®

@

15.1 Java Linked Lists

Example: A Simple Linked List Class
Working with Linked Lists

Node Inner Classes

Example: A Generic Linked List
The equals Method for Linked Lists

15.2 Copy Constructors and the
clone Method X

Simple Copy Constructors and clone Methods
Exceptions

Example: A Linked List with a Deep Copy
clone Method

15.3 Iterators
Defining an Iterator Class
Adding and Deleting Nodes

15.4 Variations on a Linked List
Doubly Linked List

The Stack Data Structure

The Queue Data Structure

Running Times and Big-O Notation
Efficiency of Linked Lists

15.5 Hash Tables with Chaining
A Hash Function for Strings
Efficiency of Hash Tables

15.6 Sets
Fundamental Set Operations

Efficiency of Sets Using Linked Lists

15.7 Trees

Tree Properties

Example: A Binary Search Tree Class
Efficiency of Binary Search Trees

Chapter Summary
Answers to Self-Test Exercises

Programming Projects

794
794
798
804
807
813

814
815
815
822

826
827
832

837
846
848
851
856

857
858
862

863
863
868

869
870
872
878

279
250
885

Linked Data
Structures

.

3|8

node and link

Do

linked list

head node

Linked Data Structures

‘ @ M15_SAVI3825_04_Cl5.fim Page 792 Friday, January 2, 2009 4:35 PM

If somebody there chanced (o be

Who loved me in a manner lruc
My heart would point him out to me

And I would point him oul to you

GILBERT AND SULLIVAN, Ruddigore

Introduction

A linked data structure consists of capsules of data, known as nodes, that are con-
nected via things called links. These links can be viewed as arrows and thought of as
one-way passages from one node to another. The simplest kind of linked data structure
consists of a single chain of nodes, each connected to the next by a link; this is known
as a linked list. A sample linked list can be depicted as shown in Display 15.1. In Dis-
play 15.1 the nodes are represented by boxes that can each hold two kinds of data, a
string and an integer, as in a shopping list. The links are depicted as arrows, which
reflects the fact that your code must traverse the linked list in one direction without
backing up. 5o there is a first node, a second node, and so on up the last node. The
first node is called the head node.

That information is all very vague but provides the general picture aof what is going
o in a linked list. It becomes concrete when you realize a linked list in some program-
ming language. In Java, the nades are realized as objects of a node class. The data in a
wade is stored via instance variables. The links are realized as references. Recall that
a reference is simply a memory address. A reference is what is stored in a variable of a
class type. So the link is realized as an instance variable of the type of the node class
itself. In Java, a node in a linked list is connected to the next node by having an
instance variable of the node type contain a reference (that is, a memory address) of
where in memory the next node is stored.

Java comes with a LinkedList library class as part of the java.util package. It makes
sense 1o use this library class, since it is well designed, well tested, and will save you a lot
of work. However, using the library class will not teach you how to implement linked
data structures in Java. To do that, you need to see an implementation of a simple linked
data structure, such as a linked list. So to let you see how this sort of thing is done in
Java, we will construct our own simplified example of a linked list.

After discussing linked lists we then go on to discuss more elaborate linked data
structures, including sets, hash tables, and trees.

% @

% ‘ é M15_SAVI3825_04_CI15.fm Page 793 Friday, Janvary 2, 2009 4:35 PM
-

7

‘e

Display 15.1 Nodes and Links in a Linked List

head

_—— g

Prerequisites

"rolls”

end marker

—_— i

&

% @

Linked Data Structures 793

If you prefer, you may skip this chapter and go directly to Chapter 16 on collection
classes or to Chapter 17 to begin your study of windowing interfaces using the
Swing library. You have a good deal of flexibility in how you order the later chapters

of this book.

This chapter requires material from Chapters 1 through 5, Chapter 14, and simple
uses of inner classes (Section 13.2 of Chapter 13). Section 15.7 on trees additionally

requires Chapter 11 on recursion.

Sections 15.2 through 15.7 do not depend on each other in any essential way. In
particular, you may omit Section 15.2 on cloning and still read the following sections.
Sections 15.2 through 15.7 do not depend in any essential way on the material on
generic linked lists in subsections of Section 15.1.

©

o

ey
'@)" MI5_SAVI3825_04_CI5.fim Page 794 Friday, January 2, 2009 4:35 PM

794 CHAPTER15 Linked Data Structures

15.1 Java Linked Lists

A chain is only as strong as its weakest link.
PROVERE

A linked list is a linked data structure consisting of a single chain of nodes, each con-
nected to the next by a link. This is the simplest kind of linked data structure, but it is
nevertheless widely used. In this section, we give examples of linked lists and develop
techniques for defining and working with linked lists in Java.

EXAMPLE: A Simple Linked List Class

Display 15.1 is a diagram of a linked list. In the display the nodes are the boxes. In
your Java code, a node is an object of some node class, such as the class Node1 given in
Display 15.2. Each node has a place (or places) for some darta and a place to hold a link
to another node. The links are shown as arrows that point to the node they “link” to.
In Java, the links will be implemented as references to a node stored in an instance
variable of the node type.

The Nodel class is defined by specifying, among other things, an instance variable of
type Nodel that is named link, This allows cach node to store a reference to another -
node of the same type. There is a kind of circularity in such definitions, but this circular-
ity is allowed in Java. (One way to see that this definition is not logically inconsistent is
to note that we can draw pictures, or even build physical models, of our linked nodes.)

The first node, or start node, in a linked list is called the head node. If you start at
the head node, you can traverse the entire linked list, visiting each node exactly once.
As you will see in Java code shortly, your code must intuitively “follow the link
arrows.” In Display 15.1 the box labeled head is not itself the head node; it is not even
a node. The box labeled head is a variable of type Nodel that contains a reference to the
first node in the linked list—that is, a reference to the head node. The function of the
variable head is that it allows your code to find that first or head node. The variable
head is declared in the obvious way:

®
|

Nodel head;

In Java, a linked list is an object that in some sense contains all the nodes of the linked
list. Display 15.3 contains a definition of a linked list class for a linked list like the one in
Display 15.1. Notice that a linked list object does not directly contain all the nodes in the
linked list. It only contains the instance variable head that contains a reference to the first or
head node. However, every node can be reached from this first or head node. The 1ink
instance variable of the first and every Nodel of the linked list contains a reference to the
next Nodel in the linked list. Thus, the arrows shown in the diagram in Display 15.1 are
realized as references in Java. Each node object of a linked list contains (in its 1ink instance
variable) a reference to another object of the class Nodel, and this other object contains a
reference to another object of the class Nodel, and so on until the end of the linked list.
Thus, a linked list object, indirectly at Jeast, contains all the nodes in the linked list.

¢

.‘@ ®

% ’ é MI15_SAVI3825_04_C15.fin Page 795 Friday, January 2,2009 4:35PM @g ‘

?

% @

Java Linked Lists 795

Display 15.2 A Node Class

public class Nodel

.[.
pr}va:e S't'r;mg ;Eem; A node contains a reference to another node.
RIRMARER HIE SO __— That reference is the link to the next node.
private Nodel link; =" ¢
public Nodel()
{
T4k < Al We will define a number of node clasees eo we
jveE = Ryl numbered the names as In Nodel.
count = 0;
F
public Nodel{String newltem, int newCount, MNodel linkValue)
£
setData(newItem, newCount);
link = linkValue;
|3
public void setData(String newlItem, int newCount)
{
item = newltem,;
count = newCount; We will give a better definition of a
¥ node class later in this chapter.
public void setLink (Nodel newLink)
i
link = newLink;
1
public String getItem()
{
return item;
}
public int getCount()
{
return count;
}
public Nodel getLink(B
{
return link;
]
¥

o @

é MI5_SAVI3825_04_C15.fm Page 796 Friday, January 2, 2009 4:35 PM

796 CHAPTER15 Linked Data Structures

Display 15.3 A Linked List Class (part 1 of 2)

1 public class LinkedlListl

2 1

2 private Nodel head; We will define a letter linked list class later in
4 . . i this chapter.

5 public LinkedList1()

6 {

7 head = null;

& 1

‘_] /**
10 Adds a node at the start of the list with the specified data.
11 The added node will be the first node in the list.
12 */
13 public void addToStart(String itemName, int itemCount)
14 {
15 head = new Nodel(itemName, itemCount, head);
16]
17 [
18 Removes the head node and returns true if the list contained at least
19 one node. Returns false if the list was empty.
20 */
21 public boolean deleteHeadNode()
22 {
23 if (head != null)
24 {
25 head = head.getLink();
26 return true;
27 1
28 else
29 return false;

30 }

31 [

32 Returns the number of nodes in the list.

33 */

34 public int size()

35 {

36 int count = 0O;

37 Nodel position = head;

38

1= ¢ /@

% . é M15_SAVI3825_04_C!5.fm Page 797 Friday, January 2,2009 4:35 PM

Java Linked Lists 797

Display 15.3 A Linked List Class (part 2 of 2)

39
40
41
42
43
44
45

46
47
48
49

50
51

52

53

54

55

| 56
57
L) 58
59

| 60
61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

(position l=null) w-—__ This last node is indicated

{ by the 1ink field being equal
count++; to null.
position = position.getlLink();

1

return count;

}
public boolean contains(String item)
{
return (find(item) != null);
1
/**

Finds the first node containing the target item, and returns a
reference to that node. If target is not in the list, null is returned.

e
private Nodel find(String target)
{
Nodel position = head;
String itemAtPosition;
while (position != null)
{
itemAtPosition = position.getItem();
if (itemAtPosition.equals(target))
return position;
position = position.getLink(); This is the way you
} traverse an entlire
return null; //target was not found linked list.
}
public void outputList()
{
Nodel position = head;
while (position != null)
{
System.out.println(position.getltem{ J + e
+ position.getCount());
position = position.getLink();
}
}

@

o

~9|@

‘ @_ﬂis_s;\vnszs_m_c15.fm Page 798 Friday, January 2, 2009 4:35 PM

F

....-r

798 CHAPTER15 Linked Data Structures

Working with Linked Lists

When dealing with a linked list, your code needs to be able to "get to” that first or head
node, and you need some way to detect when the last node is reached. To get your code
to the first node, you use a variable of type Nodel that always contains a reference to the
first node. Tn Display 15.3, the variable with a reference to the first node is named head.
From that first or head node your code can follow the links through the linked list. But
how does your code know when it is at the last node in 4 linked list?

In Java, you indicare the end of a linked list by setting the 1ink instance variable of
the last node in the linked list to nul1, as shown in Display 15.4. That way your code
can test whether or not a node is the last node in a linked list by testing whether its
link instance variable contains null. Remember that you check for a link being
“equal” to null by using ==, not any equals method.

