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Introduction to Automata

The methods and the madness

What is the study of Automata 

Theory?

• The study of abstract computing devices, or “machines.”  

• Days before digital computers

– What is possible to compute with an abstract machine

– Seminal work by Alan Turing

• Why is this useful?   

– Direct application to creating compilers, programming languages, 
designing applications.  

– Formal framework to analyze new types of computing devices, e.g. 
biocomputers or quantum computers.  

– Develop mathematically mature computer scientists capable of 
precise and formal reasoning!

• 5 major topics in Automata Theory
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Finite State Automata

• Deterministic and non-deterministic finite 

state machines

• Regular expressions and languages.

• Techniques for identifying and describing 

regular languages; techniques for showing 

that a language is not regular.  Properties of 

such languages. 

Context-Free Languages

• Context-free grammars, parse trees

• Derivations and ambiguity

• Relation to pushdown automata. Properties 

of such languages and techniques for 

showing that a language is not context-free. 
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Turing Machines

• Basic definitions and relation to the notion 

of an algorithm or program.

• Power of Turing Machines. 

Undecidability and Complexity

• Undecidability

– Recursive and recursively enumerable languages.

– Universal Turing Machines. 

– Limitations on our ability to compute; undecidable problems. 

• Computational Complexity

– Decidable problems for which no sufficient algorithms are known. 

– Polynomial time computability. 

– The notion of NP-completeness and problem reductions. 

– Examples of hard problems.

• Let’s start with a big-picture overview of these 5 topics
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Finite State Automata

• Automata – plural of “automaton”

– i.e. a robot

• Finite state automata then a “robot composed of a finite 
number of states”

– Informally, a finite list of states with transitions between the states

• Useful to model hardware, software, algorithms, processes

– Software to design and verify circuit behavior

– Lexical analyzer of a typical compiler

– Parser for natural language processing

– An efficient scanner for patterns in large bodies of text (e.g. text 
search on the web)

– Verification of protocols (e.g. communications, security).

On-Off Switch Automaton

• Here is perhaps one of the 
simplest finite automaton, an on-
off switch

• States are represented by circles. 
Generally we will use much 
more generic names for states 
(e.g. q1, q2).  Edges or arcs 
between states indicate 
transitions or inputs to the 
system.  The “start” edge 
indicates which state we start in. 

• Sometimes it is necessary to 
indicate a “final” or “accepting” 
state.  We’ll do this by drawing 
the state in double circles

 

On OffStart

Push

Push



5

Treasure Hunt Game – FSA Example

• Goal: Find Treasure Island

• Start: from Pirates' Island

• Friendly pirate ships sail along fixed routes between 

islands offering rides to travelers.

• Each island has two departing ships, A and B.

• Determine all possible sequences of ships that a 

traveler can take to arrive at Treasure Island.

• Get out a piece of paper and create a map to figure 

out the routes

TREASURE HUNT

Pirate’s Island

A B
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TREASURE HUNT

Dead Man’s Island

A B

TREASURE HUNT

Shipwreck Bay

A B
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TREASURE HUNT

Mutineers’ Island

A B

TREASURE HUNT:

Smugglers’ Cove

A B
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TREASURE HUNT:

Musket Hill

A B

TREASURE HUNT:

Treasure Island

PLAY AGAIN
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TREASURE HUNT
What is the

quickest

route?

Finite State Automaton

Interface design

A
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Interface design

A

Gas Furnace Example

• The R terminal is the hot wire and completes a 

circuit.  When R and G are connected, the blower 

turns on.  When R and W are connected, the burner 

comes on.  Any other state where R is not connected 

to either G or W results in no action. 

 

R

W

G

To

Thermostat

Furnace
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Furnace Automaton
• Could be implemented in a thermostat

Bl On

Br On

Bl Off

Br Off
Bl Off

Br On

Bl On

Br Off

Start

R+W

R-W

R+W

R-W

R-G R+G R-G R+G

Furnace Notes

• We left out connections that have no effect 

– E.g. connecting W and G

• Once the logic in the automata has been formalized, the 
model can be used to construct an actual circuit to control 
the furnace (i.e., a thermostat).  

