1/30/2013

Names, Scope, Memory, and
Binding

Name, Scope, and Binding

* A name is exactly what you think it is

— Usually think of identifiers but can be more
general

— symbols (like '+' or ' ') can also be names

* A binding is an association between two
things, such as a name and the thing it names

* The scope of a binding is the part of the
program (textually) in which the binding is
active



1/30/2013

Binding

* Binding Time is the point at which a binding is created
— language design time
e program structure, possible type
language implementation time

* 1/0, arithmetic overflow, stack size, type equality (if unspecified in
design)

program writing time
¢ algorithms, names
compile time
* plan for data layout
link time
* layout of whole program in memory
load time
* choice of physical addresses

Binding

* Implementation decisions (continued):
—run time

* value/variable bindings, sizes of strings

* subsumes
— program start-up time
— module entry time
— elaboration time (point a which a declaration is first "seen")
— procedure entry time
— block entry time
— statement execution time



Binding

The terms STATIC and DYNAMIC are generally
used to refer to things bound before run time
and at run time, respectively

— “static” is a coarse term; so is "dynamic"

IT IS DIFFICULT TO OVERSTATE THE
IMPORTANCE OF BINDING TIMES IN THE
DESIGN AND IMPLEMENTATION OF
PROGRAMMING LANGUAGES

Binding
In general, early binding times are associated
with greater efficiency
Later binding times are associated with greater
flexibility
Compiled languages tend to have early binding
times
Interpreted languages tend to have later binding
times
Today we talk about the binding of identifiers to
the variables they name

— Not all data is named! For example, dynamic storage
in C or Pascal is referenced by pointers, not names

1/30/2013



1/30/2013

Lifetime and Storage Management

Key events

— creation of objects
creation of bindings
references to variables (which use bindings)
(temporary) deactivation of bindings
reactivation of bindings

— destruction of bindings

— destruction of objects
The period of time from creation to destruction is called the
LIFETIME of a binding

— If object outlives binding it's garbage

— If binding outlives object it's a dangling reference

The textual region of the program in which the binding is
active is its scope

Lifetime and Storage Management

 Storage Allocation mechanisms
— Static
— Stack
— Heap
* Static allocation for
— code
— globals
— static or own variables
— explicit constants (including strings, sets, etc)
— scalars may be stored in the instructions



Lifetime and Storage Management

Temporaries

Local

variables

l'emporaries

l'emporaries

Local

variables

Local

variables

Miscellaneous
bookkeeping

Miscellaneous
bookkeeping

Miscellaneous
bookkeeping

Return address

Return address

Return address

Arguments
and returns

Arguments

and returns

Subroutine 1

Subroutine 2

Arguments
and returns

Subroutine 3

Figure 3.1: Static allocation of space for subroutines in a language or program
without recursion.

Lifetime and Storage Management

e Central stack for
— parameters
— local variables
— temporaries

* Why a stack?

— allocate space for recursive routines
(not possible in old FORTRAN — no recursion)

— reuse space
(in all programming languages)

1/30/2013



1/30/2013

Lifetime and Storage Management

e Contents of a stack frame
— arguments and returns
— local variables
— temporaries
— bookkeeping (saved registers, line number static

link, etc.)

* Local variables and arguments are assigned
fixed OFFSETS from the stack pointer or frame
pointer at compile time

Lifetime and Storage Management

sp—>»
-
”
L
Subroutine D B ;
-
fp—» P routines
Y

Temporaries

Subroutine C Local
variables
Direction of
Miscellaneous
. % hookk
Subroutine B S sookkeeping
Mo £p (when
~ |Return address subrontine C
Subroutine A is running)
sroutine

(called from
main program)

Figure 3.2: Stack-based allocation of space for subroutines. We assume here that
subroutine A has been called by the main program, and that it then calls subroutine B.
Subroutine B subsequently calls C, which in turn calls D. At any given time, the stack
pointer (sp) register points to the first unused location on the stack (or the last used location
on some machines), and the frame pointer (fp) register points to a known location within
the frame (activation record) of the current subroutine. The relative order of fields within
a frame may vary from machine to machine and compiler to compiler.



Example: Examine Stack for the C

int bar(int x)

{
int z=5;
return z;

}

int foo(int x)

{
int y=3;
x=x+y;
y = bar(x);
return x;

}

Program

int main(int argc, char* argv[])

{

int a=1, b=2, c=3;

b = foo(a);

printf("%d %d %d\n",a,b,c);

return O;

Memory Management

Region of memory where subblocks are allocated and

Heap

deallocated dynamically

More unstructured
Allocation and deallocation may happen in arbitrary

order

— Memory may become fragmented
— Need for garbage collection

— We will describe garbage collection algorithms later
Heap Management

— Often managed with a single linked list — the free list — of
blocks not in use

¢ First Fit?

* Best Fit? (smallest block large enough to handle request)

1/30/2013



1/30/2013

Lifetime and Storage Management

* Heap for dynamic allocation

Allocation request I:I

Figure 3.3: External fragmentation. The shaded blocks are in use: the clear blocks are

free. While there is more than enough total free space remaining to satisfy an allocation
request of the illustrated size, no single remaining block is large enough.

