
1

Introduction to .NET

What is .NET?

• Introduced in 2002, Microsoft’s architecture

for applications in the Internet age

– Increased robustness over classic Windows apps

– New programming platform

– Built for the web

• .NET is a platform that runs on the operating

system

• Split with Windows RT (will discuss later)

2

.NET

• Sits on top on the OS (currently all the Windows;
Linux/Unix subset also available – Mono Project)

• Provides language interoperability across
platforms

• Strong emphasis on Web connectivity, using XML
web services to connect and share data between
smart client devices, servers, and developers/users
– Later versions (current 4.5) added WPF, LINQ, Parallel

extensions, Metro support

• Platform/language independent

History

• Development began in 1998

• Beta 1 released Oct, 2000

• Beta 2 released July, 2001

• Finalized in Dec, shipping in Feb 2002

• Vista shipped with .NET Framework 3.0

(Runtime)

3

.NET Overview

• Three main elements:
– The Framework (CLR, FCL, ASP, WinForms)

– The Products (Windows, Visual Studio, Office)

– The Services (My Services)

• Framework Goals
– Improved reliability and integrated security.

– Simplified development and deployment.

– Unified API, multi-language support.

• XML is the .NET “Meta-Language”.

• All MS server products now .NET-enabled.

.NET Framework

Framework Class Library

ADO.NET

Network

XML

Security

Threading

Diagnostics

IO

Etc.

Common Language Runtime

Memory Management Common Type System Lifecycle Monitoring

C# VB.NET C++.NET Other

Operating System

Visual
Studio

Common Language Specification

Windows FormsASP.NET

Web Services

ASP.NET Application Services

Web Forms Controls Drawing

Windows Application Services

4

.NET 4.5 on Windows 8

http://dougseven.com/2011/09/15/a-bad-picture-is-worth-a-thousand-long-discussions/

Green = Metro, Blue = Desktop

Common Language Runtime

• A runtime provides services to executing

programs

– Standard C library, MFC, VB Runtime, JVM

• CLR provided by .NET manages the execution of

code and provides useful services

– Memory management, type system, etc.

– Services exposed through programming languages

• C# exposes more features of the CLR than other languages

(e.g. VB.NET)

5

.NET Framework Class Library

• Framework – you can call it and it can call
you

• Large class library

– Over 9000 classes in .NET 4

– Major components

• Base Class: Networking, security, I/O, files, etc.

• Data and XML Classes

• Web Services/UI

• Windows UI

Framework Libraries

• Web Services
– Expose application functionalities across the Internet, in the same

way as a class expose services to other classes.

– Each Web service can function as an independent entity, and can
cooperate with one another.

– Data described by XML.

• ASP.NET
– Replacement for the Active Server Technology.

– Web Forms provide an easy way to write interactive Web
applications, much in the same way as “normal” Windows
applications.

6

Framework Libraries

• Provides facilities to generate Windows

GUI-based client applications easily

• Form-oriented

• Standard GUI components

– buttons, textboxes, menus, scrollbars, etc.

• Event-handling

Common Language Specification

• CLS is a set of rules that specifies features that all
languages should support

– Goal: have the .NET framework support multiple
languages

– CLS is an agreement among language designers and
class library designers about the features and usage
conventions that can be relied upon

• Example: public names should not rely on case for uniqueness
since some languages are not case sensitive

• This does not mean all languages are not case sensitive above
the CLR!

7

Some .NET Languages

• C#

• COBOL

• Eiffel

• Fortran

• Mercury

• Pascal

• Python

• Ruby

• SML

Perl

Smalltalk

VB.NET

VC++

F#

Scheme

….

More are under

development

VB.NET and C#

• VB.NET introduces long sought-after features:
– Inheritance

– Parameterized Class Constructors

– Function Overloading

– Multi-Threading

– Structured Error Handling

– Creating NT Services

• VB.NET not backward compatible with VB6.

• C#
– Flagship, modern, object-oriented language

– Similar to C++/Java

– Considered the most powerful language of .NET

8

.NET vs. J2EE

• Both are similar in many ways:

– Server- and client-side model for building enterprise applications.

– Virtual machine designed to inspect, load, and execute programs in

a controlled environment.

– APIs for creating both fat- and thin-client models.

– APIs for foundation services (data access, directory, remote object

calls, sockets, forms).

– Development environment for dynamic web pages.

• J2 Enterprise Edition

– Language-Dependent & Platform-Independent

• .NET

– Language-Independent & Platform Dependent (for the most part)

J2EE: Language-Specific,

Platform- Independent
Person.java

Address.java

Company.java

Java VM
Person

bytecodes

Company
bytecodesAddress

bytecodes

Linux

Windows

Android

Java VM

Java VM

Java VM

Deploy

9

.NET: Language-Independent,

(Mostly) Platform- Specific
Person.vb

Address.cs

Company.cbl

CLR
Person
MSIL

Company
MSILAddress

MSIL

Windows

Windows

Others?

