
1

Problem Spaces P/NP

P/NP

• Intractable Problems

– Refer to problems we cannot solve in a reasonable time

on the Turing Machine/Computer

• Dividing line is exponential vs. polynomial, even a big

polynomial; e.g. O(n10000)

2

Class of Languages P

• If a deterministic Turing Machine M has

some polynomial p(n) such that M never

makes more than p(n) moves when

presented with input of length n, then M is

said to be a polynomial time TM

• P is the set of languages accepted by

polynomial time Turing Machines

P

• Equivalently, P is the set of problems that can be

solved by a real computer with a polynomial time

algorithm

– If we can solve in polynomial time we can build a

polynomial time deterministic TM that also solves the

problem. The solution can be used to verify if a string

presented as input is in the language or not

– Most familiar problems are in this class P

• Sorting, graph reachability, matrix multiplication, etc.

3

Class of Languages NP

• If a non-deterministic Turing Machine N has some

polynomial p(n) such that N never makes more

than p(n) moves in any sequence of choices when

presented with input of length n, then N is said to

be a polynomial time non-deterministic TM

– These p(n) moves are for one “thread”; N forks off

threads in parallel

• NP is the set of languages accepted by polynomial

time non-deterministic Turing Machines

NP

• Equivalently, NP is the set of problems where a

proposed solution can be verified as correct by a

real computer using a polynomial time algorithm

– To see if a string belongs in a language for NP, our

NTM can fork off multiple NTM’s for all

computations. In parallel we check if one of these

paths leads to an accepting state.

– By verifying if a proposed solution is correct (in

polynomial time) we are checking one of these paths to

see if it is a solution

4

NP  P

• NP is obviously a superset of P

• But many problems appear to be in NP but

not in P

– E.g., consider a “sliding tile” puzzle

Solve in polynomial time? (e.g. function of # of tiles)

But given a proposed solution, easy to verify if it is correct in

polynomial time

Other problems

• Here are some well-known problems in NP but
appear to not be in P
– TSP – Traveling Salesman Problem

• Is there a tour (visit each node once) of a graph with total edge
weight  k?

– SAT - Boolean Satisfiability Problem
• Does a boolean expression have a satisfying assignment of its

variables (i.e. make the boolean expression true)?

– CLIQUE
• Does a graph have a set of k nodes with edges between every

pair?

• Many more…

5

• 29 Node Traveling Salesperson

Problem

• 29! = 8.8 trillion billion billion

possible asymmetric routes.

• ASCI White, an IBM

supercomputer being used by

Lawrence Livermore National

Labs to model nuclear

explosions, is capable of 12

trillion operations per second

(TeraFLOPS) peak throughput

• Assuming symmetric routes,

ASCI White would take 11.7

billion years to exhaustively

search the solution space

The Big Question

• Is there anything in NP that is not in P?

• We know that P  NP since a deterministic
TM is also a nondeterministic TM

• But it is unknown if P = NP

• The Clay Mathematics Institute has offered
a million dollar prize to anyone that can
prove that P=NP or that PNP

6

NP Complete Problems

• Most people believe that P  NP due to the

existence of problems in NP that are in the

class NPC, or NP Complete

• NP Complete

– The “hardest” problems of the class NP

– Before we continue to define NPC problems,

let’s revisit the notion of reducibility

Polynomial Reducibility

• A problem P1 is polynomial reducible to P2 if there exists a
polynomial time transformation from P1 to P2. We denote this as
P1≤pP2 or P1  P2. In other words, if we have a problem P1,
then in polynomial time we can make a mapping so that a solution
to P2 will solve problem P1 if we perform the polynomial time
mapping

• This means P2 is “at least as hard” as P1
– E.g. if P1 was impossible to solve, so is P2

– E.g. if we can prove P1 requires exponential time to solve, then so does P2

• Example:
– Find-Max-In-Array ≤p Sort-Array

• Mapping
– Max-Finding to Sorting: do nothing

– Sorting solution back to Max-Finding: pluck last element of array

7

Definition of NPC

• A problem P1 is NP-complete (NPC) if:

1. It is in NP and

2. For every other problem P2NP, P2 ≤pP1. In other words, every other
NP problem can be solved via P1 by doing a polynomial time mapping so
that P2 fits the parameters of P1. We may also need to do a polynomial
time mapping from the solution of P1 to give us the solution to P2.