You also use null to indicate an empty linked list. The head instance variable con-
tains a reference to the first node in the linked list, or it contains null if the linked list

empty list is empty (that is, if the linked list contains no nodes). The only constructor sets this
head instance variable to null, indicating that a newly created linked list is empty.

Display 15.4 Traversing a Linked List

head

A,] . “rolls”
- e

position —* —

R "jam
—_— -

y —— This referenceis
milk" position.getLink().

— When position is at this last node,

2 //" position.getLink() == null.

i é—j M15_SAVI3825_04_C15.fin Page 799 Friday, January 2, 2009 4:35 PM

Java Linked Lists 799

Indicating the End of a Linked List

The last node in a linked list should have its 1ink instance variable set to null. That way, your
code can check whether a node is the last node by checking whether its 1ink instance vari-
able is equal to null.

An Empty List Is Indicated by null

Suppose the variable head is supposed to contain a reference to the first node in a linked list.
Linked lists usually start out empty. To indicate an empty linked list, you give the variable
head the value null. This is traditional and works out nicely for many linked list manipulation

algorithms.

Before we go on to discuss how nodes are added and removed from a linked list,

let’s suppose that the linked list already has a few nodes and that you want to write out

traversing a the contents of all the nodes to the screen. You can do this with the method output-
linked list List (Display 15.3), whose body is reproduced here:

i Nodel position = head; o
) while (position != null)
{

System.out.println(position.getItem() +
+ position.getCount());
position = position.getLink();
'|.

The method uses a local variable named position that contains a reference to one
node. The variable position starts out with the same reference as the head instance
variable, so it starts out positioned at the first node. The position variable then has its
position moved from one node to the next with the assignment

position = position.getLink();

This is illustrated in Display 15.4. To see that this assignment “moves” the position
variable to the next node, note that the position variable contains a reference to the
node pointed to by the position arrow in Display 15.4. So, position is a name for tha
node, and position.link is a name for the link to the next node. The value of link is

produced with the accessor method getLink. T hu-;, a reference to the next node in the
lmkcd list is position.getLink(). You “move” the position variable by giving it the
value of position.getLink().

% l é MI5_SAVI3825_04_Cl5.fin Page 800 Friday, January 2, 2009 4:35 PM
8

C K

&

800 CHAPTER15 Linked Data Structures

adding a

node

removing a
node

The method outputlList continues to move the position variable down the linked
list and outputs the data in each node as it goes along. When position reaches the last
node, it outputs the data in that node and then again executes

position = position.getlLink()

[f you study Display 15.4, you will see that when position leaves the last node, its
value is set to null. At that point, we want to stop the loop, so we iterate the loop

while (position != null)

A similar technique is used to traverse the linked list in the methods size and find.

Next let’s consider how the method addToStart adds a node to the start of the
linked list so that the new node becomes the first node in the list. It does this with the
single statement

head = new Nodel(itemName, itemCount, head) ;
The new node is created with
new Nodel(itemName, itemCount, head)

which returns a reference to this new node. The assignment statement sets the variable
head equal to a reference to this new node, making the new node the first node in the
linked list. To link this new node to the rest of the list, we need only set the link
instance variable of the new node equal to a reference to the old first node. But we have
already done that: head used to point to the old first node, so if we use the name head
on the right-hand side of the assignment operator, head will denote a reference to the old
first node. Therefore, the new node produced by

new Nodel(itemName, itemCount, head)

points to the old first node, which is just what we wanted. This is illustrated in Dis-
play 15.5.

Later, we will discuss adding nodes at other places in a linked list, but the easiest
place to add a node is at the start of the list. Similarly, the easiest place to delete a node
is at the start of the linked list.

The method deleteHeadNode removes the first node from the linked list and leaves the
head variable pointing to (that is, containing a reference to) the old second node (which is
now the first node) in the linked list. This is done with the following assignment:

head = head.getLink();

4|8

% ‘ @g MI15_SAVI3825_04_CI5.fm Page 801 Friday, January 2, 2009 4:35 PM

® ¢

Java Linked Lists

Display 15.5 Adding a Node at the Start

automatic

garbage
collection

new Node("beer", 6, head)
creates this node and positions
it here.

new Node("beer", 6, head)
moves head to the new node.

|. "milk"

This removes the first node from the linked list and leaves the linked list one node
shorter. But what happens to the deleted node? At some point, Java will automatically
collect it, along with any other nodes that are no longer accessible, and recycle the
memory they occupy. This is known as automatic garbage collection.

Display 15.6 contains a simple program that demonstrates how some of the meth-
ods in the class LinkedList1 behave.

801

o @

@

—

% é M15_SAVI3825_04_Cl15.fm Page 802 Friday, January 2, 2009 4:35 PM

#)

QY

802

CHAPTER 15 Linked Data Structures

Display 15.6 A Linked List Demonstration

e

1 public class LinkedListlDemo

2 i

3 public static void main(String[] args)

4 {

5 LinkedListl list = new LinkedlList1();

6 115t.addToStart(“App1es . 1 Cantaloupe is nowin
7 1ist.addTeStart("Bananas™, 233 SRS e d ols

8 list.addTeStart("Cantaloupe”, 3) ;- i

9 System.out.println("List has " + list.size()
10 + " nodes.™);
11 list.outputlist();
12 if (list.contains("Cantaloupe"))
13 System.out.println("Cantaloupe is on list.");
14 else
15 System.out.println("Cantaloupe is NOT on list.™);
16 1ist.deleteHeadNode(J;
17 if (1ist.contains("Cantaloupe“))
18 System.out.println(“Cantaloupe is on list.™);
19 else
20 Svstem.out,println[“ﬂantuluupe is NOT on list."D);
21 while (list.deleteHeadNode(2] — Empties the list. There i@
22 v f/Empty loop body T no loop body because the
23 System.out.println("Start of list:™); method deleteHeadNode
24 list.outputlist(); both performs an action
25 System.out.println("End of list."); on the list and returns a
26 b Boolean value.

27 '}

Sample Dialogue

List has 3 entries.
Cantaloupe 3

Bananas 2

Apples 1

Cantaloupe is on list.
Cantaloupe is NOT on 1list.
Start of list:

End of list.

®

e

-

o
4

&

@
@

@ M15_SAVI3825_04_Cl15.fin Page 803 Friday, January 2,2009 4:35 PM

Java Linked Lists

Self-Test Exercises
1. What output is produced by the following code?

LinkedListl list = new LinkedListl();
1ist.addToStart("apple pie", 1);
list.addToStart("hot dogs™, 12);
list.addToStart("mustard”, 1);
list.outputList();

2. Define a boolean valued method named is Empty that can be added to the class
LinkedList1 (Display 15.3). The method returns true if the list is empty and
false if the list has at least one node in it.

3. Define a void method named clear that can be added to the class LinkedListl
(Display 15.3). The method has no parameters and it empties the list.

b PITFALL: Privacy Leaks

It may help you to understand this section if you first review the Pitfall section of the
same name in Chapter 5.

Consider the method getLink in the class Nodel (Display 15.2). It returns a value of
type Nodel. That is, it returns a reference to a Nadel. In Chapter 5, we said that if a method
(such as getLink) returns a reference to an instance variable of a (mutable) class type, then
the private restriction on the instance variable can easily be defeated because getting a refer-
ence to an object may allow a programmer to change the private instance variables of the
object. There are a number of ways to fix this, the most straightforward of which is to make
the class Nodel a private inner class in the method Nodel, as discussed in the next subsec-
tion.

There is no danger of a privacy leak with the class Nodel when it is used in the class
definition for LinkedList1. However, there is no way to guarantee that the class Nodel
will be used only in this way unless you take some precaution, such as making the class
Nodel a private inner class in the class LinkedListl Nodel.

An alternate solution is to place both of the classes Nodel and LinkedList1 into a
package, and change the private instance variable restriction to the package restric-
tion as discussed in Chapter 7.

Note that this privacy problem can arise in any situation in which a method returns
a reference to a private instance variable of a class type. The method getItem() of the
class Nodel comes very close to having this problem. In this case, the method getItem
causes no privacy leak, but only because the class String is not a mutable class (that is,
.t has no methods that will allow the user to change the value of the string without
changing the reference). If instead of storing data of type String in our list we had
stored data of some mutable class type, then defining an accessor method similarly to
getItem would produce a privacy leak. M

b

803

-

—®
.

804

['(:é_M!ﬁ__SAVBSZS_M_ClS.fm Page 804 Friday, January 2,2009 4:35 PM

CHAPTER 15 Linked Data Structures

Node Inner Classes

You can make a linked list, or any similar dara structures, selF-contained by making the
node class an inner class. In particular, you can make the class LinkedListl maore self-
contained by making Nodel an inner class, as follows:

public class LinkedListl

i

private class Nodel

f

<Thia rest of the definition of Nodel can be
the same as in Display 15.2.>
}
private Nodel head;
<The constructor and methods in Display 15.3 are inserted here.>

1

Note that we've made the class Nodel a private inner class. If an inner class is not
intended to be used elsewhere, it should be made private. Making Nodel a private
inner class hides all objects of the inner class and avoids a privacy leak.

If you are going to make the class Nodel a private inner class in the definition of
LinkedListl, then you can safely simplify the definition of Node1 by eliminating the
accessor and mutator methods (the set and get methods) and just allowing direct
access to the instance variables (item, count, and link) from methods of the outer
class, In Display 15.7, we have written & class similar-to LinkedListl in this way. The
rewritten version, named LinkedList2, is like the class LinkedListl in Display 15.3 in
that it has the same methods thar perform basically the same actions, To keep the dis-
cussion simple, LinkedList2 has only one data field instead of two, We could easily
have retained the two data fields, but we wanted a notationally simple example with-
out any distracting derails. (See Self- Test Exercise 8 for a version thar has the same
kind of data in each node as in the nodes of LinkedListl.)

Display 15.7 A Linked List Class with a Node Inner Class (part 1 ol 3)

1
2
3
4
5
6

public class LinkedList2

f

private class Node

{

private String item;
private Node 1ink;

public Node()
{
item
link

null;
null;

e

w

IS

I
{ é MI15_SAVI3825_04_CI15.fin Page 805 Friday, January 2, 2009 4:35 PM

Java Linked Lists

Display 15.7 A Linked List Class with a Node Inner Class (part 2 of 3)

12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54

public Node(String newItem, Node linkValue)
{

item = newltem;
link linkValue;

1
}//End of Node inner class

private Node head;

public LinkedList2()
{
head = null;
1
/%
Adds a node at the start of the list with the specified data.
The added node will be the first node in the list.

