
1

More PHP

PHP Version Differences

• PHP 5.0 requires use of the _REQUEST or _GET
or _POST variables to access variables passed in
by forms

• _REQUEST is an array that contains variables
passed in from the form

• This works on both PHP 4 and PHP 5

• PHP 4 allows you to access form variables directly
by name, but this doesn’t work in PHP 5

2

PHP 4 Only
<?

header("Content-Type: text/html");

print("<HTML><HEAD><TITLE>My Page</TITLE>");

print("</HEAD>"); print("<BODY>");

if ($_SERVER['REQUEST_METHOD'] == ‘POST') {

print("foo = $foo, bar = $bar <P>");

}

print("<form method=post action=\"example.php\">");

print("<input type=text name=\"foo\" value=\"zot\">");

print("<input type=hidden name=\"bar\" value=3>");

print("<input type=submit>");

print("</form>");

print("</BODY></HTML>");

?>

PHP 4 or PHP 5
<?

header("Content-Type: text/html");

print("<HTML><HEAD><TITLE>My Page</TITLE>");

print("</HEAD>"); print("<BODY>");

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

print("foo = " . $_REQUEST["foo"] .

", bar = " . $_REQUEST["bar"] . "<P>");

}

print("<form method=post action=\"example2.php\">");

print("<input type=text name=\"foo\" value=\"zot\">");

print("<input type=hidden name=\"bar\" value=3>");

print("<input type=submit>");

print("</form>");

print("</BODY></HTML>");

?>

3

More PHP

• Here we will focus on additional functions that will be

helpful for you to complete the homework assignment

– Random number generation, sort, arrays (previously covered)

– Type Checking

• is_array, is_string, is_long, is_double

– Useful string functions

• strlen, implode, explode, substr, strstr, trim, char access

– File I/O

• fopen, fread, feof, fclose, fwrite

– Some examples

Type Checking

• PHP includes several functions to determine the

type of a variable since it may not be obvious what

the type is due to conversions

is_int($x) // returns true if $x is an integer

is_double($x) // returns true if $x is a double

is_array($x) // returns true if $x is an array

is_string($x) // returns true if $x is a string

is_null($x) // returns true if $x is a null

4

String Functions

• We can access a string as an array to retrieve
individual characters:

$s=“hithere”;

$z = $s[0] . $s[2] . $s[4];

print($z); // hte

• We can also assign characters to the string:

$s[2] = “F”;

print($s); // hiFhere

Strings

• String length: strlen($s) returns the length of the string

$s="eat big macs";

for ($i=0; $i<(strlen($s)-1)/2; $i++) {

$temp = $s[$i];

$s[$i] = $s[strlen($s)-$i-1];

$s[strlen($s)-$i-1] = $temp;
}

print($s); // Output : scam gib tae

5

Strings

• Substring: Searches a string for a substring

Prototype:

string strstr (string haystack, string needle)
• Returns all of haystack from the first occurrence of needle to

the end.

• If needle is not found, returns FALSE.

$email = 'sterling@designmultimedia.com';

$domain = strstr ($email, '@');

print ($domain); // prints @designmultimedia.com

Strings

• strtolower($s) : returns $s in lowercase
$s=“AbC”;

$s = strtolower($s); // $s = “abc”

• strtoupper($s) : returns $s in uppercase
$s = “AbC”;

$s = strtoupper($s); // $s = “ABC”

• trim($s) : returns $s with leading, trailing whitespace
removed

$s = “ \n ABC \r\n”;

$s = trim($s); // $s = “ABC”

Trim is useful to remove CR’s and Newlines when reading lines of
data from text files or as input from a form (e.g. textbox, textarea)

6

Strings

• Substring: Format:
string substr (string string, int start [, int length])

– Substr returns the portion of string specified by the
start and length parameters.

– If start is positive, the returned string will start at the
start'th position in string, counting from zero. For
instance, in the string 'abcdef', the character at position
0 is 'a', the character at position 2 is 'c', and so forth.