• The total time to solve P2 is then

time(P1) + polynomial-mapping-to-P1 + polynomial-mapping-to-P2

= time(P1) + polynomial-time

• The total runtime for other problems in NP is then time(P1) +
polynomial-time.

– If we can find such a problem P1 we can solve in polynomial time, then
every problem in NP can be solved in polynomial time! i.e. P=NP

P=NP?

• Theorem: If any NP-Complete problem is

in P, then P=NP

• Possible pictures:

P=NP

NP

?

P

or:

NP

P

NPC

8

Some NP Complete Problems

• SAT, TSP, and CLIQUE are all NPC

• Here are some others:

– Graph Coloring

– Bin Packing

– Knapsack

– Subset Sum

– 3SAT

– Minesweeper Constraints

– Many More

Graph / Map Coloring

• Given a graph with edges and nodes, assign a

color to each node so that no neighboring node has

the same color. Generally we want the minimum

number of colors necessary to color the map (the

chromatic number).

• Map coloring example: Nodes could be states on

a map, color each state so no neighboring state has

the same color and therefore becomes

distinguishable from its neighbor

9

• Sample Graph

Can you determine the minimum number of colors

for this graph?

Only known solution guaranteed to be optimal requires

exponential time – examining all possible assignments,

typically using backtracking after assigning colors

Graph Coloring

• With these problems we can propose them as
decision problems or as optimization problems

• The decision problem is slightly easier, but still is
NP Complete

• Decision Problem: Given G and a positive integer
k, is there a coloring of G using at most k colors?

• Optimization Problem: Given G, determine X(G),
the chromatic number, and produce an optimal
coloring that uses only X(G) colors.

10

Bin Packing

• Suppose we have an unlimited number of bins each of
capacity 1, and n objects of sizes s1, s2 … sn, where each si

is a number between 0 and 1.

• Optimization: Determine the smallest number of bins into
which the objects can be packed (and find the optimal
packing)

• Decision: Given, in addition to the inputs described, an
integer k, do the objects fit in k bins?

• Lots of applications; packing data in computer
files/memory, filling orders from a product, loading trucks

Knapsack Problem

• You are a thief and have broken into a bank. The bank
has n objects of size/weight s1, s2, s3, … sN (such as
gold, silver, platinum, etc. bars) and “profits” p1, p2, p3,
… pN where p1 is the profit for object s1. You have
with you a knapsack that can carry only a limited
size/weight of capacity C.

• Optimization Problem: Find the largest total profit of
any subset of the objects that fits in the knapsack (and
find a subset that achieves the maximum profit).

• Decision Problem: Given k, is there a subset of the
objects that fits in the knapsack and has a total profit at
least k (or equal to k)?

11

Subset Sum

• This is a simpler version of the knapsack
problem. The input is a positive integer C and n
objects whose sizes are positive integers s1, s2,
… sn.

• Optimization Problem: Among subsets of the
objects with a sum at most C, what is the largest
subset sum?

• Decision Problem: Is there a subset of the
objects whose sizes add up to exactly C? e.g.
electoral college problem

3SAT

• Special case of the SAT problem where all formulas are in Conjunctive
Normal Form with exactly three literals.

CNF is the logical AND of a group of OR terms. For example, the
following clause is in CNF where the x’s are Boolean variables:

(x1  x2  x3)  (x4  x5  ¬x6)  (x4  ¬x9  ¬x3)

• Optimization Problem: What is an assignment to the variables to
satisfy the entire clause (i.e. make it true?) This means each individual
clause must contain at least one literal that is assigned true. This is
harder than it looks. For example, assigning TRUE to x1, x2, and x3
could make the first clause true, but then with x3 true, this could make
the last clause FALSE since we have ¬x3.

• Decision Problem: Does an assignment to the variables exist that
satisfies the clause?

