
1/30/2013

1

Names, Scope, Memory, and 
Binding

Name, Scope, and Binding

• A name is exactly what you think it is
– Usually think of identifiers but can be more 

general

– symbols (like '+' or '_') can also be names

• A binding is an association between two 
things, such as a name and the thing it names

• The scope of a binding is the part of the 
program (textually) in which the binding is 
active



1/30/2013

2

Binding

• Binding Time is the point at which a binding is created
– language design time

• program structure, possible type

– language implementation time
• I/O, arithmetic overflow, stack size, type equality (if unspecified in 

design)

– program writing time
• algorithms, names

– compile time
• plan for data layout

– link time
• layout of whole program in memory

– load time
• choice of physical addresses

Binding

• Implementation decisions (continued):

– run time

• value/variable bindings, sizes of strings

• subsumes
– program start-up time

– module entry time

– elaboration time (point a which a declaration is first "seen")

– procedure entry time

– block entry time

– statement execution time



1/30/2013

3

Binding

• The terms STATIC and DYNAMIC are generally 

used to refer to things bound before run time 

and at run time, respectively

– “static” is a coarse term; so is "dynamic"

• IT IS DIFFICULT TO OVERSTATE THE 

IMPORTANCE OF BINDING TIMES IN THE 

DESIGN AND IMPLEMENTATION OF 

PROGRAMMING LANGUAGES

Binding
• In general, early binding times are associated 

with greater efficiency
• Later binding times are associated with greater 

flexibility
• Compiled languages tend to have early binding 

times
• Interpreted languages tend to have later binding 

times
• Today we talk about the binding of identifiers to 

the variables they name
– Not all data is named!  For example, dynamic storage 

in C or Pascal is referenced by pointers, not names



1/30/2013

4

Lifetime and Storage Management

• Key events
– creation of objects
– creation of bindings
– references to variables (which use bindings)
– (temporary) deactivation of bindings
– reactivation of bindings
– destruction of bindings
– destruction of objects

• The period of time from creation to destruction is called the 
LIFETIME of a binding
– If object outlives binding it's garbage
– If binding outlives object it's a dangling reference 

• The textual region of the program in which the binding is 
active is its scope

Lifetime and Storage Management
• Storage Allocation mechanisms

– Static

– Stack

– Heap

• Static allocation for
– code

– globals

– static or own variables

– explicit constants (including strings, sets, etc)

– scalars may be stored in the instructions



1/30/2013

5

Lifetime and Storage Management

Lifetime and Storage Management

• Central stack for
– parameters

– local variables

– temporaries

• Why a stack?
– allocate space for recursive routines

(not possible in old FORTRAN – no recursion)

– reuse space
(in all programming languages)



1/30/2013

6

Lifetime and Storage Management

• Contents of a stack frame

– arguments and returns

– local variables

– temporaries

– bookkeeping (saved registers, line number static 
link, etc.)

• Local variables and arguments are assigned 
fixed OFFSETS from the stack pointer or frame 
pointer at compile time

Lifetime and Storage Management



1/30/2013

7

Example: Examine Stack for the C 
Program

int bar(int x)

{

int z=5;

return z;

}

int foo(int x)

{

int y=3;

x = x + y;

y = bar(x);

return x;

}

int main(int argc, char* argv[])

{

int a=1, b=2, c=3;

b = foo(a);

printf("%d %d %d\n",a,b,c);

return 0;

}

Memory Management
Heap

• Region of memory where subblocks are allocated and 
deallocated dynamically

• More unstructured
• Allocation and deallocation may happen in arbitrary 

order
– Memory may become fragmented
– Need for garbage collection
– We will describe garbage collection algorithms later

• Heap Management
– Often managed with a single linked list – the free list – of 

blocks not in use
• First Fit?   
• Best Fit?  (smallest block large enough to handle request) 



1/30/2013

8

Lifetime and Storage Management

• Heap for dynamic allocation

Scope Rules
• A scope is a program section of maximal size in 

which no bindings change, or at least in which 
no re-declarations are permitted

• In most languages with subroutines, we OPEN a 
new scope on subroutine entry:
– create bindings for new local variables,

– deactivate bindings for global variables that are re-
declared (these variable are said to have a "hole" in 
their scope)

– make references to variables



1/30/2013

9

Scope Rules
• On subroutine exit:

– destroy bindings for local variables

– reactivate bindings for global variables that were 
deactivated

• Algol 68:
– ELABORATION = process of creating bindings 

when entering a scope

• Ada (re-popularized the term elaboration):
– storage may be allocated, tasks started, even 

exceptions propagated as a result of the 
elaboration of declarations

Scope Rules
• With STATIC (LEXICAL) SCOPE RULES, a scope 

is defined in terms of the physical (lexical) 
structure of the program
– The determination of scopes can be made by the 

compiler

– All bindings for identifiers can be resolved by 
examining the program

– Typically, we choose the most recent, active 
binding made at compile time

– Most compiled languages, C++ and Java included, 
employ static scope rules



1/30/2013

10

Scope Rules

• The classical example of static scope rules is 
the most closely nested rule used in block 
structured languages such as Algol 60 and 
Pascal 
– An identifier is known in the scope in which it is 

declared and in each enclosed scope, unless it is 
re-declared in an enclosed scope 

– To resolve a reference to an identifier, we examine 
the local scope and statically enclosing scopes 
until a binding is found

Scope Rules

• Note that the bindings created in a subroutine 
are destroyed at subroutine exit

• Obvious consequence when you understand how 
stack frames are allocated and deallocated

• The modules of Modula, Ada, etc., give you 
closed scopes without the limited lifetime
– Bindings to variables declared in a module are inactive 

outside the module, not destroyed 
– The same sort of effect can be achieved in many 

languages with own (Algol term) or static (C term) 
variables



1/30/2013

11

Scope Rules

• Access to non-local variables STATIC LINKS

– Each frame points to the frame of the (correct 
instance of)  the routine inside which it was 
declared

– In the absence of formal subroutines, correct
means closest to the top of the stack

– You access a variable in a scope k levels out by 
following k static links and then using the known 
offset within the frame thus found

• More details in Chapter 8

Copyright © 2005 Elsevier

Scope Rules



1/30/2013

12

Scope Rules
• The key idea in static scope rules is that 

bindings are defined by the physical (lexical) 
structure of the program.

• With dynamic scope rules, bindings depend 
on the current state of program execution
– They cannot always be resolved by examining the 

program because they are dependent on calling 
sequences

– To resolve a reference, we use the most recent, 
active binding made at run time

Binding of Referencing Environments

• Accessing variables with dynamic scope:

– (1) keep a stack (association list) of all active 

variables

• When you need to find a variable, hunt down from 

top of stack

• This is equivalent to searching the activation 

records on the dynamic chain



1/30/2013

13

Binding of Referencing Environments

• Accessing variables with dynamic scope:

– (2) keep a central table with one slot for every 
variable name

• If names cannot be created at run time, the table 
layout (and the location of every slot) can be fixed 
at compile time

• Otherwise, you'll need a hash function or 
something to do lookup

• Every subroutine changes the table entries for its 
locals at entry and exit (push / pop on a stack).

Binding of Referencing Environments

• (1) gives you slower access but fast calls

• (2) gives you slower calls but fast access

• In effect, variable lookup in a dynamically-
scoped language corresponds to symbol table 
lookup in a statically-scoped language

• Because static scope rules tend to be more 
complicated, however, the data structure and 
lookup algorithm also have to be more 
complicated



1/30/2013

14

Scope Rules

• Dynamic scope rules are usually 
encountered in interpreted languages

– early LISP dialects assumed dynamic scope 
rules.  

• Such languages do not normally have 
type checking at compile time because 
type determination isn't always possible 
when dynamic scope rules are in effect

int a;

void first()
{

a = 1;
}

void second()

{
int a = 3;
first();

}

void main()

{
a = 2;

second;

printf("%d\n",a);
}

Scope Rules 
Example: Static vs. Dynamic 



1/30/2013

15

• If static scope rules are in effect (as would be 
the case in C), the program prints a 1

• If dynamic scope rules are in effect, the 
program prints a 2

• Why the difference?  At issue is whether the 
assignment to the variable a in function first
changes the variable a declared in the main 
program or the variable a declared in function 
second

Scope Rules 
Example: Static vs. Dynamic 

• Static scope rules require that the reference resolve to 
the most recent, compile-time binding, namely the 
global variable a