• Examples:
$rest = substr ("abcdef", 1); // returns "bcdef"

$rest = substr ("abcdef", 1, 3); // returns "bcd"

Implode

• Implode is used to concatenate elements of an
array into a single string

string implode (string glue, array pieces)
• Returns a string containing a string representation of all the

array elements in the same order, with the glue string between
each element.

• Examples

$arr[]="A"; $arr[]="B"; $arr[]="C";

$s = implode(",",$arr); // $s = “A,B,C”

$s = implode("",$arr); // $s = “ABC”

7

Explode

• Explode is used to create an array out of a string with some
delimiter

array explode (string separator, string string)
• Returns an array of strings, each of which is a substring of string

formed by splitting it on boundaries formed by the string separator.

• Example

$s="eat:large:fries";

$arr = explode(":",$s);

print_r($arr);

print("<p>");

Output: Array ([0] => eat [1] => large [2] => fries)

File I/O
• Opening a file: fopen

• Format:
int fopen (string filename, string mode)

– Filename is the complete path to the file to open; must have proper
permissions

– Mode is one of the following
• 'r' - Open for reading only; place the file pointer at the beginning of the file.

• 'r+' - Open for reading and writing; place the file pointer at the beginning of the
file.

• 'w' - Open for writing only; place the file pointer at the beginning of the file and
truncate the file to zero length. If the file does not exist, attempt to create it.

• 'w+' - Open for reading and writing; place the file pointer at the beginning of the
file and truncate the file to zero length. If the file does not exist, attempt to
create it.

• 'a' - Open for writing only; place the file pointer at the end of the file. If the file
does not exist, attempt to create it.

• 'a+' - Open for reading and writing; place the file pointer at the end of the file. If
the file does not exist, attempt to create it.

– Returns: a file pointer used to reference the open file

8

File I/O

• Reading from a text file:

string fgets (int filepointer, int length)

– Returns a string of up to length - 1 bytes read from the

file pointed to by fp.

– Reading ends when length - 1 bytes have been read, on

a newline (which is included in the return value), or on

EOF (whichever comes first).

– We can use this function on files we have opened for

reading

File I/O

• Writing to a text file:
int fwrite (int fp, string string)

– fwrite() writes the contents of string to the file stream pointed to
by fp.

– The file must be opened for writing

• Checking for end of file
feof(int fp)

Returns true if we have reached the end, false otherwise

• Closing a file
fclose(int fp)

Use when done with the file and close the file pointer

9

File I/O example

$fd = fopen ("/proc/cpuinfo", "r");

while (!feof ($fd)) {

$oneline = fgets($fd, 4096);

print("$oneline
");

}

fclose ($fd);

fgets

• IMPORTANT – Remember that fgets

returns the string WITH the newline

• This is critical if you are going to perform

comparisons

– You’ll get a false match if the newline is not

accounted for

– Easiest technique: trim out the newlines

$oneline = trim(fgets($fp, 1024));

10

Example

• Create a single PHP script that generates a

form with a textarea

– Allow the user to enter numbers in the textarea

– Submit the form to the same script

– Compute the sum of the numbers in the textarea

and print it out

Example.php

<?php

header("Content-Type: text/html");

print("<HTML><HEAD><TITLE>My Page</TITLE>");

print("</HEAD>");

print("<BODY>");

if($_SERVER['REQUEST_METHOD'] != "POST")

{

// We are loading for the first time,

// not receiving a form. So generate

// a form allowing the user to enter

// data in a text area and have it submitted

// to this same script

print("<FORM method=post action='example.php'>");

print("Enter numbers below.<p>");

print("<TEXTAREA name='myData' rows=10></TEXTAREA>");

print("<INPUT type=submit>");

print("</FORM>");

}

11

Example.php
else

{

// We are receiving data from our form

// Put the text data into an array. Each

// is separated by a newline, so use explode

// to parse

$a = explode("\n",$_REQUEST['myData']);

// Here we loop through and add up the numbers

$total = 0;

foreach ($a as $key=>$value) {

// Each element in the array is a string,

// but note that each will contain a \r

// whitespace at the end, so you may wish

// to trim these out. It is not really

// necessary in this example but you will

// normally want to trim just to be safe

$num = (int) trim($value);

$total += $num;

}

print("The sum of your numbers is $total<p>");

}

print("</BODY></HTML>");

?>

Accessing a MySql Database

• Here is the minimum for executing a mysql

query from PHP.