• The model can also help to identify states that may be 
dangerous or problematic.  

– E.g. state with Burner On and Blower Off could overhead the 
furnace

– Want to avoid this state or add some additional states to prevent 
failure from occurring (e.g., a timeout or failsafe )
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Languages and Grammars

• Languages and grammars provide a different 
“view” of computing than automata
– Often languages and grammars are identical to 

automata!  This will be a central theme we will revisit 
several times.  

• Consider the Pirate Treasure automaton
– Instead of a set of states, we can view this as the 

problem of determining all of the strings (e.g. “BBAB”, 
“ABABAB”) that make up paths to the treasure.  

– The set of all such strings “accepted” by the automata 
makes up the Language for this particular problem 

Grammar Example

• Just like English, languages can be described by grammars.  For example, 
below is a very simple grammar:

S Noun Verb-Phrase

Verb-Phrase  Verb Noun

Noun  { Kenrick, cows }

Verb  { loves, eats }

• Using this simple grammar our language allows the following sentences.  
They are “in” the Language defined by the grammar:

Kenrick loves Kenrick

Kenrick loves cows

Kenrick eats Kenrick

Kenrick eats cows

Cows loves Kenrick

Cows loves cows

Cows eats Kenrick

Cows eats cows

• Some sentences not in the grammar:

Kenrick loves cows and kenrick.

Cows eats love cows.

Kenrick loves chocolate.



13

Grammars and Languages

• Later we’ll see ways to go back and forth between a 
grammar-based definition for languages and an automata 
based definition

• Like a game, given a sentence (we’ll call this a “string”)  
determine if it is in or out of the Language

• Grammar provides a “cut” through the space of possible 
strings – will go from crude to sophisticated cuts

Kenrick loves Kenrick

Kenrick loves cows

Kenrick loves Kenrick cows

cows eat eat loves

In

Out

Mathematical Notions

• Skipping these topics, but they’re briefly 

described in the textbook

– Sets

• Empty set, subset, union, Venn diagram, etc.

– Sequences

– Tuples

– Functions and Relations

• Mapping from Domain to Range

– Boolean Logic
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Language Definitions (1)

• An alphabet is a finite, nonempty set of 
symbols.  By convention we use the 
symbol  for an alphabet.  

– In the previous example, our alphabet 
consisted of words, but normally our alphabet 
will consist of individual characters.

– Examples

•  = {0,1}  the binary alphabet

•  = {a,b, … z}  the set of all lowercase letters

Language Definitions (2)

• string (or sometimes a word) 

– A finite sequence of symbols chosen from an alphabet.  

For example, 010101010 is a string chosen from the 

binary alphabet, as is the string 0000 or 1111.

• The empty string is the string with zero 

occurrences of symbols.  This string is denoted ε

and may be chosen from any alphabet.

• The power notation is used to represent multiple 

occurrences of a string; e.g. a3 = aaa, a2 = aa, etc.
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Language Definitions (3)

• The length of a string indicates how many 

symbols are in that string.  

– E.g., the string 0101 using the binary alphabet 

has a length of 4.  

– The standard notation for a string w is to use 

|w|. For example, |0101| is 4.

Language Definitions (4)
• Powers of an alphabet

– If  is an alphabet, we can express the set of all strings of a certain length 
from that alphabet by using an exponential notation.  

– k is defined to be the set of strings of length k, each of whose symbols is 
in .

• For example, given the alphabet  = {0,1,2} then:
– 0 = {ε}

– 1 = {0,1,2}

– 2 = {00,01,02,10,11,12,20,21,22}

– 3 = {000,001,002,... 222}

• Note that  and 1 are different.  The first is the alphabet; its 
members are 0,1,2.  The second is the set of strings whose 
members are the strings 0,1,2, each a string of length 1.  