12

Proving a Problem is NP Complete

If we have a single problem P-NPC known to be NP-Complete, then:

1. For all other problems P2 in NP, P2P-NPC.

2. This implies that to show a new problem P-NEW is NPC:

  We have to show that P-NEW is in NP (solution can be verified in P time)

  We have to show that for some other NPC problem such as P-NPC,

 P-NPCP-NEW

 By transitivity, then all other problems in NP are  P-NEW

 Because {All NP}  P-NPC  P-NEW

Proving NP-C

• Remember to show that P-NPC  P-NEW and not
vice versa! The reverse tells us that we could only
use a NPC problem to solve a potentially easy
problem

– E.g. PairSum Problem:

• Out of n numbers, is there a pair that equals C?

• PairSum  Subset-Sum

– Run subset sum to find subsets equal to C, out of those subsets
scan through them to find one with only two numbers

• This is just using a hard problem to solve an easy one; doesn’t
say anything about PairSum being NP-Complete

13

Example: NP Complete

• A Hamilton circuit is a path in a graph that

visits each node exactly once. Assume we

know that the directed Hamilton circuit

problem is NP-Complete (it is). Show that the

undirected Hamilton circuit problem is also

NP-Complete.

• Strategy: Hamiltondirected  Hamiltonundirected

Hamilton Circuit

1. Show that the undirected problem is in NP by

verifying solution in polynomial time.

Answer: Given a proposed solution, we can start

at any vertex and follow the path, marking each

vertex as we go. When we reach the original

vertex without having visited any marked

vertices, and after having visited every vertex,

we are done and can output a YES. O(V) time.

14

Hamilton Circuit

2. Show that the directed problem is polynomial reducible
to the undirected problem; i.e. we can turn the directed
problem into an undirected graph and use that to solve
the directed problem.

e.g. turn the following into an undirected graph we could
find a HC on:

could just make links bi-directional, but that would allow
circuits that were invalid in the original graph

Hamilton Circuit

Solution: Expand each node into three nodes, where the first node

is an input node, the middle a transition node, and the third an

output node. The middle node ensures a path within each node from

1-2-3 or 3-2-1 in sequence, otherwise we could potentially visit

“half” a node at a time.

1 2 3

1 2 3

1 2 3
1 2 3

1 2 3

15

Hamilton Circuit

• Note that all nodes must be visited in sequence 1-

2-3 or 3-2-1, since 3 and 1 are always connected,

and 2 is always in the middle.

• Thus any hamilton circuit discovered on the

undirected graph translates back into the directed

graph. We can do the transformation both ways in

O(V+E) time, where E is the edges and V are the

vertices.

Example: TSP

• Show that the decision version of the

Traveling Salesman Problem (is there a

Hamilton Circuit with total edge weight

cost  k?) is NPC. Assume that we know

the Hamilton Circuit problem is NPC.

• Strategy: Hamilton  TSP

16

TSP

1. First, show that TSP is in NP. This is easy for the decision
version of the problem. Given a proposed solution (a tour and
the constant k) we simply add up the cost on all the edges,
make sure this is a valid tour, and that the total cost is  k. If
so, the solution is correct.

2. Show that Hamilton Circuit is reducible to TSP. To do this,
we simply construct a special version of the TSP. We make a
weight of 1 for every edge in the graph and set k equal to any
number  the total number of nodes. Any answer found by the
TSP solution must also therefore be a valid Hamilton Circuit.

• It is very difficult to prove that the general Hamilton Circuit
problem is NP Complete.

Example : Clique

• Show that the Clique problem is NP

Complete. In the Clique problem, you are

given an undirected graph. A clique is a

subgraph of the larger graph, where every

two nodes of the subgraph are connected by

an edge.

• Decision problem: Does a k-clique exist on

a graph G?

17

Clique

• A k-clique is a clique that contains k nodes. The
following is an example of a graph having a 5-
clique:

• Assume that we know that 3SAT is a NP
Complete problem.

• Strategy: 3SAT  Clique

Clique is NPC

1. Show that Clique is in NP. Given a

proposed solution consisting of n nodes,

systematically loop through each node,

and see if it is connected to all of the other

n nodes. This requires O(n2) runtime.