• Given the following database:

12

// Database parameters

$db_location = "localhost";

$db_user_name = "test";

$db_password = "test";

$database_name = "test";

// Connect to the DB

$dbcnx = mysql_connect($db_location, $db_user_name, $db_password);

mysql_select_db($database_name);

// Display everything from the data table

$result = mysql_query("SELECT * FROM data;");

print("<table border=2>");

while ($row = mysql_fetch_assoc($result))

{

$username = $row['username'];

$val = $row['val'];

$pw = $row['password'];

print("<tr>");

print("<td>$username</td> <td>$val</td> <td>$pw</td>");

print("</tr>");

}

print("</table>");

?>

Reading from the DB

<?php

// Database parameters

$db_location = "localhost";

$db_user_name = "test";

$db_password = "test";

$database_name = "test";

// Connect to the DB

$dbcnx = mysql_connect($db_location, $db_user_name, $db_password);

mysql_select_db($database_name);

// Insert a new record

$result = mysql_query("INSERT INTO data (username, val, password) VALUES ('martin',55,'complexity');");

print("Result of insert: $result"); // True if successful

?>

Writing to the DB

13

SQL Injection Example

• PHP code
$id = $_REQUEST[“id”];

$pass = $_REQUEST[“password”];

$qry = “SELECT ccnum FROM cust WHERE id = $id AND pass=$pass”;

SQL Injection Example

• PHP code
$id = $_REQUEST[“id”];

$pass = $_REQUEST[“password”];

$qry = “SELECT ccnum FROM cust WHERE id = ‘$id’ AND

pass=‘$pass’”;

User inputs id of user to attack

For password, enters: ' OR 1=1 –

-- is the comment operator, to ignore whatever comes afterwards

Another:

Password: 'OR ''='

14

Update Counter

• What’s wrong with this?

<?php

$h = fopen("counter.txt","r");

$count = fread($h, 100);

fclose($h);

$h = fopen("counter.txt","w");

fwrite($h, $count + 1);

fclose($h);

?>

Update Counter

• Better
<?php

$h = fopen("counter.txt","r+");

if (flock($h, LOCK_EX)) {

$count = fread($h, 100);

rewind($h);

fwrite($h, $count + 1);

fclose($h);

flock($h, LOCK_UN);

?>

15

Session Variables

• Variables that keep their state from one

PHP script to another

– Generally stored as a cookie for the browsing

session

<?php

session_start(); // Must send before HTML

$_SESSION['varname'] = value; // Use isset to see if set

Summary

• PHP is an imperative language for the web

• Similarities to C, Java, and even interpreted languages
such as Scheme

• Competition to ASP, .NET

• Can’t do everything since server side only – often coupled
with client-side languages such as JavaScript

• PHP version 5 not quite backward compatible with PHP 4
– More OOP, references allow for more efficiencies

– Highlights design choice of evolving language

• Easy to write sloppy code so one must be more disciplined
in design of classes, functions, variables, HTML,
documentation

16

Lots More to PHP

• We have only scratched the surface, but there is much more that
PHP can do
– Generate graphics (gd library)

– Networking, Sockets, IRC, Email

– LDAP

– Regular Expressions

– PDF

– Java

– XML

– AJAX

– Design methodologies (e.g. FuseBox, Smarty Templates, include files)

– Many more

• See the excellent resources online
– www.php.net

– www.phpbuilder.com

– www.zend.com