• By convention, we will try to use lower-case letters at the 
beginning of the alphabet to denote symbols, and lower-case 
letters near the end of the alphabet to represent strings.



16

Language Definitions (5)

• Set of all Strings

– The set of all strings over an alphabet is denoted by 

*.  That is:

– Sometimes it is useful to exclude the empty string from 

the set of strings.  The set of nonempty strings from the 

alphabet is denoted by +. 

...210* 

Language Definitions (6)

• To concatenate strings, we will simply put 

them right next to one another.  

• Example:

– If x and y are strings, where x=001 and y=111 

then xy = 001111

– For any string w, the equation εw = wε = w.
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Formal Definition of Languages

• We have finally covered enough definitions 
to formally define a language!

• A Language

– A set of strings all of which are chosen from 
some * is called a language.  

– If  is an alphabet and L is a subset of * then 
L is a language over .

– Note that a language need not include all strings 
in *. 

Language Examples

1. The language of all strings consisting of n 0’s 
followed by n 1’s, for some n0:  { ε, 01, 0011, 
000111, …}

2. The set of binary numbers whose value is a 
prime: { 10, 11, 101, 111, …}

3. Ø is the empty language, which is a language 
over any alphabet.

4. {ε} is the language consisting of only the empty 
string.  Note that this is not the same as example 
#3, the former has no strings and the latter has 
one string.
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Language Definition - Problem

• A problem is the question of deciding whether a 
given string is a member of some particular 
language.  

– More colloquially, a problem is expressed as 
membership in the language.

– Languages and problems are basically the same thing.  
When we care about the strings, we tend to think of it 
as a language.  When we assign semantics to the 
strings, e.g. maybe the strings encode graphs, logical 
expressions, or integers, then we will tend to think of 
the set of strings as a solution to the problem.

Set-Forming Notation

• A notation we will commonly use to define languages is by 
a “set-former”:

{ w | something about w }

• The expression is read “the set of words w such that 
(whatever is said about w to the right of the vertical bar).”

• For example:

– {w | w consists of an equal number of 0’s and 1’s }.

– {w | w is a binary integer that is prime }

– { 0n1n | n >=1 }.  This includes 01, 0011, 000111, etc.  but not ε

– { 0n1 | n>=0 }.   This includes 1, 01, 001, 0001, 00001, etc.
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Bigger Picture

• Finite state automata provide only a crude “cut” of * to 

select the strings we will accept.  

• Turing machines and more complex grammars provide for 

more sophisticated ways to define the language. One way 

this will be accomplished is there will no longer be a finite 

set of states, but an infinite number of possible states. 

Crude

e.g. Simple automata

Complex

e.g. Turing Machine

Taxonomy of Complexity

Turing Machines

Linear bounded

automata

Pushdown

automata

Finite state

automata

Phrase Structure

Context-Sensitive

Context-Free

Regular

Machines          Grammars/Languages

Uncomputable

Crude

Complex
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Complexity and Uncomputability

• Complexity is the study of the limits of computation.  
There are two important issues:

1. Decidability.   What can a computer do at all?  The problems that 
can be solved by a computer in a realistic amount of time are 
called decidable.  Some problems are undecidable, or only semi-
decidable (e.g. membership in certain languages, must 
enumerate, but may be infinite)

2. Intractability.   What can a computer do efficiently?  This studies 
the problems that can be solved by a computer using no more 
time than some slowly growing function of the size of the input.  
Typically we will take all polynomial functions to be tractable, 
while functions that grow faster than polynomial intractable.