2/
public void addToStart(String itemName)
{
head = new Node(itemName, head);
1
Vi

Removes the head node and returns true if the list contained at least
one node. Returns false if the list was empty.
L1/
public boolean deleteHeadNode()
{
if (head != null)
{
head = head.link;
return true;
}
else
return false;

1

/**
Returns the number of nodes in the list.
=V
public int size()
i

int count = 0;

Node position = head;

while (position != null)

{

count++;
(continucd)

-

®

i

805

—
B <

% ’ é MI5_SAVI3825_04_C15.fin Page 806 Friday, January 2, 2009 4:35 PM

®

806

Dhisplay 15

55
56
57
58

59
60
61
62

63
64
65
66
67
68
69
70
71
| 72
73

- 74
75
76

77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92

93
94
95
96
97

0
ki

CHAPTER 15

Linked Data Structures
A11nhud|i~!{iJaixH!h.ahluh-Innr|l|¢4ﬁ|p| Lded H)
position = position. link;
1 e T Note that the outer class
return count; H“" has direct access to the
} inner class’s instance

variables, such as 1ink.

public boolean contains(String item)
.|'

return (find(item) != null);
}

/**

Finds the first node containing the target item, and returns a

reference to that node. If target is not in the list,
*/
private Node find(String target)

{
Node position = head;
String itemAtPosition;
while (position != null)
{
itemAtPosition = position.item;
1f (itemAtPosition.equals(target))
return position;
position = position.link;
1
return null: //target wos not found
1
public void outputList()
{
Node position = head;
while (position != null)
{
System.out.println(position.item)3
position = position.link;
}
X
public boolean isEmpty()
{
return (head == null);
1
public void clear()
{
head = null;
]

null is returned.

—+@

|
1A% 5415_SAVI3825_04_C15.fim Page 807 Friday, January 2,2009 4:35 PM

Java Linked Lists 807

Self-Test Exercises

4. Would it make any difference if we changed the Node inner class in Display 15.7
from a private inner class to a public inner class?

5. Keeping the inner class Node in Display 15.7 as privote, what difference would it
make if any of the instance variables or methods in the class Node had its access
modifiers changed from private to public or package access?

6. Why does the definition of the inner class Node in Display 15.7 not have the
accessor and mutator methods getLink, setLink, or other get and set methods
for the link fields similar to those in the class definition of Nodel in Display 15.2?

7. Would it be legal to add the following method to the class LinkedList2 in
Display 15.72

public Node startNode()
{

return head;

E

8. Rewrite the definition of the class LinkedList2 in Display 15.7 so that it has data
of a type named Entry, which is a public inner class. Objects of type Entry have
s two instance variables defined as follows: %

i

private String item;
private int count;

This rewritten version of LinkedList2 will be equivalent to LinkedL ist1 in that it
has the same methods doing the same things and it will hold equivalent data in its
nodes.

EXAMPLE: A Generic Linked List

Display 15.8 shows a generic linked list with a type parameter T for the type of data
stored in a node. This generic linked list has the same methods, coded in basically the
same way, as our previous linked list (Display 15.7), but we have used a type parameter
for the type of data in the nodes.

Display 15.10 contains a demonstration program far our generic linked list. The
demonstration program uses the class Entry, defined in Display 15.9, as the type
plugged in for the type parameter T. Note that if you want multiple pieces of data in
each node, you simply use a class type that has multiple instance variables and plug in
this class for the type parameter T.

o

. | @ _.{?) : @' *

% ‘ é MI5_SAVI3825_04_C15.fim Page 808 Friday, January 2, 2009 4:35 PM

@

808

CHAPTER 15 Linked Data Structures

Display 15.8 A Generic Linked List Class {part 1 ol.®) é’_'r,i{

1
2
3
4
5
B
7
8
g9

10
11

12
13
14
15
16
17

18

19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

public class LinkedList3<T>

{

private class Node<T>

{ . This linked list holds objects of type T.
pr‘1..vate T data; . The type T should have well-defined
private Node<T> link; equals and toString methods.
public Node()

{
data = null;
link = null;
}
public Node(T newData, Node<T> linkValue)
{
data = newData;
link = linkValue;
}

}//End of Node<T> inner class

private Node<T> head; |

public LinkedList3() @
{
head = null;
1
/**

Adds a node gt the start of the list with the specified data.
The added node will be the first node in the list.

%/
public void addToStart(T itemData)
{
head = new Node<T>(itemData, head);
}
/**

Removes the head node and returns true if the list contained at least
one node. Returns false if the list was empty.

L1/
public boolean deleteHeadNode()
{
if Chead != null)
{
head = head.link;
return true;
1
else

return false;

(e

% 1 é MI5_SAVI3825_04_C15.fin Page 809 Friday, January 2,2009 4:35 PM 2 {é}‘ ‘

L

® ¢

Display15.8 A Generic Linked List Class (part 2 ofd) L_:_r

45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89

Java Linked Lists 809

.-—"".
1

/**
Returns the number of nodes in the list.
74
public int size()
£
int count = 0;
Node<T> position = head;
while (position != null)
{
count++;
position = position.link;
}

return count;

}

public boolean contains(T item)
i
return (find(item) != null);
b
/**
Finds the first node containing the target item, and returns a
reference to that node. If target is not in the list, null is returned.
L/
private Node<T> find(T target)
{

Node<T> position = head; T l-defined
T itemAtPosition; ypoT ek have oitha

while (position != null) equals for this method to work.
{ /
itemAtPosition = position.data; e
if (itemAtPosition.equals(target)) == —
return position;
position = position.link;
]
return null; //target was not found

1

/**
Finds the first node contoining the target ond returns a reference

to the dota in that node. If target is not in the list, null is returned.
*/
public T findData(T target)
{

Node<T> result = find(target);

if (result == null)
return null;

else
{(conlinucd)

% ' 615 M15_SAVI3825_04_C15.fm Page 810 Friday, January 2, 2009 4:35 PM
®

810 CHAPTER 15 Linked Data Structures

-7
A
Display 15.8 A Generic Linked List Class (part 3 o{f\)'
90 return result.data;
91 }
92 public void outputList() Type T must have well-defined toString
a3 { methods for this to work.
94 Node<T> position = head;
95 while (position != null) j;//
96 {
97 System.out.println(position.data);
98 position = position.link;
99 }
100 i,
101 public boolean isEmpty()
162 {
103 return (head == null);
104);
105 public void clear()
106 {
107 head = null;
108 } |
[109 /% (®
110 For two lists to be equal they must contain the same data items in
111 the same order. The equals method of T is used to compare data items. '
112 */
113 public boolean equals(Object otherObject)
114 {
115 if (otherObject == null)
116 return false;
117 else if (getClass() != otherObject.getClass())
118 return false;
119 else
120 {
121 LinkedList3<T> otherList = (LinkedList3<T>)otherObject;
122 if (size() != otherList.size())
123 return false;
124 Node<T> position = head;
125 Node<T> otherPosition = otherList.head;
126 while (position != null)
127 {
128 if (!(position.data.equals(otherPosition.data)))
129 return false;
130 position = position.link;
131 otherPosition = otherPosition.link;
132 i
133 return true; //no mismatch was not found
134 1

1;2}} /g“

* ‘ é MI15_SAVI3825_04_Cl15.fin Page 811 Friday, January 2, 2009 4:35 PM

39

Java Linked Lists

Display 15.9 A Sample Class for the Data in a Generic Linked List

10
11
12
13

14
15
16
17
18
19
20
27
22
28
24
25
26

27

public class Entry

.I'

private String item;
private int count;

public Entry(String itemData, int countData)

{
item = itemData;
count = countData;
i
public String toString()
I
return (item + " " + count);
1
public boolean equals(Object otherObject)
£
if (otherObject == null)
return false;
else if (getClass() != otherObject.getClass(J)
return false;
else
{
Entry otherEntry = (Entry)otherObject;
return (item.equals(otherEntry.item)
&& (count == otherEntry.count));
1
}

<There should be other constructors and methods, including accessor and

mutator methods, but we do not use them in this demonstration.>

@

L

811

—®

e

— P

812

|
’ é MI5_SAVI3825_04_CI15.fin Page 812 Friday, January 2, 2009 4:35 PM

R
®
|
CHAPTER 15 Linked Data Structures
Display 15.10 A Generic Linked List Demonstration
1 public class GenericlLinkedlListDemo
2
3 public static void main(String[] args)
4 |
5 LinkedList3<Entry> list = new LinkedList3<Entry>();
6
7 Entry entryl = new Entry("Apples”, 1);
8 list.addToStart(entryl);
9 Entry entry2 = new Entry("Bananas™, 2);
10 list.addToStart(entry2);
11 Entry entry3 = new Entry("Cantaloupe", 3);
12 list.addToStart(entry3);
13 System.out.println("List has " + list.size()
14 + " nodes.");
15 list.outputlist();
16 System.out.printIln("End of list.");
17 1
18 }

Sample Dialogue

List has

Apples 1

- PITFALL: Using Node Instead of Node<T>

3 nodes.

Cantaloupe 3
Bananas 2

End of list.

This pitfall is explained by example, using the LinkedList3<T> class in Display 15.8.
However, the lesson applies to any generic linked structure with a node inner class.
The type parameter need not be T and the node class name need not be Node, but for
simplicity, we will use T and Node.

When defining the LinkedList3<T> class in Display 15.8, the type for a node is
Node<T>; it is not Node. However, it is easy to forget the type specification <T> and
write Node instead of Node<T>. If you omit the <T>, you may or may not get a compiler
error message, depending on other details of your code. If you do get compiler etror
message, it is likely to seem bewilderingly strange. The problem is that Node actually
means something. (We do not have time to stop and explain what Node means, but it
means something similar to a node with data type Object, rather than data type T)
Your only defense against this pitfall is to be very careful, and if you do get a bewilder-
ing compiler error message, look for a missing <T>.

® e

B)

* ‘ é MI5_SAVI3825_04_CI15.fin Page 813 Friday, January 2, 2009 4:35 PM

Java Linked Lists 813

W PITFALL: (continued)

Sometimes a compiler warning message can be helpful when you make this mis-
take. If you get a warning that mentions a type cast from Node to Node<T>, look for an
omitted <T>.

Finally, we should note that sometimes your code will compile and even run cor-
rectly if you omit the <T> from Node<T>. ll

The equals Method for Linked Lists

The linked lists we presented in Displays 15.3 and 15.7 did not have an equals
method. We did that to keep the examples simple and not detract from the main mes-
equals sage. However, a linked list class should normally have an equals method.
There is more than one approach to defining a reasonable equals method for a
linked list. The two most obvious are the following:

1. Two linked lists are equal if they contain the same data entries (possibly ordered

differently).
2. Two linked lists are equal if they contain the same data entries in the same order; that s,
the data in the first node of the calling object equals the data in the first node of the

other linked list, the data in the two second nodes are equal, and so forth.

