Binary Search Trees

Chapter 12

What is a Binary Search Tree?

* A binary tree where each node is an object
* Each node has a key value, left child, and right child (might be empty)

* Each node satisfies the binary search tree property

* Let x be a node in the BST. The left child’s key must be <= x’s key. The right
child’s key must be >= x’s key

5) Q@)
P (2
/ ~ \
D)

2 @ Q)

3/19/2014



3/19/2014

Traversing the BST

INORDER-TREE-WALK (x)

1 ifx # NIL

2 then INORDER-TREE-WALK (left[x])
3 print key[x]

4 INORDER-TREE-WALK (right|x])

O(n) time

Searching a BST

TREE-SEARCH(x, k)

if x = NIL or k = key[x]
then return x

if k < key[x]
then return TREE-SEARCH (left[x], k)
else return TREE-SEARCH (right[x], k)

B W e

Runs in O(h) time but this could be O(n) in the worst case!
O(lgn) if the tree is balanced!

Finding min and max?



3/19/2014

Successor

* Finding the node with the next
largest (or equal) value

TREE-SUCCESSOR (x)
1 if right[x] # NIL
then return TREE-MINIMUM (right[x])
y < plx]
while y # NIL and x = right[y]
5 dox <y
6 y < plyl
7 returny

B W

O(h) runtime

Insertion

TREE-INSERT(T, z)
1 y <« NIL

2 x < root|T]

3 while x # NIL

4 doy « x

5 if key[z] < key[x]

6 then x <« left[x]
7 else x <« right[x]
8 plz]l «y

9 ify=nNIL

10 then root[T] « z > Tree T was empty
11 else if key[z] < key[y]

12 then left[y] < z
13 else right[y] « z

O(h) runtime



3/19/2014

Deletion

* Deletinga node zfromaBSTT

1. If z has no children the simply remove it by modifying its parent to
replace z with nil as its child

2. If z has just one child then we elevate that child to take z’s position in the
tree by modifying z’s parent to replace z by z’s child

3. If z has two children then:
* Find z’s successor y — which must be in z’s right subtree — and have y take z’s position

in the tree
* As asuccessory in the right subtree, y has at most one child. Remove y using rule 2

* The rest of z’s original right subtree becomes y’s right subtree and z’s left subtree
becomes y’s left subtree

Delete Examples

(a)

(b)




Deletion
Tree-Delete(T,z) 2y
if z.left == NIL
Transplant(T, z, z.right) u\,
elseif z.right == NIL ] :ﬂ
Transplant(T, z, z.left) -
else
y = Tree-Minimum(z.right)
ifypl=z
Transplant(T,y,y,right) -
y.right = z.right kﬁ
y.right.p=vy /
Transplant(T, z, y) I'f:E:I
y.left = z.left o
y.left.p =y
BST

* Worst case?
* Best case?
* Expectation for randomly built BST?

3/19/2014