CLR

CLR

CLR

Deploy

(Visual Basic)

(C#)

(Cobol)

J2EE

• The core (JVM and standard class libraries) are

mature.

• 3-4 million Java programmers.

• J2EE implementations are not entirely cross-

platform.

• Java’s true potential is realized only when all (or

most) development is done in Java.

• Changing the Java language specification has an

enormous impact on the entire platform.

10

.NET

• .NET built into Windows; running an executable
invokes the CLR automatically instead of
explicitly invoking the JVM

• .NET added improvements such as native XML
support, new features to CLR; spurred Java 8

• About 3 million C++ developers, 3-8 million VB
developers, around 1 million C# developers

• Today, most development and deployment is
Windows

TIOBE Index, Feb 2015

11

PL Job Trends - % Postings

Relative Job Growth

12

Do you have to use Windows?

• Open source implementations of .NET

• Today there exists Xamarin’s Mono, Corel's Rotor and the
Free Software Foundation's Portable .NET projects

• Rotor: the Shared Source Common Language
Infrastructure (SSCLI)
– Started as “Project 7” with Academic Microsoft Research

– With universities and programming language researchers,
developed several languages for the CLR

• Mono
– Implementation of ECMA C# and CLI for Linux

– http://www.mono-project.com

Mono

• http://www.mono-project.com/Main_Page

• Mono provides the necessary software to develop
and run .NET client and server applications on
Linux, Solaris, Mac OS X, Windows, and Unix.

• Sponsored by Xamarin

• Mono allows your existing binaries to run on
Linux with copy-deployment.

• Mono API coverage is limited to portions of .NET
4 and parts of .NET 4.5

13

Mono
• Core: mscorlib, System, System.Security and System.XML

assemblies.
– ADO.NET: System.Data and various other database providers.

– ASP.NET: WebForms and Web Services are supported. Work on
WSE1/WSE2 has also started.

– Compilers: C#, VB.NET and various command line tools that are part of
the SDK.

– Open Source, Unix and Gnome specific libraries.

• Other components like Windows.Forms, Directory.Services,
Enterprise Services and JScript are partially covered

• Some other smaller and less used components do not have yet a
Mono equivalent

Common Language Runtime

• The CLR is at the core of the .NET platform - the
execution engine

• The CLR provides a “Managed Execution Environment”.
Manages the execution of code and provides services that
make development easier (like the JVM)

• Code that relies on COM and the Win32 API is “Un-
Managed Code” (e.g. built with Visual Studio 6.0, VB6)

• Code developed for a compiler that targets this platform is
referred to as “Managed Code” (e.g. code developed in
VB.NET … C# allows Managed and Unmanaged)

14

Simple Application Deployment

• Unlike COM, no “plumbing” code needed to

connect separate components

– Components can be developed in different

programming languages

• Thousands of classes to reuse

• Automatic garbage collection

• Memory is managed

– Common bugs like memory leaks, buffer overruns are

not possible (if using 100% managed code)

Multiple Languages

• Common Type System makes interoperability

seamless between languages

• Class in one language can inherit from a class in

another language

• Exceptions can be thrown across languages

• Makes it easier to learn a new .NET language

since the same tools and classes are in place

• Can debug across languages

15

The Common Type System

• At the core of the Framework is a universal type system called the

.NET Common Type System (CTS).

• Everything is an object - but efficient

– Boxing and Unboxing

• All types fall into two categories - Value types and Reference types.

– Value types contain actual data (cannot be null). Stored on the stack.

Always initialized.

– Three kinds of value types: Primitives, structures, and enumerations.

• Language compilers map keywords to the primitive types. For

example, a C# “int” is mapped to System.Int32.

The Common Type System

• Reference types are type-safe object pointers. Allocated in the

“managed heap”

• Four kinds of reference types: Classes, arrays, delegates, and

interfaces.

– When instances of value types go out of scope, they are instantly

destroyed and memory is reclaimed.

– When instances of reference types go out of scope, they are garbage

collected.

• Boxing = converting an instance of a value type to a reference type.

Usually done implicitly through parameter passing or variable

assignments.

• UnBoxing = casting a reference type back into a value type variable.

16

The Common Type System

Primitive Types

Int16

Int32

Int64

Single

Double

Decimal

Boolean

Byte

Char

Currency

DateTime

TimeSpan

Object

ArrayString

Enum

ValueType Exception Delegate

Multicast

Delegate

Class1

Class2

Class3

MSIL and JIT Compilation

• Source code is compiled into MSIL (Microsoft Intermediate

Language). Similar to Java bytecodes - CPU-independent instructions

• MSIL allows for runtime type-safety and security, as well as portable

execution platforms.

• The MSIL architecture results in apps that run in one address space -

thus much less OS overhead.

• Compilers also produce “metadata” or glue that binds the code with

debuggers, browsers, etc.