It is not true that one of these is the correct approach to defining an equals method
and the other is incorrect. In different situations, you might want different definitions
of equals. However, the most common way to define equals for a linked list is
approach 2. A definition of equals that follows approach 2 and that can be added to
the class LinkedList2 in Display 15.7 is given in Display 15.11. The generic linked
list in Display 15.8 also contains an equals method that follows approach 2.

Note that when we define equals for our linked list with type parameter T, we are
trusting the programmer who wrote the definition for the type plugged in for T. We
are assuming the programmer has redefined the equals method so that it provides a
reasonable test for equality. Situations like this are the reason it is so important to
always include an equals method in the classes you define.

Display 1511 An equals Mcthod for the Linked List in Display 15.7 (part T of 2)

1 /*

2 For two lists to be equal they must contain the same data items in
3 the same order.

4 */

5 public boolean equals(Object otherObject)

5] {

7 if (otherObject == null)

B return false;

9 else if (getClass() != otherObject.getClass())

1@ return false;

{(continued)

®

9@

@
*
®

: = ‘ é"i'liﬁ_,SAVI3825_04_C15.fm Page 814 Friday, January 2, 2009 4:35 PM

814 CHAPTER15 Linked Data Structures

Display 15.11 An equals Method for the Linked List in Display 15.7 (part 2 of 2)
.

11 else

12 {

13 LinkedList2 otherList = (LinkedList2)otherObject;
14 if (size() != otherList.size())

15 return false;

16 Node position = head;

17 Node otherPosition = otherList.head;

18 while (position != null)

19 {

20 1 T S (!(position.item.equals(otherPosition.item))))
21 return false;

22 position = position.link;

23 otherPosition = otherPosition.link;

24 }

25 return trus: J/A mismatch wos not found

26 }

27 }

| 15.2 Copy Constructors and the clone Method *

There are threc ways to do anything:
The right way,
the wrong way,

and the army way.

\dvice reputedly given ta new army recruits

The way Java handles cloning, and object copying in general, is complicated and can
be both subtle and difficult. Some authorities think that the clone method was done
so poorly in Java that they prefer to ignore it completely and define their own methods
for copying objects. I have some sympathy for that view, but before you dismiss Javas
approach to cloning, it might be a good idea to see wha the approach entails. Linked
data structures, such as linked lists, are an excellent setting for discussing cloning
because they are an excellent setting for discussing deep versus shallow copying.

This section first presents a relatively simple way to define copy constructors and
the clone method, but this approach unfortunately produces only shallow copies. We
then go on to present one way to produce a deep copy clone method and to do so
within the official prescribed rules of the Java documentation.

LA
*
4

&

| c_.-'lll:r.b-" -ﬂ,.l'-:'J ; ‘._;'.'-L i
@.___ _ oy .H 1}»\4‘ ,(" ; ‘
H15_SAVI3825_04_Cl5.fin Page 815 Friday, January 2, 2009 4:35 PM P, II.'\,_, Iﬁ" A :

/ o Lt ﬁl‘r
’.

15 .N'“ A .,;'i-’) ot
el /lf,.ﬁ/ ﬁ’

Copy Constructors and the clone Method@}—/ﬂi 5

Readers with very little programming experience may be better off skipping this entire
section until they become more comfortable with Java. Other readers may prefer to read
only the first subsection and possibly the immediately following Pitfall subsection.

Simple Copy Constructors and clone Methods *

Display 15.12 contains a copy constructor and clone method definitions that could
be added to the definition of the generic linked fist class in Display 15.8. The real
work is done by the private helping method copyOf, so our discussion focuses on the
method copyOf.

The private method copyOf takes an argument that is a reference to the head node
of a linked list and returns a reference to the head node of a copy of that linked list.
The easiest way to do this would be to simply recurn the argument, This would, how-
ever, simply produce another name for the argument list. We do not want another
name; we want another list. So, the method goes down the argument list one node at a
time (with position) and makes a copy of each node. The linked list of the calling
object is built up node by node by adding these new nodes to its linked list. However,
there is a complication. We cannot simply add the new nodes at the head (start) end of
the list being built, If we did, then the nodes would end up in the reverse of the
desired order. So, the new nodes are added to the end of the linked list being built.
The variable end of type Node<T> is kept positioned at the last node so that it is possi-

A ble to add nodes at the end of the linked list being buil. In this way a copy of the list
in the calling object is created so that the order of the nodes is preserved.

The copy constructor is defined by using the private helping method copyOf to cre-
ate a copy of the list of nodes. Other details of the copy constructor and the clone
method are done in the standard way.

Although the copy constructor and the clone method each produce a new linked
list with all new nodes, the new list is not truly independent because the data objects
are not cloned. See the next Pitfall section for a discussion of this point. One way to fix
this shortcoming is discussed in the Programming Tip subsection entitled “Use a Type
Parameter Bound for a Better clone.”

1

Exceptions x

A generic data structure, such as the class LinkedList in Display 15.12, is likely to have
methods that throw exceptions, Situations such as a null argument to the copy con-
structor might be handled differently in different situations, so it is best to throw a
NullPointerException if this happens and let the programmer who is using the linked
list handle the exception. This is what we did with the copy constructor in Display
15.12. A NullPointerException is an unchecked exception, which means that it need
not be caught or declared in a throws clause. When thrown by a method of linked list
class, it can be treated simply as a run-time error message. The exception can instead be
caught in a catch block if there is some suitable action that can be taken.

. »

% é MI15_SAVI3825_04_CI5.fin Page 816 Friday, January 2, 2009 4:35 PM

2

816

CHAPTE

R15

Linked Data Structures

Display 15.12 A Copy Constructor and clone Method for a Generic Linked List (part 1 of 2)

1
2
3
4
5
[

@O W e o~

1.2
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

public class LinkedList3<T> implements Cloneable

{

private class Node<T>

{

priv
priv

publ
i
1
publ

{

}
}//End

This copy constructor and this clone method
ate T data; . do not make deep coples. We discuse one way
ate Node<T> link; to make a deep copy in the Frogramming Tip

subsection “Use a Type Parameter Bound for a

ic Node() Better clone.”
data = null;
link = null;

ic Node(T newData, Node<T> linkValue)
data = newData;
1ink = linkValue;

of Node<T> inner class

private Node<T> head;

<All the methods from Display 15.8 are in the class definition,

/

7/

*%k

Produce
Throws

but they are not repeated in this display.>

s a new linked list, but it is not a true deep copy.
a NullPointerException if other is null.

public LinkedList3(LinkedList3<T> otherlList)

{

if (
if ¢

else

otherList == null)

throw new NullPointerException();
otherList.head == null)

head = null;

head = copyOf(otherList.head);

C3

¢
4/@

* ’ & MI5_SAVI3825_04_C15.fim Page 817 Friday, January 2, 2009 4:35 PM {’é (‘

— 4

i |
Copy Constructors and the clone Method ﬁj 817

Display 15.12 A Copy Constructor and clone Method for a Generic Linked List (part 2 of 2)

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65

66
67
68
69
70
71
72

73
74
75

public LinkedList3<T> clone()

{

}

/*

{

Returns a reference to the head of a copy of the list
headed by otherHead. Does not return a true deep copy.
/4
private Node<T> copyOf(Node<T> otherHead)

try
{
LinkedList3<T> copy =
(LinkedList3<T>)super.clone()
if (head == null)
copy.head = null;
else
copy .head = copyOf(head);
return copy;
1
catch(CloneNotSupportedException e)
{//This should not happen.
return null; //To keep the compiler happy.
]
Precondition: otherHead != null

B

Node<T> position = otherHead;//moves down other's list.
Node<T> newHead: //will point to head of the copy list.
Node<T> end = null; //positioned at end of new growing list.
Invoking clone with position.data would be illegal.

//Create first node:
newHead =

new Node<T>(position.data, null);
end = newHead;
position = position.link;

while (position != null)
{//copy node at position to end of new list.
end.link =

new Node<T>(position.data, null);

end = end.link;
position = position.link;
¥

Invoking clone with position.data
return newHead; would be iilegal.

‘ @ W15 _SAVI3825_04_C15.fin Page 818 Friday, January 2, 2009 4:35PM

818

I

CHAPTER 15 Linked Data Structures

ey

b il (i

Fﬁll.: The clone Method s Protected in Object *

When defining the copy constructor and clone method for our generic linked list
(Display 15.12), we would have liked to have cloned the data in the list being copied.
We would have liked to change the code in the helping method copyOf by adding

invocations of the clone method as follows:

newHead =

new Node((T)(position.data).clone(), null);
end = newHead;
position = position.link;

while (position != null)
{//copy node at position to end of new list.
end.link =

new Node((T) (position.data).clone(), null);
end = end.link;
position = position.link;

}

This code is identical to code in copyOf except for the addition of the invocations
of clone shown in red and the type casts shown in red. (The type casts are needed
because Java thinks clone returns a value of type Object.)

If this modified code (with the clone method) would compile (and if the type
plugged in for T has a well-defined clone method that makes a deep copy), then this
modified code would produce a truly independent linked list with no references in
common with the list being copied. Unfortunately, this code will not compile.

If you try to compile this code, you will get an error message saying that the
method clone is protected in the class Object. True, we used the type T, not the type
Object, but any class can be plugged in for T. So when the generic linked list is com-
piled, all Java knows about the type T is that it is a descendent class of Object. Since
the designers of the Object class chose to make the method clone protected, you sim-
ply cannot use the clone method in the definition of methods such as copyof.

Why was the clone method labeled protected in Object? Apparently for security
reasons. 1f a class could use the clone method unchanged from Object, then that
would epen the possibility of copying sections of memory unchanged and unchecked
and so might give unauthorized memory access. The problem is made more serious by
the fact that Java is used to run programs on other machines across the Internet.

The way Java defines the clone method in Object and the way it specifies how
clone should be defined in other classes is controversial. Do not be surprised if some
future version of Java handles the clone method differently. But for now, you are stuck
with these clone problems.