Scope Rules

* A scope is a program section of maximal size in
which no bindings change, or at least in which
no re-declarations are permitted

* In most languages with subroutines, we OPEN a
new scope on subroutine entry:
— create bindings for new local variables,

— deactivate bindings for global variables that are re-
declared (these variable are said to have a "hole" in
their scope)

— make references to variables



1/30/2013

Scope Rules

* On subroutine exit:
— destroy bindings for local variables

— reactivate bindings for global variables that were
deactivated

* Algol 68:
— ELABORATION = process of creating bindings
when entering a scope
e Ada (re-popularized the term elaboration):

— storage may be allocated, tasks started, even
exceptions propagated as a result of the
elaboration of declarations

Scope Rules

* With STATIC (LEXICAL) SCOPE RULES, a scope
is defined in terms of the physical (lexical)
structure of the program

— The determination of scopes can be made by the
compiler

— All bindings for identifiers can be resolved by
examining the program

— Typically, we choose the most recent, active
binding made at compile time

— Most compiled languages, C++ and Java included,
employ static scope rules



Scope Rules

* The classical example of static scope rules is
the most closely nested rule used in block
structured languages such as Algol 60 and
Pascal

— An identifier is known in the scope in which it is

declared and in each enclosed scope, unless it is
re-declared in an enclosed scope

— To resolve a reference to an identifier, we examine
the local scope and statically enclosing scopes
until a binding is found

Scope Rules

* Note that the bindings created in a subroutine
are destroyed at subroutine exit

* Obvious consequence when you understand how
stack frames are allocated and deallocated

* The modules of Modula, Ada, etc., give you
closed scopes without the limited lifetime
— Bindings to variables declared in a module are inactive
outside the module, not destroyed
— The same sort of effect can be achieved in many
languages with own (Algol term) or static (C term)
variables

1/30/2013

10



Scope Rules

* Access to non-local variables STATIC LINKS

— Each frame points to the frame of the (correct
instance of) the routine inside which it was
declared

— In the absence of formal subroutines, correct
means closest to the top of the stack

— You access a variable in a scope k levels out by
following k static links and then using the known
offset within the frame thus found

 More details in Chapter 8

Scope Rules

Figure 3.5: Static chains. Subroutines A, B, C. D. and E are nested as shown on the left.
If the sequence of nested calls at run time is A, E. B, D. and C. then the static links in the
stack will look as shown on the right. The code for subroutine C can find local objects at
known offsets from the frame pointer. It can find local objects of the surrounding scope, B,
by dereferencing its static chain once and then applying an offset. It can find local objects
in B’s surrounding scope, A, by dereferencing its static chain twice and then applying an
offset.

Copyright © 2005 Elsevier

1/30/2013

11



1/30/2013

Scope Rules

* The key idea in static scope rules is that
bindings are defined by the physical (lexical)
structure of the program.

* With dynamic scope rules, bindings depend
on the current state of program execution

— They cannot always be resolved by examining the
program because they are dependent on calling
sequences

— To resolve a reference, we use the most recent,
active binding made at run time

Binding of Referencing Environments

* Accessing variables with dynamic scope:
— (1) keep a stack (association list) of all active
variables

* When you need to find a variable, hunt down from
top of stack

* This is equivalent to searching the activation
records on the dynamic chain

12



Binding of Referencing Environments

* Accessing variables with dynamic scope:

— (2) keep a central table with one slot for every
variable name

* If names cannot be created at run time, the table
layout (and the location of every slot) can be fixed
at compile time

* Otherwise, you'll need a hash function or
something to do lookup

* Every subroutine changes the table entries for its
locals at entry and exit (push / pop on a stack).

Binding of Referencing Environments

(1) gives you slower access but fast calls
(2) gives you slower calls but fast access

In effect, variable lookup in a dynamically-
scoped language corresponds to symbol table
lookup in a statically-scoped language

Because static scope rules tend to be more
complicated, however, the data structure and
lookup algorithm also have to be more
complicated

1/30/2013

13



1/30/2013

Scope Rules

* Dynamic scope rules are usually
encountered in interpreted languages

— early LISP dialects assumed dynamic scope

rules.

* Such languages do not normally have
type checking at compile time because
type determination isn't always possible
when dynamic scope rules are in effect

Scope Rules

Example: Static vs. Dynamic

int a;

¥oid first ()
a = 1;

}

void second ()

{
int a = 3;
} first();

void main ()
{
a = 2;
second;

printf ("%d\n",

}

14



1/30/2013

Scope Rules
Example: Static vs. Dynamic

* If static scope rules are in effect (as would be
the case in C), the program printsa 1

 If dynamic scope rules are in effect, the
program prints a 2

* Why the difference? At issue is whether the
assignment to the variable a in function first
changes the variable a declared in the main
program or the variable a declared in function
second

Scope Rules
Example: Static vs. Dynamic

* Static scope rules require that the reference resolve to
the most recent, compile-time binding, namely the
global variable a

* Dynamic scope rules, on the other hand, require that we
choose the most recent, active binding at run time
— Perhaps the most common use of dynamic scope rules is to
provide implicit parameters to subroutines
* Begin