• Dynamic scope rules, on the other hand, require that we 
choose the most recent, active binding at run time
– Perhaps the most common use of dynamic scope rules is to 

provide implicit parameters to subroutines
• Begin

– Print_base: integer := 16 // use hex

– Print_integer(n)

– This is generally considered bad programming practice 
nowadays
• Alternative mechanisms exist, e.g. optional parameters 

Scope Rules 
Example: Static vs. Dynamic 



1/30/2013

16

Dynamic scoping or
Shallow binding 
makes some sense 
here

Static scoping or
Deep binding makes 
sense here

Binding of Referencing Environments
• REFERENCING ENVIRONMENT of a statement at run time 

is the set of active bindings
• A referencing environment corresponds to a collection of 

scopes that are examined (in order) to find a binding
• SCOPE RULES determine that collection and its order

• First-class status: objects that can be passed as 
parameters or returned and assigned

• Second-class status:  objects that can be passed but not 
returned or assigned

• Some programming languages allow subroutines to be 
first-class
– What binding rules to use for such a subroutine?



1/30/2013

17

Binding within a Scope

• Aliasing
– Two or more names that refer to a single object in 

a given scope are aliases

– What are aliases good for? 
• space saving - modern data allocation methods are 

better

• multiple representations 

• linked data structures   - legit

– Also, aliases arise in parameter passing
• Sometimes desirable, sometimes not

Aliases

Java:

public static void foo(MyObject x)
{

x.val = 10;
}

public static void main(String[] args)
{

MyObject o = new MyObject(1);
foo(o);

}



1/30/2013

18

Aliases

C++:

public static void foo(int &x)
{

MyObject o;
x = 10;

}

public static void main(String[] args)
{

int y = 20;
foo(y);

}

Binding within a Scope

• Overloading
– some overloading happens in almost all languages

• integer + v. real +

– Handled with help from the symbol table
• Lookup a list of possible meanings for the requested 

name; the semantic analyzer chooses the most 
appropriate one based on the context

– some languages get into overloading in a big way
• Ada

• C++



1/30/2013

19

Ada Constant Overloading

C++ Operator Overloading

const Money operator +(const Money& amount1, const Money& amount2)
{

int allCents1 = amount1.cents + amount1.dollars*100;
int allCents2 = amount2.cents + amount2.dollars*100;
int sumAllCents = allCents1 + allCents2;
int absAllCents = abs(sumAllCents); //Money can be negative.
int finalDollars = absAllCents/100;
int finalCents = absAllCents%100;

if (sumAllCents < 0)
{

finalDollars = -finalDollars;
finalCents = -finalCents;

}

return Money(finalDollars, finalCents);
}

bool operator ==(const Money& amount1, const Money& amount2)
{

return ((amount1.dollars == amount2.dollars)
&& (amount1.cents == amount2.cents));

}



1/30/2013

20

• It's worth distinguishing between some closely 
related concepts

– overloaded functions - two different things with 
the same name; in Ada

function min(a, b : integer)  return integer…

function min(x, y : real)  return real …

– In Fortran, these can be automatically coerced:
real function min(x,y) real x,y ...

Binding within a Scope

Fortran will convert int input to reals, find the min, then return the 
result back as a real

• generic functions (modules, etc.) - a syntactic template that 
can be instantiated in more than one way at compile time
– Also called explicit parametric polymorphism

– via macro processors in C++

– Templates in C++/Java

Binding within a Scope

public class TwoTypePair<T1, T2>

{

private T1 first;

private T2 second;

public TwoTypePair(T1 firstItem, T2 secondItem)

{

first = firstItem;

second = secondItem;

}

public T1 getFirst()

{

return first;

}

...

TwoTypePair<String, Integer> rating = new TwoTypePair<String, Integer>("The Car Guys", 8);



1/30/2013

21

Separate Compilation
• Since most large programs are constructed 

and tested incrementally, and some 
programs can be very large, languages must 
support separate compilation

• Compilation units usually a “module”
– Class in Java/C++

– Namespace in C++ can link separate classes

– More arbitrary in C

– Java and C# were the first to break from the standard of requiring 
a file with header information for all methods/classes

Conclusions

• The morals of the story:
– language features can be surprisingly subtle

– Determining how issues like binding, naming, and 
memory are used have a huge impact on the 
design of the language

– Static vs. dynamic scoping is interesting, but all 
modern languages use static scoping

– most of the languages that are easy to understand 
are easy to compile, and vice versa