In many situations, the version of copy0f in Display 15.12 {without the use of
clone) is good enough, but there is a way to get 4 frue deep copy. One way to get a
deep copy is to somehow restrict the type T to classes that do have a public clone
method that makes a deep copy. Something like this can be done and is discussed in
the Programming Tip "Use a Type Parameter Bound for a Better clone,” B

@_

¢
9|6

|
@ “W15_SAVI3825_04_CI5.fin Page 819 Friday, January 2, 2009 4:35 PM

Copy Constructors and the clone Method W~ 819

Use a Type Parameter Bound for a Better clone *

[JEIE

—— One way to overcome the problem discussed in the previous Pitfall section is o place a
bound on the type parameter T (in Display 15.12) so that it must satisfy some suitable
interface. There is no standard interface that does the job, but it is very easy to define
such an interface. The interface PubliclyCloneable given in Display 15.13 is just the
interface we need. This short, simple interface guarantees all that we need to define
generic linked lists whose clone method returns a deep copy.

Note that any class that implements the PubliclyCloneable interface has the fol-
lowing three properties:

1. The class implements the Cloneable interface. (This happens automatically because
PubliclyCloneable extends Cloneable.)

2. The class has a public clone method.
3. The clone method for the class makes a deep copy (in the officially sanctioned way).

Condition 3 is not enforced by the Java compiler or run-time software, but like all
interface semantics, it is the responsibility of the programmer defining the class to
ensure that condition 3 is satisfied.

It is now easy to define our generic linked list whose clone method produces a deep
copy. The definition is given in Display 15.14. We have already discussed the main
points involved in this definition. The following Programming Example subsection
discusses some of the minor, but possibly unclear, details of the definition.! W

Display 15.13 The PubliclyCloneable Interface

1 /*
2 The programmer who defines a class implementing this interface
3 has the responsibility to define clone so it makes a deep copy
4 (in the officially sectioned way.)
5 */
6§ public interface PubliclyCloneable extends Cloneable
71
8 public Object clone(); \
9 1} \
Any class that implemente

v PubliclyCloneable automatically
Any class that Implements implemente Cloneable.
PubliclyCloneable must have a

public clone method.

! You might wonder whether we could use a type parameter in the PubliclyCloneable interface and
so avoid some type casts in the definition copyOf. We could do that, but that may be more trouble
than it is worth and, at this introductory level of presentation, would be an unnecessary distraction.

Ji 3

% \ é M15_SAVI3825_04_Cl15.fin Page 820 Friday, January 2, 2009 4:35PM

®
|

820 CHAPTER15 Linked Data Structures

Display 15.14 A Generic Linked List with a Deep Copy clone Method (part 1 of 3)

1 public class LinkedList<T extends PubliclyCloneable>
2 implements PubliclyCloneable
C G

4 private class Node<T>

5 i

[private T data;

7 private Node<T> link;

8 public Node()

9 {
10 data = null;
11 link = null;
12 }
13 public Node(T newData, Node<T> linkValue)
14 {
15 data = newData;
16 link = linkValue;
17 }
18 }//End of Node<T> inner class

? 18 private Node<T> head; (LF,

20 public LinkedList()
21 {
22 head = null;
23 }
24 Vol
25 Produces a new linked list, but it is not a true deep copy.
26 Throws a NullPointerException if other is null.
27 x/
28 public LinkedList(LinkedList<T> otherList)
29 {

30 if (otherList == null)
31 throw new NullPointerException();

32 if (otherList.head == null)

33 head = null;
34 else

35 head = copyOf(otherList.head);

36 b

37

38 public LinkedList<T> clone()

39 {

40 try

41 i

42 LinkedList<T> copy =

43 (LinkedList<T>)super.clone()

IS IS 9|

___{E}I %zgé

_..;"\‘r/‘]

I
‘ é MI15_SAVI3825_04_C15.fim Page 821 Friday, January 2, 2009 4:35 PM

Copy Constructors and the clone Method W

Display 15.14 A Generic Linked List with a Deep Copy clone Method (part 2 of 3)

44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88

if (head == null)
copy.head = null;
else
copy.head = copyOf(head);
return copy;
:
catch(CloneNotSupportedException e)
{//This should not happen.
return null; //To keep the compiler happy.

}
} This definition of copyOf gives
p a deep copy of the linked list.
*x
Precondition: otherHead != null ///

Returns a reference to the head of a copy of the list
headed by otherHead. Returns a true deep copy.

L/

private Node<T> copyOf(Node<T> otherHead)

{ /
Node<T> position = otherHead; //moves down other's list.
Node<T> newHead; //will point to head of the copy list.
Node<T> end = null; //positioned at end of new growing list.

//Create first node:

newHead =
new Node<T>((T)(position.data).clone(), null);
end = newHead;

position = position.link;

while (position != null)
{//copy node at position to end of new list.
end.link =

new Node<T>((T) (position.data).clone(), null);
end = end.link;
position = position.link;

1

return newHead;

1

public boolean equals(Object otherObject)
{
if (otherObject == null)
return false;
else if (getClass() != otherObject.getClass())
return false;
else

{
LinkedList<T> otherList = (LinkedList<T>)otherObject;

(continued)

—®

821

C

¢

|
* ’ é MI15_SAVI3825_04 CI15.fm Page 822 Friday, January 2, 2009 4:35 PM

|

822 CHAPTER 15 Linked Data Structures

Display 15.14 A Generic Linked List with a Deep Copy clone Method (part 3 of 3)
<The rest of the definition is the same as in Display 15.8. The only difference
between this definition of equals and the one in Display 15.8 is that we
have replaced the class name LinkedList3<T> with LinkedlList<T>.>

89 }

<All the other methods from Display 15.8 are in the class definition,
but are not repeated in this display. >

90 public String toString()

91 {

92 Node<T> position = head;

93 String theString = "";

94 while (position != null)

95 {

96 theString = theString + position.data + "\n";

97 position = position.link;

98 }

133 b tetaieR EheString: We added a toString method so LinkedList<T>
| 101} would have all the properties we want T to have.

EXAMPLE: A Linked List with a Deep Copy clone Method \._]

We have already discussed how and why the clone method of the generic linked list
class in Display 15.14 returns a deep copy. Let’s now look at some of the other details
and see an example of using this linked list class.

Note the definition of the clone method. Why did we not simplify it to the following?

public LinkedlList<T> clone()
{

return new LinkedList<T>(this);

!

This simple, alternative definition would still return a deep copy of the linked list and
would work fine in most situations. It is likely that you would not notice any differ-
ence if you used this definition of clone in place of the one given in Display 15.14.

The only reason for all the other detail in the clone method definition given in Dis-
play 15.14 is to define the clone method as specified in the Java documentation. The
reason that the Java documentation asks for those details has to do with security issues.
(Some might say that there are three ways to define a clone method: the right way, the
wrong way, and the Java way. This extra detail is the Java way.)

C I

® 4@

Copy Constructors and the clone Method b

EXAMPLE: (continued)

If you look only quickly at Display 15. 14 you might think the following at the start
of the definition is an unimportant detail:

implements PubliclyCloneable

However, it ensures that the linked list class implements the Cloneable interface. In
order for a class to have a Java-approved clone method, it must implement the Clone-
able interface. It also allows you to make linked lists of linked lists and have a deep
copy clone method in the linked list of linked lists.

A sample class that implements the PubliclyCloneable interface is given in Dis-
play 15.15. Display 15.16 shows a demonstration program that makes a deep copy
clone of a linked list of objects of this sample class.

Display 15.15 A PubliclyCloneable Class (part 1 of2)

15
16
17
13

public class StockItem implements PubliclyCloneable

{

private String name;
private int number;

public StockItem()
{
name = null;
number = 0;

}

public StockItem(String nameData, int numberData)
i

name = nameData;
number = numberData;
H

public void setNumber(int newNumber)

{

number = newNumber;

1

{continued)

@_} _

823

(ilj

[
* t é MI15_SAVI3825_04_Cl15.fim Page 824 Friday, January 2, 2009 4:35 PM

®

824 CHAPTER15 Linked Data Structures

Display 15.15 A PublicltyCloneable Class (part2 of 2)

19 public void setName(String newName)

20 {

21 name = newName;

22 1

23 public String toString()

24 {

25 return (name + " " + number);

26 }

27 public Object clone()

28 {

29 try

30 i

31 return super.clone();

32]

33 ratch(CloneNotSupportedException e)

34 {//This should not happen.

35 eturn null: //To keep compiler happy .
| 36 }

37 } 5
>k it ¢

39 public boolean equals(Object otherObject) |

40 {

41 if (otherObject == null)

42 return Talse;

43 plse 1f (getllass{ } != ptherObject.getClass{ 1)

44 return false;

45 else

46 {

47 StockItem otherItem = (StockItem) otherObject;

48 return (name.equalsIgnoreCase(otherItem.name)

49 && number == otherItem.number);

50 ¥

51 ¥

52 }

@ ¢
&

* ‘ é MI5_SAVI3825_04_C15.fin Page 825 Friday, January 2,2009 4:35 PM @ ‘ ‘
+ 'rj\
U (&
[

Copy Constructors and the clone Method W 825

Display 15.16 Demonstration of Decp Copy clone

1 public class DeepDemo
2 9
3 public static void main(String[]l args)
4 {
5 LinkedList<StockItem> originallist =
B new LinkedList<StockItem>();
7 originallList.addToStart(new StockItem("red dress"™, 1));
& originalList.addToStart(new StockItem("black shoe”, 2));
g LinkedList<StockItem> copylList = originallist.clone(J;
10 if (originallist.equals(copylList))
11 System.out.println("OK, Lists are equal.");
12 System.out.println("Now we change copyList.™);
13 StockItem dataEntry =
14 copylList.findData(new StockItem("red dress”, 1))
15 dataEntry.setName("orange pants");
16 System.out.println("originallist:");
17 originallist.outputlist();
| |
;3') 18 System.out.println("copyList:"); l@‘:
19 copylList.outputList();
20
21 System.out.println(”Only one list is changed.");
22 }
23}

Sample Dialogue

OK, Lists are equal.

Now we change copylList.
originallist:

black shoe 2

red dress 1

copyList:

black shoe 2

orange pants 1

Only one list is changed.

i ‘é) “#1%_SAVI3825_04_C15.fim Page 826 Friday, January 2,2009 4:35PM

826 CHAPTER15 Linked Data Structures

S TIP: Cloning Is an “All or Nothing” Affair

——1' [fyou define a clone method, then you should do sa following the official Java guide-
fines, as we did in Display 15.14. In particular, you should always have the class imple-
ment the Cloneable interface. If you define a clone method in any other way, you
may encounter problems in some situations. If you want to have a method for produc-
ing copies of objects but do not want to follow the official guidelines on how ro define
a clone method, then use some other name for your “clone-like” method, such as
copier, or make do with just a copy constructor. |

Self-Test Exercises
9. In the definition of copyOf in Display 15.14, can we replace

newHead =
new Node<T=((T) (position.daota) celonel 3, null);

with the following, which uses the copy constructor of T instead of the clone
method of T?

newHead =
new Mode=T=(new T{position.datal, nulll; ?