Complexity

Hierarchy
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Introduction to Formal Proof

• In this class, sometimes we will give formal 

proofs and at other times intuitive “proofs”

• Mostly inductive proofs

• First, a bit about deductive proofs

Deductive Proofs

• Given a hypothesis H, and some statements, generate a 
conclusion C

• Sherlock Holmes style of reasoning

• Example: consider the following theorem

– If x 4 then 2x  x2

– Here, H is x  4 and C is 2x  x2

– Intuitive deductive proof

• Each time x increases by one, the left hand side doubles in size.  
However, the right side increases by the ratio ((x+1)/x)2.     When x=4, 
this ratio is 1.56.  As x increases and approaches infinity, the ratio 
((x+1)/x)2 approaches 1.  This means the ratio gets smaller as x 
increases.  Consequently, 1.56 is the largest that the right hand side will 
increase.  Since 1.56 < 2, the left side is increasing faster than the right 
side 
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Basic Formal Logic (1)

• An “If H then C” statement is typically expressed 
as:

HC or H implies C

• The logic truth table for implication is:

H C H C    (i.e.  ¬H  C)

F F T

F T T

T F F

T T T

Basic Formal Logic (2)

• If and Only If statements, e.g.  “If and only if H then C” 
means that HC and C H.  

• Sometimes this will be written as 

HC  or  “H iff C”.  

The truth table is:

H C HC   (i.e. H equals C)

F F T

F T F

T F F

T T T
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Modus Ponens

• modus ponens (Latin for “method of affirming”') can be 
used to form chains of logic to reach a desired conclusion.  

• In other words, given:

HC and

H

Then we can infer C

• Example: given “If Joe and Sally are siblings then Joe and 
Sally are related” as a true assertion, and also given “Joe 
and Sally are siblings” as a true assertion, then we can 
conclude “Joe and Sally are related.”

Modus Tollens

• modus tollens (Latin for “method of denying”').  This reasons 
backwards across the implication.  
– Cognitive psychologists have shown that under 60% of college students 

have a solid intuitive understanding of  Modus Tollens versus almost 
100% for Modus Ponens 

• If we are given:

HC and

¬C

then we can infer ¬H.

• For example, given: “If Joe and Sally are siblings then Joe and Sally 
are related” as a true assertion, and also given “Joe and Sally are not 
related” as a true assertion, then we can conclude “Joe and Sally are 
not siblings.”
– What if we are told Joe and Sally are not siblings?  Can we conclude 

anything?
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Short Exercises (1)

• If Elvis is the king of rock and roll, then 
Elvis lives. Elvis is the king of rock and 
roll. Therefore Elvis is alive. Valid or 
invalid? 

– This argument is valid, in that the conclusion is 
established (by Modus ponens) if the premises 
are true. However, if you consider the first 
premise to be false (unless you live in Vegas) 
then the conclusion is false. 

Short Exercises (2)

• If the stock market keeps going up, then I'm 

going to get rich. The stock market isn't 

going to keep going up. Therefore I'm not 

going to get rich. Valid or invalid? 

– This argument is invalid, specifically an inverse 

error. Its form is from ¬H and infer ¬C. This 

yields an inverse error.
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Short Exercises (3)

• If New York is a big city, then New York 

has lots of people. New York has lots of 

people. Therefore New York is a big city. 

Valid or invalid? 

– This argument is invalid, even though the 

conclusion is true. We are given HC and 

given C.  This does not mean that CH so we 

can’t infer H is true. 

Proof by Contradiction
• Suppose that we want to prove H and we know that C is true.  Instead of 

proving H directly, we may instead show that assuming ¬H leads to a 
contradiction.   Therefore H must be true.

• Example:
– A large sum of money has been stolen from the bank.  The criminal(s) were 

seen driving away from the scene.  From questioning criminals A, B, and C we 
know:
• No one other than A, B, or C were involved in the robbery.

• C will only work a robbery with A (but A might work with other people)

• B does not know how to drive

– Turned into logical statements
1. A  B  C A, B, or C is guilty

2. C  A If C is guilty, A is also guilty

3. B  (A  C) If B is guilty, A or C is guilty 

– Is A innocent or guilty?  Let’s assume that A is innocent, i.e.:  
i. ¬A

ii. From ¬A and #2 using modus tollens, we can infer ¬C

iii. We thus have ¬A  ¬C, which by De Morgan’s Law is logically equivalent to ¬(A 
C)

iv. From ¬(A  C) and #3 using modus tollens, we can infer ¬B

v. We now have ¬A and ¬B and ¬C which contradicts assumption #1!  A is guilty.
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Proof by Contrapositive

• Proof by contrapositive takes advantage of the 

logical equivalence between "H implies C" and 

"Not C implies Not H". 

