
3/19/2014

1

Binary Search Trees
Chapter 12

What is a Binary Search Tree?
• A binary tree where each node is an object

• Each node has a key value, left child, and right child (might be empty)

• Each node satisfies the binary search tree property
• Let x be a node in the BST. The left child’s key must be <= x’s key. The right

child’s key must be >= x’s key

3/19/2014

2

Traversing the BST

O(n) time

Searching a BST

Runs in O(h) time but this could be O(n) in the worst case!
O(lgn) if the tree is balanced!

Finding min and max?

3/19/2014

3

Successor
• Finding the node with the next

largest (or equal) value

O(h) runtime

Insertion

O(h) runtime

3/19/2014

4

Deletion

• Deleting a node z from a BST T

1. If z has no children the simply remove it by modifying its parent to
replace z with nil as its child

2. If z has just one child then we elevate that child to take z’s position in the
tree by modifying z’s parent to replace z by z’s child

3. If z has two children then:
• Find z’s successor y – which must be in z’s right subtree – and have y take z’s position

in the tree

• As a successor y in the right subtree, y has at most one child. Remove y using rule 2

• The rest of z’s original right subtree becomes y’s right subtree and z’s left subtree
becomes y’s left subtree

Delete Examples

3/19/2014

5

Deletion
Tree-Delete(T,z)
if z.left == NIL

Transplant(T, z, z.right)
elseif z.right == NIL

Transplant(T, z, z.left)
else

y = Tree-Minimum(z.right)
if y.p != z

Transplant(T,y,y,right)
y.right = z.right
y.right.p = y

Transplant(T, z, y)
y.left = z.left
y.left.p = y

BST

• Worst case?

• Best case?

• Expectation for randomly built BST?