– Definitions of each type in your code.

– Signatures of each type’s members.

– Members that your code references.

– Other runtime data for the CLR.

17

MSIL and JIT Compilation

• Metadata in the load file along with the MSIL enables code
to be self-describing - no need for separate type libraries,
IDL, or registry entries.

• When code is executed by the CLR, a JIT compilation step
occurs.
– Code is compiled method-by-method to native machine code as

methods are invoked

– Results in performance slowdown when a program is first
executed, but can be efficient for code that is never executed

– Subsequent invocations reuse compiled code, so no slowdown

Delegates

• A new concept that is central to the programming model of

the CLR.

• Delegates are like function pointers, but are actually type-

safe, secure, managed CLR objects.

• The CLR guarantees that a delegate points to a valid

method.

• You get the benefits of function pointers without the

dangers.

• Each delegate is based on a single method signature.

• Commonly used for callbacks.

• Delegates are basis of event handlers.

18

Packaging: Modules, Types,

Assemblies, and the Manifest
• A “module” refers to a managed binary, such as an EXE or

DLL.

• Modules contain definitions of managed types, such as

classes, interfaces, structures, and enumerations.

• An assembly can be defined as one or more modules that

make up a unit of functionality. Assemblies also can

“contain” other files that make up an application, such as

bitmaps and resource files.

• An assembly is the the fundamental unit of deployment,

version control, activation scoping, and security

permissions.

Packaging: Modules, Types,

Assemblies, and the Manifest

• An assembly is a set of boundaries:

– A security boundary - the unit to which

permissions are requested and granted.

– A type boundary - the scope of an assembly

uniquely qualifies the types contained within.

– A reference scope boundary - specifies the

types that are exposed outside the assembly.

– A version boundary - all types in an assembly

are versioned together as a unit.

• Avoid multiple version problem for DLL’s

19

Packaging: Modules, Types,

Assemblies, and the Manifest
• An assembly contains a “manifest”, which is a catalog of component

metadata containing:

– Assembly name.

– Version (major, minor, revision, build).

– Assembly file list - all files “contained” in the assembly.

– Type references - mapping the managed types included in the assembly

with the files that contain them.

– Scope - private or shared.

– Referenced assemblies.

• In many cases, an assembly consists of a single EXE or DLL -

containing the module’s MSIL, the component metadata, and the

assembly manifest. In other cases, the assembly may consist of many

DLLs, with the manifest in its own file.

• No MSIL code can ever be executed unless there is a manifest

associated with it.

Differences from JVM (prior to 1.5)

• 220 instructions in the CLR’s instruction set

• JVM provides no way of encoding type-unsafe
features of typical programming languages, such
as pointers
– E.g., JVM has no way to access the address of local

variables for use in things like a Swap method, passing
primitive variables by reference

• Arithmetic
– Separate instructions for adding to generate overflow

vs. no overflow

– JVM never generates overflow on integer types

20

Differences from JVM (prior to 1.5)

• Branches

– Limited to 64K in JVM

• Structures and Unions

– No support for these in JVM

– Union supports Variant Records

• When a field in the structure is selected from
multiple possible types e.g., Struct.X could be an
int or a boolean

• Automatic Boxing and Unboxing

Differences from JVM (prior to 1.5)

• Support for Tail Recursion

– Discards previous stack frame, so tail recursion

can result in an infinite loop instead of stack

overflow

– Faster as well (for non-infinite loop)

• Supports “unmanaged” code

– Java has JNI, Java Native (code) Interface, as a

way to do the same thing but not as directly

21

ILDASM

• Can examine assemblies, assembly code

with the ILDASM tool

• Here is ILDASM run on

VideoUnScramble.exe

Assembly Manifest

22

Assembly Components

MSIL Sample Code
IL_006e: ldloc.s V_4

IL_0070: ldloc.1

IL_0071: ldelema [System.Drawing]System.Drawing.Color

IL_0076: ldloc.0

IL_0077: ldloc.1

IL_0078: ldarg.1

IL_0079: sub

IL_007a: ldloc.2

IL_007b: callvirt instance valuetype [System.Drawing]System.Drawing.Color

[System.Drawing]System.Drawing.Bitmap::GetPixel(int32, int32)

IL_0080: stobj [System.Drawing]System.Drawing.Color

IL_0085: ldloc.1

IL_0086: ldc.i4.1

IL_0087: sub

IL_0088: stloc.1

IL_0089: ldloc.1

IL_008a: ldarg.1

IL_008b: bge.s IL_006e

IL_008d: ldc.i4.0

IL_008e: stloc.1

IL_008f: br.s IL_00aa

23

Summary

• Next we will study C#

• C# does not exist in isolation but has a close
connection with the .NET framework

• .NET

– CLR is a Java-like platform, but multi-language

– SrcMSILJITNative Code

– .NET framework includes many class libraries

