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Pushdown Automata

Pushdown Automata (PDA)

• Just as a DFA is a way to implement a regular 
expression, a pushdown automata is a way to 
implement a context free grammar
– PDA equivalent in power to a CFG
– Can choose the representation most useful to our 

particular problem
• Essentially identical to a regular automata except 

for the addition of a stack
– Stack is of infinite size
– Stack allows us to recognize some of the non-regular 

languages
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PDA

• Can visualize a PDA with the schematic

input
Finite
State
Control

Accept or reject

Stack

Reads input symbol by symbol
Can write to stack
Makes transitions based on 

input, top of stack

Implementing a PDA

• In one transition the PDA may do the following:
– Consume the input symbol.  If � is the input symbol, 

then no input is consumed.
– Go to a new state, which may be the same as the 

previous state.
– Replace the symbol at the top of the stack by any string.

• If this string is � then this is a pop of the stack
• The string might be the same as the current stack top (does 

nothing)
• Replace with a new string (pop and push)
• Replace with multiple symbols (multiple pushes)
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Informal PDA Example

• Consider the language L = {0n1n | n ≥ 0 }.  
– We showed this is not regular
– A finite automaton is unable to recognize this 

language because it cannot store an arbitrarily large 
number of values in its finite memory.  

• A PDA is able to recognize this language!
– Can use its stack to store the number of 0’s it has 

seen.  
• As each 0 is read, push it onto the stack
• As soon as 1’s are read, pop a 0 off the stack 
• If reading the input is finished exactly when the stack is 

empty, accept the input else reject the input

PDA and Determinism

• The description of the previous PDA was 
deterministic

• However, in general the PDA is nondeterministic.  
• This feature is crucial because, unlike finite 

automata, nondeterminism adds power to the 
capability that a PDA would have if they were 
only allowed to be deterministic.  
– i.e.  A non-deterministic PDA can represent languages 

that a deterministic PDA cannot
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Informal Non-Deterministic 
Example

• L = { wwR | w is in (0+1)* }
– i.e. the language of even length palindromes

• Informal PDA description
– Start in state q0 that represents the state where we haven’t yet seen the reversed 

part of the string.  While in state q0 we read each input symbol and push them 
on the stack.

– At any time, assume we have seen the middle; i.e. “fork” off a new branch that 
assumes we have seen the end of w.  We signify this choice by spontaneously 
going to state q1.  This behaves just like a nondeterministic finite automaton

• We’ll continue in both the forked-branch and the original branch.  One of these 
branches may die, but as long as one of them reaches a final state we accept the 
input.

– In state q1 compare input symbols with the top of the stack.  If match, pop the 
stack and proceed.  If no match, then the branch of the automaton dies.

– If we empty the stack then we have seen wwR and can proceed to a final 
accepting state.

Formal Definition of a PDA

• P = (Q, �, �, �, q0, $, F)
– Q = finite set of states, like the finite automaton
– � = finite set of input symbols, the alphabet
– � = finite stack alphabet, components we are allowed to 

push on the stack
– q0 = start state
– $ = start symbol.  Initially, the PDA’s stack consists of 

one instance of this start symbol  and nothing else.  We 
can use it to indicate the bottom of the stack. We can 
place $ explicitly on the stack initially, or assume it is 
there already.

– F = Set of final accepting states.
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PDA Transition Function

• � = transition function, which takes the triple:  �(q, a, X) 
where
– q = state in Q
– a = input symbol in �
– X = stack symbol in �

• The output of � is the finite set of pairs (p, �) where p is a 
new state and � is a new string of stack symbols that 
replaces X at the top of the stack.  
– If � = � then we pop the stack
– if � = X the stack is unchanged
– if � = YZ then X is replaced by Z and Y is pushed on the stack.  

Note the new stack top is to the left end.
– If X = � then we push on �

Formal PDA Example

• Here is a formal description of the PDA that recognizes L 
= {0n1n | n ≥ 0 }.  
– Q = { q1, q2, q3, q4 }
– � = {0, 1}
– � = {0, $}
– F = {q1, q4}

• And � is described by the table below

Input: 0 1 �
Top Stack: 0 $ � 0 $ � 0 $ �

q1
q2
q3
q4

q2,$
q2,0 q3,�

q3,� q4,�
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Graphical Format
• Uses the format 

Input-Symbol, Top-of-Stack � String-to-replace-top-of-stack

Any of these may be empty!

q1Start q2

q3q4

�, �� $

�, $ � �

0, �� 0

1, 0 � �

1, 0 � �

Example 2
• Here is the graphical description of the PDA that accepts 

the language 
– L = { wwR | w is in (0+1)* }
– Stays in state q0 when we are reading w, saving the input symbol.  Every time we 

“guess” that we have reached the end of w and are beginning wR by going to q1 on 
an epsilon-transition.  