— Print_base: integer := 16 // use hex
— Print_integer(n)

— This is generally considered bad programming practice
nowadays
* Alternative mechanisms exist, e.g. optional parameters

15



type person = record

age :integer Static scoping or

threshold : integer

Deep binding makes

people : database sense here

function older_thanip : person) : boolean
return p.age = threshold

) Dynamic scoping or
procedure printpersonip : person) <~

- Call appropriate |/O routines to print record on standard output. Shallow binding
—— Make use of nonlocal variable lineJength to format data in columns. makes some sense
st here

procedure print_selected_records(db : database;

predicate, print_routine : procedure)

line_length : integer

if device_type(stdout) = terminal

lineJength := 80

else —— Standard output is a file or printer.

lineJength := 132

foreach record rin db

—— Iterating over these may actually be
—- a lot more complicated than a “for" locp.
if predicateln

print_routine(r)

——main program

threshold := 35

print_s¢

elected secordsipeople, older_than, printperson)

© by Elsevier, Inc. All rights reserved.

Binding of Referencing Environments

REFERENCING ENVIRONMENT of a statement at run time
is the set of active bindings

A referencing environment corresponds to a collection of
scopes that are examined (in order) to find a binding

SCOPE RULES determine that collection and its order

First-class status: objects that can be passed as
parameters or returned and assigned

Second-class status: objects that can be passed but not
returned or assigned

Some programming languages allow subroutines to be
first-class

— What binding rules to use for such a subroutine?

1/30/2013

16



Binding within a Scope

* Aliasing
— Two or more names that refer to a single object in
a given scope are aliases

— What are aliases good for?

* space saving - modern data allocation methods are
better

* multiple representations
* linked data structures - legit

— Also, aliases arise in parameter passing
* Sometimes desirable, sometimes not

Aliases

Java:

public static void foo(MyObject x)
{

x.val = 10;

}

public static void main(String[] args)

{
MyObject o = new MyObject(1);
foo(o);

1/30/2013

17



Aliases

C++:

public static void foo(int &x)

{
MyObject o;
x =10;

}

public static void main(String[] args)

{
inty = 20;
fool(y);

Binding within a Scope

* Overloading
— some overloading happens in almost all languages

* integer + v. real +
— Handled with help from the symbol table

* Lookup a list of possible meanings for the requested
name; the semantic analyzer chooses the most
appropriate one based on the context

— some languages get into overloading in a big way

* Ada

e C++

1/30/2013

18



Ada Constant Overloading

declare
type month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);
type print_base is (dec, bin, oct, hex);
mo : month;
pb : print_base;

begin
mo := dec; -- the month dec
pb := oct; -- the print_base oct
print(oct) ; -- aerror! insufficient context to decide

© by Elsevier, Inc. All rights reserved.

C++ Operator Overloading

const Money operator +(const Money& amount1, const Money& amount2)
{

int allCents1 = amountl.cents + amountl.dollars*100;

int allCents2 = amount2.cents + amount2.dollars*100;

int sumAllCents = allCents1 + allCents2;

int absAllCents = abs(sumAllCents); //Money can be negative.

int finalDollars = absAllCents/100;

int finalCents = absAllCents%100;

if (sumAllCents < 0)

finalDollars = -finalDollars;
finalCents = -finalCents;

}

return Money(finalDollars, finalCents);

bool operator ==(const Money& amount1, const Money& amount2)
{
return ((amountl.dollars == amount2.dollars)
&& (amountl.cents == amount2.cents));

1/30/2013

19



1/30/2013

Binding within a Scope

* It's worth distinguishing between some closely
related concepts

— overloaded functions - two different things with
the same name; in Ada

function min(a, b : integer) return integer..
function min(x, y : real) return real ..

— In Fortran, these can be automatically coerced:
real function min(x,y) real x,y

Fortran will convert int input to reals, find the min, then return the
result back as a real

Binding within a Scope

* generic functions (modules, etc.) - a syntactic template that
can be instantiated in more than one way at compile time
— Also called explicit parametric polymorphism
— via macro processors in C++
— Templates in C++/Java

public class TwoTypePair<T1l, T2>
{

private Tl first;

private T2 second;

public TwoTypePair (Tl firstItem, T2 secondItem)
{

first = firstItem;

second = secondItem;

}

public T1 getFirst()
{
return first;

}

TwoTypePair<String, Integer> rating = new TwoTypePair<String, Integer>("The Car Guys", 8);

20



1/30/2013

Separate Compilation

* Since most large programs are constructed
and tested incrementally, and some
programs can be very large, languages must
support separate compilation

e Compilation units usually a “module”

— Class in Java/C++
— Namespace in C++ can link separate classes
— More arbitrary in C

— Java and C# were the first to break from the standard of requiring
a file with header information for all methods/classes

Conclusions

* The morals of the story:
— language features can be surprisingly subtle

— Determining how issues like binding, naming, and
memory are used have a huge impact on the
design of the language

— Static vs. dynamic scoping is interesting, but all
modern languages use static scoping

— most of the languages that are easy to understand
are easy to compile, and vice versa

21



