
Smart Pointers – C++11

C++ has many benefits of pointers but also several pitfalls if memory management is not performed

correctly. Dangling pointers or memory leaks can result in errors that are difficult to find. C++11

includes a new class called shared_ptr that simplifies memory management and sharing of objects in

memory.

The shared_ptr class is a template that is a wrapper around an object allocated from the heap. The

wrapper uses reference counting to track how many other pointers reference the object. The counter

starts at zero. The counter is incremented by one every time a new variables references the object.

Similarly, the counter is decremented by one every time a variable ceases to reference the object (e.g., it

is deleted or reassigned). If the counter reaches zero then the object can be safely deleted and the

allocated memory returned to the heap. This is all performed automatically, which frees the

programmer from having to write his or her own memory management code!

As an example, consider the following code which implements a simple linked list of the Node class. The

class simply stores an integer. The code is written using the “old” format of linking classes via pointer

and does not explicitly free the memory that is allocated in the listTest function. This means that the

program has a memory leak when execution returns to the main function. This could cause memory

problems if the program did not immediately exit.

// Linked list of a simple Node class using traditional pointers.

// Note that this version has a memory leak when execution returns to

// main.

#include <iostream>

using namespace std;

// A simple Node class. A full-featured class would have

// several more functions.

class Node

{

private:

 int num;

 Node *next;

public:

 Node();

 ~Node();

 Node(int num, Node *nextPtr);

 int getNum();

 Node* getNext();

 void setNext(Node *nextPtr);

};

Node::Node() : num(0), next(nullptr)

{ }

Node::Node(int numVal, Node *nextPtr) : num(numVal), next(nextPtr)

{ }

Node::~Node()

{

 cout << "Deleting " << num << endl;

}

int Node::getNum()

{

 return num;

}

Node* Node::getNext()

{

 return next;

}

void Node::setNext(Node *nextPtr)

{

 next = nextPtr;

}

void listTest()

{

 // Create a linked list with 10->20->30

 Node *root = new Node(10, nullptr);

 root->setNext(new Node(20, nullptr));

 root->getNext()->setNext(new Node(30, nullptr));

 // Output the list

 Node *temp;

 temp = root;

 while (temp != nullptr)

 {

 cout << temp->getNum() << endl;

 temp = temp->getNext();

 }

}

int main()

{

 listTest();

 return 0;

}

Program output:

10

20

30

Note that despite the existence of a destructor for the Node class, the destructor is never called. This is

because we never delete each node. The memory allocated in listTest is never freed so we have a

memory leak in main. This is not really a problem since the program immediately exits (at which point

memory is reclaimed) but if there were further processing after the call to listTest then we could

have memory problems.

Next, consider the same program written with the shared_ptr class. We must include the <memory>

library. Every occurrence of a pointer to the Node class is replaces with shared_ptr<Node> instead.

// Linked list of a simple Node class using smart pointers.

// There is no memory leak since ths shared_ptr class

// handles reference counting and memory deallocation.

#include <iostream>

#include <memory>

using namespace std;

// Class modified to use shared_ptr of Nodes.

class Node

{

private:

 int num;

 shared_ptr<Node> next;

public:

 Node();

 ~Node();

 Node(int num, shared_ptr<Node> nextPtr);

 int getNum();

 shared_ptr<Node> getNext();

 void setNext(shared_ptr<Node> nextPtr);

};

Node::Node() : num(0), next(nullptr)

{ }

Node::~Node()

{

 cout << "Deleting " << num << endl;

}

Node::Node(int numVal, shared_ptr<Node> nextPtr) : num(numVal),

next(nextPtr)

{ }

int Node::getNum()

{

 return num;

}

shared_ptr<Node> Node::getNext()

{

 return next;

}

void Node::setNext(shared_ptr<Node> nextPtr)

{

 next = nextPtr;

}

void listTest()

{

 shared_ptr<Node> root(new Node(10, nullptr));

 shared_ptr<Node> next1(new Node(20, nullptr));

 shared_ptr<Node> next2;

 // After a shared_ptr is declared we can set it

 // using the reset function

 next2.reset(new Node(30, nullptr));

 // Link the nodes together

 root->setNext(next1);

 next1->setNext(next2);

 // Output the list

 shared_ptr<Node> temp;

 temp = root;

 while (temp != nullptr)

 {

 cout << temp->getNum() << endl;

 temp = temp->getNext();

 }

}

int main()

{

 listTest();

 cout << "Exiting program." << endl;

 return 0;

}

Program output:

10

20

30

Deleting 10

Deleting 20

Deleting 30

Exiting program.

Note that the linked list is automatically deallocated for us by the shared_ptr class when the variables

go out of scope in the listTest function. This is done for us after the call to listTest exits, as

indicated by the messages output by the Node destructor before the program exits.

As a further example, consider what would happen if there is a global variable that references the

second item in the linked list. In this case the shared_ptr class will not delete the remainder of the

items in the list when the listTest function exits. This is because the nodes are only deleted when

there are no references to them. Note that the use of the global variable is not considered a good

programming practice, but is shown here only to illustrate the concept of reference counting.

Additional global variable:

shared_ptr<Node> global_reference;

Modified code in listTest:

void listTest()

{

 shared_ptr<Node> root(new Node(10, nullptr));

 shared_ptr<Node> next1(new Node(20, nullptr));

 shared_ptr<Node> next2;

 // After a shared_ptr is declared we can set it

 // using the reset function

 next2.reset(new Node(30, nullptr));

 // Link the nodes together

 root->setNext(next1);

 next1->setNext(next2);

 // Output the list

 shared_ptr<Node> temp;

 temp = root;

 while (temp != nullptr)

 {

 cout << temp->getNum() << endl;

 temp = temp->getNext();

 }

 // The line below creates a reference to the second item

 // in the linked list

 global_reference = root->getNext();

}

Program output:

10

20

30

Deleting 10

Exiting program.

Deleting 20

Deleting 30

The big difference is that only the first node is deleted when the listTest function exits because it has

no references. The remaining two nodes still have references due to the global variable. However, when

the program finally exits, even these nodes go out of scope and memory is deallocated.

You should be aware that the shared_ptr class does not solve all of your problems. There is a problem

if you make a circular list of references, in which case the reference count will never each 0 and memory

will not be reclaimed. To solve this problem, C++11 includes an additional class named weak_ptr in

which case an object will be destroyed if a weak_ptr is the only reference to it. As long as at least one

of your links is conncted by a weak_ptr then the entire circular list will eventually be deallocated.

C++11 also includes a class named unique_ptr that cannot be assigned to any other pointer. Older

versions of C++ supported a class named auto_ptr but it has been deprecated in C++11.

