Maximum Flow

Chapter 26

Flow Graph

A common scenario is to use a graph to
represent a “flow network” and use it to answer
guestions about material flows

Flow is the rate that material moves through the
network

Each directed edge is a conduit for the material
with some stated capacity

Vertices are connection points but do not collect
material

— Flow into a vertex must equal the flow leaving the
vertex, flow conservation

Sample Networks

Network Nodes Arcs Flow

telephone exchanges, | cables, fiber optics, voice, video,

communication

computers, satellites | microwave relays packets
. . gates, registers, .
circuits wires current
processors
mechanical joints rods, beams, springs | heat, energy
) reservoirs, pumping Lo . .
hydraulic stations, lakes pipelines fluid, oil
financial stocks, companies transactions money
. airports, rail yards, highways, railbeds, frelght,
transportation . . . vehicles,
street intersections airway routes
passengers
chemical sites bonds energy

Flow Concepts

Source vertex s

— where material is produced

Sink vertex t

— where material is consumed

For all other vertices — what goes in must go out
— Flow conservation

Goal: determine maximum rate of material
flow from source to sink

Formal Max Flow Problem

— Graph G=(V,E) — a flow network
 Directed, each edge has capacity c(u,v) =0
» Two special vertices: source s, and sink t
» For any other vertex v, there is a path s—...—ov—...—>t

— Flow —a functionf: VxV —> R
» Capacity constraint: For all u, v e V: f(u,v) <c(u,v)
» Skew symmetry: For all u, v e V: f(u,v) = —f(v,u)
» Flow conservation: For allu € V —{s, t}:

> fu,v)="fuVv)=0, or

veV

2/15_~ (@)_4/19
IPG Zv:f(v,u):f(\/,u):o
3/3

5/14 @

Cancellation of flows

» We would like to avoid two positive flows
in opposite directions between the same
pair of vertices

— Such flows cancel (maybe partially) each
other due to skew symmetry

2/15_~ (@)~_5/19 2/15_~ (@)~_5/19
o« o[- o) e -] »
5/14 @ 2/3 5/14 @ 2/3

Max Flow

We want to find a flow of maximum value
from the source to the sink

— Denoted by |f|

Edmonton Saskatoon

v)

Calgary Regina

Lucky Puck Distribution Network Max Elow, Iff =19
Orisit?
Best we can do?

Ford-Fulkerson method

» Contains several algorithms:
— Residue networks
— Augmenting paths

+ Find a path p from s to t (augmenting path), such that there is

some value x > 0, and for each edge (u,v) in p we can add x
units of flow

— f(u,v) +x <c(uv)

Augmenting Path?

8/13

FORD—FULKERSON—METHOD(G, s, 1)
1 initialize flow f to 0
2 while there exists an augmenting path p

3 do augment flow f along p
4 return f

Residual Network

» To find augmenting path we can find any path in the
residual network:
— Residual capacities: ¢q(u,v) = c(u,v) — f(u,v)
* i.e. the actual capacity minus the net flow fromu to v
* Net flow may be negative
— Residual network: G;=(V,E;), where
E; ={(u,v) e VxV:c(u,v) >0}
— Observation — edges in E; are either edges in E or their
reversals: |E{| < 2|E|
5/15 10
Sub-graph 7N Residual N
With /@ @\516 Sub-Graph /@ @\1‘

¢(u,v) and v

I'4
f(u,v) \0/54/ © T NC

. 5\

Residual Graph

« Compute the residual graph of the graph with the
following flow:

10/15

Residual Capacity and Augmenting
Path

Finding an Augmenting Path
— Find a path from s to t in the residual graph
— The residual capacity of a path p in G;:
ci(p) = min{c(u,v): (u,v) is in p}
* i.e. find the minimum capacity along p
— Doing augmentation: for all (u,v) in p, we just
add this c«(p) to f(u,v) (and subtract it from
f(v,u))
— Resulting flow is a valid flow with a larger
value.

Residual network and augmenting path

Figure 26.3 (a) The flow network G and flow f of Figure 26.1(b). (b) The residual network Gy
with augmenting path p shaded; its residual capacity is cp(p) = c(vz,v3) = 4. (¢) The flow
in G that results from augmenting along path p by its residual capacity 4. (d) The residual network
induced by the flow in (¢).

