log   ?

 n n n nlg () ()log .   4 3 0 79 

 YES, if epsilon =0.21, then n n nlg () 

We also need to show the extra condition:

 Is af
n

b
cf n() () for c<1?

3
4

3
4 4

3
4

4

3
4

2

f
n

cf n

n n
cn n

n
n cn n

n
n cn n

() ()

lg lg

(lg lg) lg

(lg) lg











 

 

 

 YES, if c=¾ then 3
4

2
3

4

n
n n n(lg) lg 

 therefore:

 T n f n n n() (()) (lg)  

Example:

T n T
n n

n
() ()

lg
 4

2

2

So a=4, b=2, f(n)=
n

n

2

lg

Try case 1:

 Is f n O n b a() ()log 
?

n

n
O n

n

n
O n

2

4

2

2

2

lg
()

lg
()

log











 NO, for epsilon>0, f(n) is larger.

Try case 2:

 Is f n n b a() ()log  ?

n

n
n n

2

4 22

lg
() ()log  

 NO, grows smaller than n2 .

Try case 3:

 Is f n n b a() ()log   ?

n

n
n

2

2

lg
()  

 NO, for epsilon > 0, f(n) is smaller, not bigger.

Master method does not work for this recurrence relation!

(Solution is (lg lg)n n2
 by substitution)