18

Clique is NPC

2. Show that 3SAT is polynomial reducible

to Clique. To do this, we create a special

graph that is designed to mimic the

behavior of the variables and clauses in

the 3SAT problem.

Let Φ be a formula with k clauses such as:

 Φ = (a1  b1  c1)  (a2  b2  c2)  ... (ak  bk  ck)

3SAT to Clique

• The reduction creates the undirected graph
G as follows. The nodes in G are organized
into k groups of three nodes each called the
triples t1, t2, … tk. Each triple represents
one of the clauses in Φ. Edges are present
between all pairs of nodes in G, except for
nodes in the same triple, and nodes of
opposite labels, e.g. x1 and ¬x1. For
example, given:

19

3SAT to Clique

Φ = (x1  x1  x2)  (¬x1  ¬x2  ¬x2)  (¬x1  x2  x2)

Construct:

¬x1 ¬x2 ¬x2

x1

x1

x2

¬x1

x2

x2

3SAT to Clique

¬x1 ¬x2 ¬x2

x1

x1

x2

¬x1

x2

x2

Suppose a K-Clique exists on G

Since there are no edges within a triple, the clique must

consist of a single node from each triple

Each node in the clique can be a “true” in 3SAT to

satisfy the 3SAT expression; no edges connecting opposites

20

You should be wondering…

• We can show other algorithms to be NP-Complete
by showing an existing NPC problem can be
polynomially reduced to the new algorithm. But
how do we prove the first NPC problem?

• Answer: The first problem proven to be NP-
Complete is the circuit satisfiability problem. This
is known as Cook’s Theorem. Based on Cook’s
theorem, other theorists were able to prove
hundreds of other problems to be NP-complete.

Cook’s Theorem, SAT

• The satisfiability problem was proved by Stephen
Cook in the early 70’s to be the first NP Complete
problem.

• Here we will give the basic argument for a related
problem, that of the circuit satisfiability problem.

– Quite a few more details in Cook’s Theorem

– Recall that to show something is NP Complete means
that the problem is in NP, and that all other problems in
NP can be reduced to the NP Complete problem in
polynomial time.

21

Certificate

• First, we need the concept of a certificate. A
certificate is just a proposed solution to a problem.
A certificate is used by a verification algorithm, V,
where V is used to verify if the certificate is valid
or not on input x (i.e. it is used to test if a problem
is in NP).

• Algorithm V verifies an input string x if there
exists a certificate y such that V(x,y) = true. The
language verified by V can be stated as:

L = { x | V(x,y) = 1 for some string y}

Certificate

• L = { x | V(x,y) = 1 for some string y}

• In these terms, x is the problem statement (e.g. for
Hamilton Cycle, it is the graph and all the edges). Y is the
certificate, or the proposed solution (e.g. for Hamilton
Cycle, a list of all vertices in the cycle).

• We measure the time of a verifier only in terms of the
length of x, so a polynomial time verifier runs in
polynomial time in the length of x. If a language has a
polynomial time verifier, then by definition it is in NP. For
polynomial time verifiers, the length of the certificate must
be polynomial bounded to the length of x.

22

Circuit Satisfiability

• The CSAT problem is very similar to the

Satisfiability problem, but uses actual digital

circuits instead of Boolean expressions.

• The CSAT problem is:

– Given a Boolean combinatorial circuit composed of

AND, OR, and NOT gates, is it satisfiable?

• i.e. is there a set of inputs that makes the output 1?

Example

• Set of inputs to make output 1?

OR

ANDx3

x1

x2

OR

OR

AND

In the above circuit, can you find values for X1, X2, and X3 that

makes the output 1? Apparently we may need to simply try all the

(exponential) possibilities until we find a satisfying assignment. In

this case the assignment 1,1,0 makes the output 1.

23

Not Satisfiable

• Change second or to and:

OR

ANDx3

x1

x2

OR

AND

AND

CSAT

• Our claim is that CSAT is NP-Complete. To make this
claim, we must first show that CSAT belongs to the class
NP.