10. The definition of the clone method in Display 15.14 returns a value of type
LinkedList<T>. But the class being defined implements the PubliclyCloneable
interface, and that interface says the value returned must be of type Object. Is
something wrong?

15.3 lterators
Play it again, Sam.

Attributed (incorrectly) to the movie Casablanca, which contains similar lines.?

When you have a collection of objects, such as the nodes of a linked list, you often need
to step through all the objects in the collection one at a time and perform some action
on each object, such as writing it out to the screen or in some way editing the data in
iterator each object. An iterator is any object that allows you to step through the list in this way.

il v . ’ .. P
" There is a Woody Allen movie with this ride, hue it is based on the misquote from Casablye,
which was in common use before the movie came out.

C IR
|

* l é MI15_SAVI3825_04_C15.fm Page 827 Friday, January 2, 2009 4:35 PM

®

Iterators

Defining an lterator Class

In Display 15.17, we have rewritten the class Linkedlist2 from Display 15.7 so that it
has an inner class for iterators and a method iterator() that returns an iterator for
its calling object. We have made the inner class List2Tteratar public so that we can
have variables of type List2Iterator outside the class LinkedList2, but we do nat
otherwise plan to use the inner class List2lterator putside of the outer class
LinkedlList2.

Use of iterators for the class LinkedList2 is illustrated by the program in Display
15.18. Note that, given a linked list named 1list, an iterator for list is produced by
the method iterator as follows:

LinkedList2.List2Iterator i = list.iterator();

The iterator i produced in this way can only be used with the linked list named list.
Be sure to notice that outside of the class, the type name for the inner class iterator
must include the name of the outer class as well as the inner iterator class. The class
name for one of these iterators is

LinkedList2.List2Iterator

Display 15.17 A Linked List with an Iterator (part1 of 3)

1

N owv bW

10
11
12
13
14
15
16

U

import java.util. NoSuchElementException;

public class LinkedList2 This is the same as the class in Displays 15.7 and
{ 15.11 except that the List2Iterator inner clags
private class Node and the iterator() method have been added.
{

private String item;
private Node link;

<The rest of the definition of the Node inner class is given in Display 16.7>
}//End of Node inner class

/**
If the list is altered any iterators should invoke restart or
the iterator's behavior may not be as desired.

*/
An inner class for iterators for
5 : -—
[Eubhc class List2Iterator LinkedList2.

private Node position;
private Node previous; //previous value of position

(continued)

827

* ' éé MI15_SAVI3825_04_Ci5.fin Page 828 Friday, January 2, 2009 4:35 PM
828 CHAPTER 15 Linked Data Structures

Display 15.17 A Linked List with an Iterator (part 2 of 3)

17 public List2Iterator()
18 {
19 position = head; //Instance variable head of outer class.
20 previous = null;
21 1
22 public void restart()
23 {
24 position = head; //Instance variable head of outer class.
25 previous = null;
26 }
27 public String next()
28 {
29 if (lhasNext())
30 throw new NoSuchElementException();
31 String toReturn = position.item;
32 previous = position;
| B3 position = position.link;
34 return toReturn;

@- 35 } (®
36 public boolean hasNext() r
37 {

38 return (position != null);

39 }

40 Vo

41 Returns the next value to be returned by next().

42 Throws an IllegalStateExpression if hasNext() is false.
43 */

44 public String peek()

45 {

46 if (lhasNext())

47 throw new IllegalStateException();

48 return position.item;

49 1

50 /**

51 Adds a node before the node at location position.

52 previous is placed at the new node. If hasNext() is
53 false, then the node is added to the end of the list.
54 If the list is empty, inserts node as the only node.
55 2

56 public void addHere(String newData)

57 {

58 if (position == null && previous != null)

59 // at end of the list, add to end

60 previous.link = new Node(newData, null); I

®
g

is ¢ 9|8

* (é MI15_SAVI3825_04_Cl5.fm Page 829 Friday, January 2, 2009 4:35 PM

lterators 829

[Msplay 1501 A Linkoo List with an lerator (part 5 ol 1)

61 else if (position == null || previous == null}

62 // 1list is empty or position is heod node
63 LinkedListZ.this.addtoStart(newData);

64 else

65 { // previous and position are consecutive nodes
66 Node temp = new Node(newData, position)

67 previous.link = temp;

68 previous = temp;

69 }

70 }

71 Vad

72 Changes the String in the node at location position.
73 Throws an IllegalStateException if position is not at a node,
74 */

75 public void changeHere(String newData)

<The rest of the method changeHere is Self-Test Exercise 13.>

76 Ve

77 Deletes the node at location position and |
78 moves position to the "next" node. |
79 Throws an IllegalStateException if the list is empty.

80 7

81 public void delete()

82 {

83 if (position == null)

84 throw new IllegalStateException();

85 else if (previous == null)

86 { // remove node at head

87 head = head.link;

88 position = head;

89 1

90 plse // previous and position dre consecutive nodes

91 {

92 previous.link = position.link;

93 position = position.link;

94 1

95 } Iflist is an object of the
96 private Node head; class LinkedList2, then

list.iterator()

97 pub11'.c List2Iterator ite rator() returns an iterator for list.
98 i

99 return new List2Iterator();
100 }

<The other methods and constructors are identical to thosa in Displays 15.7 and 15.11.>

101 }

® o

@

% ‘ é MI15_SAVI3825_04_C15.fin Page 830 Friday, January 2,2009 4:35PM

—ier

C

830

Display 15.18 Using an Iterator (part T of2)

1
2
3
4
]
L]

[=]

1a
11
12
13
14

15
16
17
18

19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

CHAPTER 15 Linked Data Structures

public class IteratorDemo

{

public static void main(String[] args)

{

LinkedList2 list = new LinkedList2();
LinkedList2.list2Iterator i = list.iterator();

list.addToStart("shoes");

list.addToStart("orange juice");

1ist.addToStart("coat");

System.out.println(“List
i.restart();
while(i.hasNext())
System.out.println(i
System.out.println(J;

i.restart();

i.next();
System.out.println("will
i.delete();

System.out.println("List
i.restart();
while(i.hasNext())
System.out.println(i.
System.out.println();

i.restart();
i.next();
System.out.println("Will
i.addHere("socks");
System.out.println("List
i.restart();
while(i.hasNext())
System.out.println(i.
System.out.println();

contains:");

.next());

delete the node for " + i.peek());

now contains:");

next());

add one node before " + i.peek());

now contains:");

next());

System.out.println("Changing all items to credit card.");

i.restart();
while(i.hasNext())
i
i.changeHere("credit
i.next();
}
System.out.printin();

card");

|
@
|

+@

®

®

® ¢

Di

41
42
43
44
45
16
47

‘ é MI15_SAVI3825_04_Cl15.fin Page 831 Friday, January 2, 2009 4:35 PM

Iterators

splay 15.18 Using an Iterator (part 2 of 2)

System.out.println("List now contains:");

i.restart();

while(i.hasNext())
System.out.println(i.next());

System.out.println();

Sample Dialogue

List contains:
coat

orange juice

shoes

Will delete the node for orange juice

List now contains:
coat
shoes

Will add one node before shoes

List now contains:
coat
socks
shoes

Changing all items to credit card.

List now contains:
credit card
credit card
credit card

The basic method for cycling through the elements in the linked list using an itera-
tor is illustrated by the following code from the demonstration program:

System.out.println("List now contains:");

i.restart();

while(i.hasNext())
System.out.println(i.next());

The iterator is named i in this code. The iterator i is reset to the beginning of the list with
the method invocation i.restart(), and each execution of i.next() produces the
next data item in the linked list. After all the data items in all the nodes have been returned
by i.next(), the Boolean i.hasNext() becomes false and the while loop ends.

®

~é>~1q

b of

@

‘ | ‘
é iT5_SAVI3825_04_C15.fin Page 832 Friday, January 2, 2009 4:35 PM '@) .

®
|

832 CHAPTER15 Linked Data Structures

Internally, the local variable position references the current node in the linked list,
whereas the local variable previous references the node linking to the current node. The
purpose of the previous variable will be seen when adding and deleting nodes. In the con-
structor and the restart() method, position is set to head and previous is set to null.

To determine if the end of the list has been reached, hasNext () returns whether or
not position is null:

return (position != null);

To step through the list, the next() method first throws an exception if we have
reached the end of the list:

if (thasNext())
throw new NoSuchElementException(J);

Otherwise, the method retrieves the string value of the iterator referenced by position
in the variable toReturn, advances previous to reference the current position,
advances position to the next node in the list, and returns the string:

String toReturn = position.item;
previous = position;

= ngmi'_ti.un = positien.link;
71— Treturn| toReturn;

The definition of the method changeHere is left as a Self-Test Exercise. (If necessary
you can look up the definition in the answer to the Self-Test Exercise.) The techniques
for adding and deleting nodes are discussed in the next subsection.

[.._________

The Java Iterator Interface l

Java has an imerface named Iterator that specifies how Java wiould like gn iterator 10 ‘

behave. It is in the package java.util (and so requires that you import this package). Our

iterators do not quite satisly this interface, but they are in the same general spirit as that

interface and could be easily redefined to satisfy the Iterator interface. ‘
The Iterator interface is discussed in Chapter 16.

Adding and Deleting Nodes

To add or delere a node in a linked list, you normally use an iterator and add or delete
a node at the (approximate) location of the iterator. Since deleting is a little easier than
adding a node, we will discuss deleting first.

Display 15.19 shows the technique for deleting a node. The linked list is an object of
the class LinkedList2 (Display 15.17). The variables position and previous are the
instance variables of an iterator for the linked list object. These variables each hold a ref-
erence to a node, indicated with an arrow. Fach time next() is invoked, previous and

® ¢

garbage
collecting
explicit
memory
management

lterators

position reference subsequent nodes in the list. As indicated in Display 15.19, the
node at location position is deleted by the following two lines of code:

previous.link = position.link;
position = position.link;

In Display 15.19, next() has been invoked twice, so position is referencing the
node with "shoes” and previous is referencing the node with "socks".

To delete the node referenced by position, the link from the previous node is set to
positions link. As shown in Display 15.19, this removes the linked list’s reference to that
node. The variable position is then set to the next node in the list to remove any references
to the deleted node. As far as the linked list is concerned, the old node is no longer on the
linked list. But the node is still in the computer’s memory. If there are no longer any references
to the deleted node, then the storage that it occupies should be made available for other uses.
In many programming languages, you, the programmer, must keep track of items such as
deleted nodes and must give explicic commands to return their memory for recycling. This is
called garbage collecting or explicit memory management. In Java, this is done for you
automatically, or, as it is ordinarily phrased, Java has automatic garbage collection.