The Ford-Fulkerson method

Ford-Fulkerson (G, s, t)

1 for each edge (u,v) in G.E do

2 f(u,v) < f(v,u) « 0

3 while there exists a path p from s to t in residual
network G; do

4 ce = minf{ce(u,v): (u,v) is in p}
5 for each edge (u,v) in p do

6 f(u,v) < £f(u,v) + c¢

7 f(v,u) « -f(u,v)

8 return f

The algorithms based on this method differ in how they choose p in step 3.
If chosen poorly the algorithm might not terminate.

Execution of Ford-Fulkerson (1)

LT\ 12 P AR 412)
6 vy)--—-(r;/;\ § - v} i X
y 5 & b W N
A X Al X //A <2
, y o SN Voo N p R
a) \) =i ™~ { [— | -1/,’)1—‘ r~ ’I)
~ - ' ™~ | > Pa 4
| o S~ AN
=
]
4714 N
—' ¥y B
Ve a0
Va / A,
b) s 2 .,/..\ t {1
\ S » ¢ A
L4
53 » 4
714 N /
y
> ¥ /
< s,
- & 20
3 / o
G ik L A « {iie
0N Ly N
4 W
> .)

Left Side = Residual Graph Right Side = Augmented Flow

Execution of Ford-Fulkerson (2)

WG <
d) .\\’ = <3 S ‘\‘1
i / P
LT " - A
LTIV -
DL 12 N
(-\:’ . \\" 19NN
= w ,,// 2
RN SR g
22 Je 1%)
£ 11 £
Left Side = Residual Graph Right Side = Augmented Flow

Cuts

« Does the method find the minimum flow?

— Yes, if we get to the point where the residual graph has no path from s
tot

— Acutisapartitionof VintoSand T=V - S, suchthats e Sandte T

— The net flow (f(S,T)) through the cut is the sum of flows f(u,v), where s
eSandte T

* Includes negative flows back from Tto S
— The capacity (c(S,T)) of the cut is the sum of capacities c(u,v), where s
eSandte T
* The sum of positive capacities
— Minimum cut — a cut with the smallest capacity of all cuts.
|f|:t f(S,T) i.e. the value of a max flow is equal to the capacity of a min
cut.

Cut capacity =24 - — — — ', Min Cut capacity = 21

Max Flow / Min Cut Theorem

1. Since |f| £ ¢c(S,T) for all cuts of (S,T) then if |f| =
c(S,T) then c(S,T) must be the min cut of G

2. This implies that f is a maximum flow of G

3. This implies that the residual network G;
contains no augmenting paths.

« If there were augmenting paths this would contradict
that we found the maximum flow of G

e 1-2>2->3->1 ... and from 2->3 we have that
the Ford Fulkerson method finds the maximum
flow if the residual graph has no augmenting
paths.

Worst Case Running Time

» Assuming integer flow

» Each augmentation increases the value of the flow by
some positive amount.

* Augmentation can be done in O(E).

« Total worst-case running time O(E|f*|), where f* is the
max-flow found by the algorithm.

« Example of worst case:

(a) (b) (c)
Augmenting path of 1 Resulting Residual Network Resulting Residual Network

Edmonds Karp

» Take shortest path (in terms of number of
edges) as an augmenting path —
Edmonds-Karp algorithm
— How do we find such a shortest path?

— Running time O(VE?), because the number of
augmentations is O(VE)

— Skipping the proof here

— Even better method: push-relabel, O(V2E)
runtime

Multiple Sources or Sinks

* Whatif you have a problem with more than one source
and more than one sink?

» Modify the graph to create a single supersource and
supersink

10

Application — Bipartite Matching

+ Example — given a community with n men and m
women

+ Assume we have a way to determine which
couples (man/woman) are compatible for
marriage

— E.g. (Joe, Susan) or (Fred, Susan) but not (Frank,
Susan)

* Problem: Maximize the number of marriages
— No polygamy allowed

— Can solve this problem by creating a flow network out
of a bipartite graph

Bipartite Graph

* A bipartite graph is an undirected graph G=(V,E) in
which V can be partitioned into two sets V, and V, such
that (u,v) € E implies eitheru € V, and v € V,, or vice
versa.

* Thatis, all edges go between the two sets V, and V, and
not within V, and V..

o—

11

Model for Matching Problem

* Men on leftmost set, women on rightmost
set, edges if they are compatible

®\ ® ®
z ,/ ® 2{0
e e

A matching Optimal matching

Solution Using Max Flow

» Add a supersouce, supersink, make each
undirected edge directed with a flow of 1

Since the input is 1, flow conservation prevents multiple matchings

12