• Easy to show: Recall the verification algorithm, V(x,y)
where x is the problem specification and y is a certificate.

• Our verification algorithm is to construct the actual circuit
out of the input specifications, x. Then, y is a proposed
solution. Put the values of y into our constructed circuit
and then simulate it. If the output is 1, then the circuit is
satisfiable, otherwise 0 is output. This entire operation can
be completed in time polynomial to the input, x, thus
CSAT is in NP.

24

CSAT

• Second, we must show that every language

in NP is polynomial-time reducible to

CSAT. Our proof is based on the workings

of an actual computer (and thus is

translatable to the workings of a Turing

Machine). This is much harder to prove,

and here we only give a sketch of the formal

proof.

Computer In Operation

• Consider a computer program.

– The program operates as a sequence of instructions stored in memory.

– Data is stored in memory.

– We have a program counter and other registers to operate on data and
store the current instruction.

– Let’s just consider all registers plus RAM to be “memory”.

• At any point in the execution of a program, the entire state of
the computation is represented in the computer’s memory. A
particular state of computer memory is a configuration. The
execution of an instruction may be viewed as mapping one
configuration to another. In terms of traversing states, a
program is traversing a sequence of configurations.

25

Configurations

• This mapping from one configuration to

another can be accomplished by a

combinational circuit (in fact, this is what is

done by the computer). Call this

combinatorial circuit, M. The execution of

a program taking Z+1 steps can then be

viewed as the following:

Configuration Mapping

memoryconfig 0

Circuit M

memoryconfig 1

Circuit M

…

memoryconfig Z

26

CSAT is NPC

• Let L be any language in NP. By definition,

L has a verification algorithm, V(x,y), that

runs in polynomial time.

• This means that if the input x is of length n,

then there is a constant k such that the

runtime of V, T(V), is O(nk). Similarly, the

length of the certificate, y, must also be

O(nk).

Configurations and CSAT

• Since V consists of a polynomial number of steps, then in
polynomial time we can construct a single combinational
circuit that computes all configurations produced by an
initial configuration.

– The input of x can be hardcoded to circuit M in terms of certain
wires (e.g. for Hamilton Circuit, we could have wires encoding the
nodes and edges in the graph). This is because x never changes for
each step of the configurations.

– This leaves y as input values to the circuit. In this case, we don’t
know what y is – we want to find values of y that satisfy the circuit
(and therefore solve the original NP problem).

27

Configurations and CSAT
memory Input Yconfig 0

Circuit M

memoryconfig 1

Circuit M

…

memoryconfig T(n)

X encoded in wires to circuit

X encoded in wires to circuit

0 or 1 output

The last configuration is T(n), the runtime of V. We use some location in

memory to get the ultimate output for the satisfiability of the circuit.

We’re Done?

• If we take a step back, what have we just created? It is
simply a big version of a CSAT problem!
– The input to the problem is configuration 0, and the output is

configuration T(n).

– In between is a big combinatorial circuit.

• We now have reduced the arbitrary problem in NP to the
CSAT problem.
– In this instance of CSAT, the input is certificate Y and we don’t

know what the certificate Y is (i.e. we don’t know a proposed
solution).

– If we solve this CSAT problem, then we will have determined if an
input Y exists or not. If this input Y exists, then it is a solution to
the original problem in NP. Thus, if CSAT is satisfiable, then Y
solves the NP problem.

28

Wrapup of CSAT

• In the other direction, suppose that some certificate exists. When
we feed this certificate into the circuit, it will produce an output
of 1. Thus, if the original problem is solvable, this instance of
CSAT is also satisfiable.

• To complete the proof, we must show that the circuit can be
constructed in polynomial time – i.e. the reduction is polynomial.

– Since the verification algorithm runs in polynomial time, there are only a
polynomial number of configurations.

– This means we are hooking together some polynomial number of circuits
M. M can be constructed in size polynomial to the length of a
configuration making the overall construction time polynomial.

• Based on the two properties of CSAT, we conclude that every
language in NP reduces to CSAT in polynomial time and since
CSAT is in NP, it is NP Complete.