Note that there are special cases that must be handled for deletion. Fisst, if the list is
empty, then nothing can be deleted and the delete() method throws an exception. Sec-
ond, if the node to delete is the head of the list, then there is no previous node to update.
Instead, head is set to head. Link to bypass the first node in the list and set a new head node.

Display 15.20 shows the technique for adding a node. We want to add a new node
between the nodes named by previous and position. In Display 15.20, previous and
position are variables of type Node, and each contains a reference to a node indicated
with an arrow. Thus, the new node goes between the two nodes referenced by
previous and position. In Display 15.20, the method next() has been invoked
twice to advance previous to "orange juice” and position to "shoes".

A constructor for the class Node does a lot of the work for us: It creates the new
node, adds the data, and sets the link field of the new node to reference the node
named by position. All this is done with the following:

new Node(newData, position)

So that we can recognize the node with newbata in it when we study Display 15.20,
let’s assume that newData holds the string "socks". The following gets us from the first
to the second picture:

temp = new Node(newData, position);

To finish the job, all we need to do is link the previous node to the new node. We
want to move the arrow to the node named by temp. The following finishes our job:

previous.link = temp;

The new node is inserted in the desired place, but the picture is not too clear. The
fourth picture is the same as the third one; we have simply redrawn it to make it neater.

®

833

%

I
‘ é M15_SAVI3825_04_C15.fin Page 834 Friday, January 2, 2009 4:35 PM

Linked Data Structures

o

834 CHAPTER15

Display 1519 Deleting a Node

1. Existing list with the iterator positioned at “shoes”
= i- -l-i "m_u.l'lgc jukce" | {—--‘I-: :shoes" -i— -)["socks” null

prevics position
| |
2. Bypass the node at position from previous
revious.link = position.link; e
p p - —
P N e —— e o R I
"eoat” |- H "orange juse”] /[/J I “shoes” | - |-) “poacks” | null |
1 = 1 ' |
heud s
3. Update position to reference the next node
position = position.link; e e IR
B N I
“cat” —| —|- -}! “orange juice” /|/ | “shoes” ——™ “sechs” | rull |
|1:uclx rrvi:m.-.-x position
= i seacs -
' [—] S S

Since no variable references the node “shoes” Java will automatically

recycle the memory allocated for it.

Same picture with deleted node not shown

C "ooat” _l_i—}% ."omnge juice” _I__|- -h "socks” l- nuill |

e .
position

prEvious

i
| _ == =

@
*
4

% /:flu, /,f; o / s
* MI5_SAVI3825_04_Cl15.fin Page 836 Friday, January 2, 2009 4:35 PM

sl 5. J{J‘-L'FL'/L
J o35 ;

¢,8’3’6/ CHAPTER 15 Linked Data Structures \(u(5 (\ d cm

Display 15.20 Adding a Node between Two Nodes

1. Existing list with the iterator positioned at “shoes”
g p

I . *opmar” | _}—-)l "orange juice” —l——} "shoes” | |11|H

Jvead :l previous position

L = =1

2. Create new Node with “socks” linked to “shoes”

temp = new Node (newData, position); // newData is "

socks"
I- 'D'Jilg"'_ | J—- ﬁ_"nrnngﬂiuiﬂ.‘“ | —|—}I‘ "dhvoes” _|m||.uilll
hr.::| _|1rn-1':|u_|
_:_l |_ —
temp ["socks"
|

Local variable of type Node

3. Make previous link to the Node temp

previous. link = temp;

| "eoar” I—H “orange juice”

4. Picture redrawn for clarity, but structurally identical to picture 3

|_ “coat” | |-—-}- "orange juice” | -|— ﬂ_ "socks" ITJ- _“’ll " shoes' _.I:u|!|

previous

¢
$@

_®|%

®

.‘{%

4 é MI5_SAVI3825_04_CI5.fm Page 835 Friday, January 2, 2009 4:35PM é

% @

b I At

Variations on a Linked List ﬂfiﬁ

To summarize, the following two lines insert a new node with newData as its data.

The new node is inserted between the nodes named by previous and position.

temp = new Node(newData, position);
previous.link = temp;

previous, position, and temp are all variables of type Node. (When we use this code,
previous and position will be instance variables of an iterator and temp will be a local
variable.)

Just like deletion, special cases exist for insertion that must be handled. If the list is

empty, then addition is done by adding to the front of the list. If the position variable
is null, then the new node should be added to the end of the list.

Self-Test Exercises

11.

12.

13.

14.

Consider a variant of the class in Display 15.17 with no previous local variable.
In other words, there is no reference kept to the node that links to the current
node position. How could we modify the delete method to delete the position
node and still maintain a correct list? The solution is less efficient than the ver-

sion that uses previous.
Consider a variant of the class in Display 15.17 with no previous local variable. CL
In other words, there is no reference kept to the node that links to the current ?
node position. Write a method addAfterHere(String newData) that adds a

new node after the node in position.

Complete the definition of the method changeHere in the inner class
List2Iterator in Display 15.17.

Given an iterator pointing somewhere in a linked list, does i.next() return the
value that i is referencing prior to the invocation of i.next() or does it return
the value of the next node in the list?

15.4 Variations on a Linked List

I have called this principle, by which cach slight variation, if useful, is

preserved, by the term Natural Selection.

CHARLES DARWIN, The Origin of Species

In this section, we discuss some variations on linked lists, including the two data struc-
tures known as stacks and queues. Stacks and queues need not involve linked lists, but
one common way to implement a stack or a queue is to use a linked list.

e o

)
+

®

doubly
linked list

é M15_SAVI3825_04_C15.fin Page 837 Friday, January 2, 2009 4:35 PM

Variations on a Linked List

Doubly Linked List

An ordinary linked list allows you to move down the list in only one direction (following
the links). A doubly linked list has one link that has a reference to the next node and
one that has a reference to the previous node. In some cases the link to the previous node
can simplify our code. For example, we will no longer need to have a previous instance
variable to remember the node that links to the current position. Diagrammatically, a
doubly linked list looks like the sample list in Display 15.21.

The node class for a doubly linked list can begin as follows:

private class TwoWayNode

{
private String item;
private TwoWayNode previous;
private TwoWayNode next;

Display 15.21 A Doubly Linked List

"shoes"

null

-
“glovesT|

837

.
&

é MI5_SAVI3825_04_CI5.fin Page 838 Friday, January 2, 2009 4:35 PM

838 CHAPTER 15 Linked Data Structures

The constructors and some of the methods in the doubly linked list class will require
changes (from the singly linked case) in their definitions to accommodate the extra link.
The major changes are to the methods that add and delete nodes. To make our code a lit-
dle cleaner, we can add a new constructor that sets the previous and next nodes:

public TwoWayNode(String newItem, TwoWayNode previousNode, TwoWayNode nextNode)

i
item = newltem;
next = nextNode;
previous = previousNode;
i

To add a new TwoWayNode to the front of the list requires setting links on two nodes
instead of one. The general process is shown in Display 15.22. In the addToStart
method we first create a new TwoWayNode. Because the new node will go on the front of
the list, we set the previous link to null and the next link to the current head:

TwoWayNode newHead = new TwoWayNode (itemName, null, head) ;

Next we must set the previous link on the old head node to reference the new head.

We can do this by setting head. previous = newHead, but we must take care to ensure
L that head is not null (i.e., the list is not empty). Finally, we can set head to newHead.
=,

if Chead != null) E%
{

head.previous = newHead;

}

head = newHead;

To delete a node from the doubly linked list also requires updating the references
on both sides of the node o delere. Thanks to the backward link there is no need for
an instance variable to keep track of the previous node in the list, as was required for
the singly linked list. The general process of deleting a node referenced by position is
shown in Display 15.23. Note that some cases must be handled separately, such as
deleting a node from the beginning or the end of the list.

The process of inserting a new node into the doubly linked list is shown in Display
15.24. In this case we will insert the new node in front of the iterator referenced by
position. Note that there are also special cases for the insert routine when inserting to
the front or adding to the end of the list. Only the general case of inserting between
ewo existing nodes is shown in Display 15.24.

A complete example of a doubly linked list is shown in Display 15.25. The code in
Display 15.25 is modified from the code in Display 15.17. Use of the doubly linked
list is virtually identical to use of a singly linked list. Display 15.26 demonstrates addi-
tion, deletion, and insertion into the doubly linked list.

. .
i P e

—e| &P

{ é MI5_SAVI3825_04_Cl5.fin Page 839 Friday, January 2, 2009 4:35 PM

@

Variations on a Linked List 839

Display 15.22 Adding a Node to the Front of a Doubly Linked List

1. Existing list. LN .

o ST TN T
nulJ—I "coas® | /'] b | “shoes" | :(/| | "socks" .IIILIJ"J
‘3x____,/ —
head

2. Create new TwoWayNode linked to “coat”

TwoWayNode newHead = new TwoWayNode (itemName, null, head) // itemName = "shirt"

. T . . .)
S T Lt T ko T T

' N L

newHead
head
i —
3. Set backward link and set new head @
head. previous = newHead;
head = newHead;

I nuﬁJ

* } é M15_SAVI3825_04_CIi5.fin Page 840 Friday, January 2, 2009 4:35PM

.