– In state q1 we pop off each 0 or 1 we encounter that matches the input.  Any other 
input will “die” for this branch of the PDA.  If we ever reach the bottom of the
stack, we go to an accepting state.

q0 q1 q2Start
�, �� �

0, �� 0
1, �� 1

0,0 ��
1,1 � �

�, $ � �

Requires $ initially on stack
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Moves of a PDA

• To describe the process of taking a transition, we can adopt 
a notation similar to � like we used for DFA’s.  In this case 
we use the “turnstile” symbol � which is used as:

(q, aw, Xβ) � (p, w, αβ)

• In other words, we took a transition such that we went 
from state q to p, we consumed input symbol a, and we 
replaced the top of the stack X with some new string α. 

• We can extend the move symbol to taking many moves:
�*     represents zero or more moves of the PDA.

Language of a PDA

• The PDA consumes input and accepts input when 
it ends in a final state.  We can describe this as:

L(P) = {w | (q0, w, Z0) �* (q, �, α) } where q ∈ F

• That is, from the starting state, we can make 
moves that end up in a final state with any stack 
values.  The stack values are irrelevant as long as 
we end up in a final state.
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Alternate Definition for L(PDA)

• It turns out we can also describe a language of a PDA by 
ending up with an empty stack with no further input

N(P) = {w | (q0, w, Z0) �* (q, �, �) } 
where q is any state.

• That is, we arrive at a state such that P can consume the 
entire input and at the same time empty its stack.  

• It turns out that we can show the classes of languages that 
are L(P) for some PDA P is equivalent to the class of 
languages that are N(P) for some PDA P.  

• This class is also exactly the context-free languages.   See 
the text for the proof.

Equivalence of PDA and CFG

• A context-free grammar and pushdown automata 
are equivalent in power.

• Theorem: Given a CFG grammar G, then some 
pushdown automata P recognizes L(G).
– To prove this, we must show that we can take any CFG 

and express it as a PDA.  Then we must take a PDA 
and show we can construct an equivalent CFG.  

– We’ll show the CFG�PDA process, but skip the 
PDA�CFG (more details in the textbook, as indicated 
in last slide).
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Proof for CFG to PDA

• Proof idea: 
– The PDA P will work by accepting its input w, if G 

generates that input, by determining whether there is a 
derivation for w.  

– Design rules for P such that the transitions match the 
production rules in the grammar

• But the PDA can access only the top symbol on the stack and that
might be a terminal

– But if our PDA makes transitions only for variables, we we won’t 
know to do

• To get around this problem, we’ll use the non-determinism of the 
PDA to match terminal symbols on the stack with symbols in the 
input string before the first variable

– This “chomps” any leading terminals until we can process a 
variable

State Diagram for an Arbitrary CFG

qstartStart

qloop

qaccept

�, �� S S is the start symbol

�, $/�

�, A�Y For rule A�Y, Y is a string
a,a � � For terminal symbol a

$ initially the top of the stack
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Example

• Consider the grammar
S� aTb | b
T � Ta | �

qstartStart

qloop

qaccept

�, $��

�, S�aTb
�, T�Ta
�, S�b
�, T��
a, a��
b, b��

Given the string “aab” derived by 
S � aTb � aTab � aab

We have the corresponding moves:
(qs, aab, $) � (qloop, aab, S$) �
(qloop, aab, aTb$) � (qloop, ab, Tb$) �
(qloop, ab, Tab$) � (qloop, ab, ab$) �
(qloop, b, b$) � (qloop, �, $) �
(qaccept, �,�)

�, �� S

Proof for PDA to CFG

• Harder direction; not as easy to “program” a 
CFG as it is a PDA
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Deterministic PDA

• A DPDA is simply a pushdown automata without 
non-determinism.   
– i.e. no epsilon transitions or transitions to multiple states 

on same input
– Only one state at a time

• DPDA not as powerful a non-deterministic PDA
– This machine accepts a class of languages somewhere 

between regular languages and context-free languages.  
– For this reason, the DPDA is often skipped as a topic
– In practice the DPDA can be useful since determinism is 

much easier to implement.  
• Parsers in programs such as YACC are actually implemented 

using a DPDA.  

Context-Free Languages and 
Regular Languages

• Every regular language is context free.
– How can we argue this from what we know 

about PDA’s and context free languages?