• For example, the assertion "If it is my car, then it 

is red" is equivalent to "If that car is not red, then 

it is not mine". 

• To prove "If P, Then Q" by the method of 

contrapositive means to prove "If Not Q, Then Not 

P". 

Contrapositive Example

• An integer x is called even (respectively 
odd) if there is another integer k for which

x = 2k (respectively 2k+1). 

• Two integers are said to have the same 
parity if they are both odd or both even. 

• Theorem. If x and y are two integers for 
which x+y is even, then x and y have the 
same parity 
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Contrapositive Example

• Proof of the theorem

– The contrapositive version of this theorem is "If x and y 

are two integers with opposite parity, then their sum 

must be odd." 

– Assume x and y have opposite parity. 

• Since one of these integers is even and the other odd, there is 

no loss of generality to suppose x is even and y is odd. 

– Thus, there are integers k and m for which x = 2k and y 

= 2m+1. Then, we compute the sum x+y = 2k + 2m + 1 

= 2(k+m) + 1, which is an odd integer by definition. 

Contrapositive vs. Contradiction

• Different methods despite similar names

• In contrapositive, we assume ¬C and prove ¬H, 
given HC.  

– The method of Contrapositive has the advantage that 
your goal is clear: Prove Not H.

• In the method of Contradiction, your goal is to 
prove a contradiction, but it is not always clear 
what the contradiction is going to be at the start.

– Indeed, one may never be found (and will never be 
found if the hypothesis is false).
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Proof by Induction

• Essential for proving recursively defined objects

• We can perform induction on integers, automata, 

and concepts like trees or graphs.

• To make an inductive proof about a statement 

S(X) we need to prove two things:

1. Basis: Prove for one or several small values of X 

directly.

2. Inductive step: Assume S(Y ) for Y “smaller than" X;  

then prove S(X) using that assumption.

Familiar Induction Example?

• For all n  0, prove that:

• First prove the basis.  We pick n=0.  When n=0, 
there is a general principle that when the upper 
limit (0) of a sum is less than the lower limit (1) 
then the sum is over no terms and therefore the 
sum is 0.   That is:

2
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Familiar Induction Example

• Next prove the induction.  Assume n  0.  We must prove 

that the theorem implies the same formula when n is larger.  

For integers, we will use n+1 as the next largest value.  

This means that the formula should hold with n +1 

substituted for n:

• This should equal what we came up with previously if we just add on 

an extra n+1 term: 
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Familiar Induction Example

• Continued:  1
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This matches what we got from

the inductive step, and the

proof is complete.
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Second Induction Example

• If x 4 then 2x  x2

• Basis:  If x=4, then 2x is 16 and x2 is 16.  

Thus, the theorem holds.

• Induction: Suppose for some x 4 that 2x 

x2.  With this statement as the hypothesis, 

we need to prove the same statement, with 

x+1 in place of x:  2(x+1)  (x+1)2

Second Induction Example
• 2(x+1)  (x+1)2 ?  (i)

• Rewrite in terms of S(x)
– 2(x+1) = 2*2x

– We are assuming 2x  x2

– So therefore 2(x+1) = 2*2x  2x2 (ii)

• Substitute (ii) into (i)
– 2x2  (x+1)2

– 2x2  (x2+2x+1)

– x2  2x+1

– x  2 + 1/x

– Since x >=4, we get some value >=4 on the left side.  The right 
side will equal at most 2.25 and in fact gets smaller and 
approaches 2 as x increases.  Consequently, we have proven the 
theorem to be true by induction.