840 CHAPTER15 Linked Data Structures

) ; i
| null rill |

"eoat"
- < -

head position
| I |

2. Bypass the “shoes” node from the next link of the previous node

position.previous.next = position.next;

S g v I e A e T
S

,i} 3. Bypass the “shoes” node from the previous link of the next node
and move position off the deleted node

position. next.previous = position.previous;
position = position.next;

- r xk’u
null 3 “shoes" ks . I"“Ill

e, (o
head - N - posticn

=" T "

4. Picture redrawn for clarity with the “shoes” node removed since
there are no longer references pointing to this node.

null "coat : } [Tk’ I_J
head_’#ﬂr | _P_miri-mjj_

@

A
4%

* } @ MI5_SAVI3825_04_C15.fim Page 841 Friday, January 2, 2009 4:35 PM

Variations on a Linked List 841

1. Existing list with an iterator referencing “shoes”
e

. .
ool [ean” / | / Ks\htes"g |7‘|///| [vwde' ol

—_—
posmon _/‘)l

2. Create new TwoWayNode with previous linked to “coat” and next to “shoes
TwoWayNode temp =

newTwoWayNode (newData, position.previous, position);
// newData = “shirt" o
f__,-o—""_'_-___ ___-_"--\.
rmll.l "coat” [7} shoes |/_]
—— . — """-\-\.__

-
@

T

 temp

3. Set next link from “coat” to the new node of “shirt”

position.previous.next

= temp;

[|

pOSl on

4. Set previous link from “shoes” to the new node of “shirt”

position.previous = temp;

| ull | "coat” [_ _i__ ‘shocs” _ .. K

hezad

posities

% 1 "]
Jis o

3|@

|
* ‘ é M15_SAVI3825_04_C15.fin Page 842 Friday, January 2, 2009 4:35 PM

842

Al

i

CHAPTER 15 Linked Data Structures

Display 15.25 A Doubly Linked List with an Iterator (part' of 3)

1
2
3
4
5
[
7
8

9
10
11
12
13
14
L
1o
17
18
19
20
21

22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
8/
38
39
40
41

import java.util.NoSuchElementException;
public class DoublyLinkedlList
private class TwoWayNode
private String item;
private TwoWayNode previous;
private TwoWayNode next;
public TwoWayNode()
item = null;
next = null;
public TwoWayNode(String newltem, TwoWayNode previousNode, TwoWayNode nextNode)
next = nextNode;

previousNode;

}//End of TwoWayNode inner class

public closs DoublylLinkedIterator

// We do not need a previous node when using a doubly linked list
private TwoWayNode position

public DoublylLinkedIterator()

public void restart()

public String next()

if (lhasNext())

throw new IllegalStateException();
position.item;
position.next;
return toReturn;

String toReturn

5|8

=y
'I:E_; W15 _SAVI3825_04_Cl15.fim Page 843 Friday, January 2, 2009 4:35 PM

Variations on a Linked List 843

[Msplay 1546 A Desghily Linleed Listwith an Merator (parl 4ol 3)

42 public void insertHere(String newData)

43 {

44 if (position == null && head !'= null)

45 {

46 // Add to end. First move a temp

47 // pointer to the end of the list

48 TwoWayNode temp = head;

49 while (temp.next != null)

50 temp = temp.next;

51 temp.next = new TwoWayNode (newData, temp, null);

52 }

53 slse if (head == null || pesition.previous == null)

54 // at head of list

55 DoublyLinkedList.this.addToStart (newData);

56 else

57 {

58 // Insert before the current position

59 TwoWayNode temp = new TwoWayNode (newData,

position.previous, position){

| 60 position.previous.next = temp; |

bl position.previous = temp; Ll
8 62 b E!L

63 1 |

64 public void delete()

65 1

66 if (position == null)

67 throw new IllegalStateException()}

68 else if (position.previous == null)

69 { // Deleting first node

70 head = head.next;

71 position = head;

72 }

73 else if (position.next == null)

74 { // Deleting last node

75 position.previous.next = null;

76 position = null;

77 }

78 else

79 {

80 position.previous.next = position.next;

81 position.next.previous = position.previous;

82 position = position.next;

83 F

84 }

85 } // DoublylLinkedIterator

(continued)

% } é MI5_SAVI3825_04_CI15.fin Page 844 Friday, January 2, 2009 4:35 PM

844 CHAPTER 15 Linked Data Structures

Display 15.25 A Doubly Linked List with an Iterator (part 3 of 3)

86 private TwoWayNode head;
87 public DoublylinkedIterator iterator()
88 i
89 return new DoublyLinkedIterator();
90 1
91 public DoublyLinkedList()
92 {
93 head = null;
94 i
95 /**
96 The added node will be the first node in the list.
97 &/
98 public void addToStart(String itemName)
99 {
100 TwoWayNode newHead = new TwoWayNode(itemName, null, head);
101 if (head != null)
102 [
o 103 head.previous = newHead; %
104 ¥
105 head = newHead; |
106 } L

<The methods hasNext, peek, clear, and isEmpty are identical
to those in Display 15.17. Other methods would also normally
be defined here, such as deleteHeadNode, size, outputlist,
equals, clone, find, or contains. They have been left off to
simplify the example.>
107 } // DoublyLinkedList

Display 15.26 Using a Doubly Linked List with an Iterator (part T of 2)

1 public class DoublylLinkedListDemo

P

3 public static void main(String[] args)

4 {

5 DoublyLinkedList list = new DoublylLinkedlList(J;

B DoublyLinkedlist.DoublylinkedIterator i = list.iterator();
7 list.addToStart("shoes™);

a list.addToStart("orange juice");

9 list.addToStart("coat™);

@

% ‘ é M15_SAVI3825_04_C15.fin Page 845 Friday, January 2, 2009 4:35 PM

A

O

& —

.‘%

Display 15.26 Using a Doubly Linked List with an lterator (part 2 of 2)

10
11
12
13
14

15
16
17
18
19

28
1
22
23
24

25
26
27
28

29
30
il
32
33
34
35

Sa

mple Dialogue
p g

List contains:
coat

orange juice
shoes

Delete shoes

Variations on a Linked List

System.out.println("List contains:™);

i.restart();

while (i.hasNext())
System.out.println(i.next());

System.out.println();

i.restart();

i.next();

i.next();

System.out.println("Delete " 4+ i.peek());
i.delete();

System.out.println("List now contains:");

i.restart();

while (i.hasNext())
System.out.println(i.next()

System.out.println(J;

i.restart();

i.next();

System.out.println("Inserting socks before " + i.peek());
i.insertHere("socks");

i.restart();

System.out.println("List now contains:");

while (i.hasNext())
System.out.println(i.next());

System.out.println()

List now contains:

Coat
Orange juice

Inserting socks before orange juice
List now contains:

coat
socks
orange juice

84

{T:‘

¢

~1/8

H ‘ ®'§|5_SAVI3825#04#C15.ﬁn Page 846 Friday, Janvary 2, 2009 4:35 PM

?

846 CHAPTER15 Linked Data Structures

Self-Test Exercises

15. What operations are easicr to implement with a doubly linked list compared
with a singly linked list? What operations are more difficule?

16. 1f the addToStart method from Display 15.25 were removed, how could we still
add a new node to the head of the list?

The Stack Data Structure

stack A stack is not necessarily a linked data structure, but it can be implemented as a linked list.
A stack is a data structure that removes items in the reverse of the order in which they were
inserted. So if you insert "one", then "two", and then "three" into a stack and then
remove them, they will come out in the order "three”, then "two", and finally "one".
Stacks are discussed in more detail in Chapter 11. A linked list that inserts and deletes only
at the head of the list (such as the one in Display 15.3 or in Display 15.8) is, in fact, a stack.
You can imagine the stack data structure like a stack of trays in a cafeteria. You can
push and pop push a new tray on top of the stack to make a taller stack. Alternately, you can pop the
ropmost tray off the stack until there are no more trays to remove. A definition of a
stack class is shown in Display 15.27 that is based on the linked list from Display 15.3.
A short demonstration program is shown in Display 15.28. The addToStart method has é
heen renamed to push to use stack terminology. Similarly, the deleteHeadNode method
has been renamed to pop and returns the 5tring from the top of the stack. Although not
shown here o keep the definition simple, it would be appropriate 1o add other methods
such as peek, clone, or equals o to convert the class to use a generic data type.

|—Stacks

A stack is a last-in/first-out data structure; that is, the data items are retrieved in the opposite
order to which they were placed in the stack.

N

| =

Display 15.27 A Stack Class (part 1of2)
1 import java.util.NoSuchElementException;

public class Stack
{

private class Node

{
private String item;
private Node link;

N oYV AW

% ‘ é MI5_SAVI3825_04_CI5.fin Page 847 Friday, January 2, 2009 4:35 PM

QE}__‘

I=

Variations on a Linked List

Display 15.27 A Stack Class (part 2 of 2)

8

9
10
11
12
13
14
15
16
17
18

19

20
21
22
23

24
25
26
o
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

public Node()

{
item = null;
link = null;
}
public Node(String newItem, Node linkvalue)
{
item = newltem;
link = linkValue;
¥

}//End of Node inner class
private Node head;

public Stack()

{
head = null;
1
/¥
This method replaces addToStart
&Y/
public void push(String itemName)
{
head = new Node(itemName, head);
]
fﬂﬁ
This method replaces deleteHeadNode and
also returns the value popped from the list
V)
public String pop()
{
if (head == null)
throw new IllegalStateException(J;
else
{
String returnItem = head.item;
head = head.link;
return returnItem;
1
}
public boolean isEmpty()
{
return (head == null);
}

847

g
h

4|8

{é} MI15_SAVI3825_04_CI15.fin Page 848 Friday, January 2, 2009 4:35PM

#48 CHAPTER15 Linked Data Structures

1
2 {
3
4
3
i
7
]

9
10
11
12
13
14
15 1

public class StackExample

public static void main(String[] args)
{
Stack stack = new Stack();
stack.push("Billy Rubin™);
stack.push("Lou Pole");
stack.push("Polly Ester");
Items come out of the stack in the
while (!stack.isEmpty()) reverse order that they were added.
i e
String s = stack.pop(); ==
System.out.println(s);

Sample Dialogue

Polly Ester

Lou Pole

Billy Rubin

queunc

tail

front
back

Self-Test Exercise

17. Display 15.27 does not contain a peek() method. Normally this method would
return the data on the top of the stack without popping it off. How could a user of
the Stack class get the same functionally as peek () even though it is not defined?

The Queue Data Structure

A stack is a last-in/first-out data structure. Another common data structure is a queue,
which handles data in a first-in/first-out fashion. A queue is like a line at the bank. Cus-
tomers add themselves to the back of the line and are served from the front of the line.
A queue can be implemented with a linked list. However, a queue needs a pointer at
both the head of the list and at the tail (that is, the other end) of the linked list, because
action takes place in both locations. It is easier o remove a node from the head of a
linked list than from the tail of the linked list. So, a simple implementation will remove
nodes from the head of the list (which we will now call the front of the list) and we will
add nodes to the tail end of the list, which we will now call the back of the list (or the
back of the queue).

@‘P_.

|
®

)
)

* ‘ é MI15_SAVI3825_04_Cl5.fin Page 849 Friday, January 2,2009 4:35PM

Variations on a Linked List 849

The definition of a simple Queue class that is based on a linked list is given in Dis-
play 15.29. A short demonstration program is given in Display 15.30. We have not
made our queue a generic queue to keep the definition simple, but it would be routine
to replace the data type String with a type parameter.

Queue ‘

A queue is a first-inffirst-out data structure; that is, the data items are removed from the
queue in the same order that they were added to the queue.

Self-Test Exercise
18. Complete the definition of the method addToBack in Display 15.29.

Display 15.29 A Queue Class (part1 of 2)

1 public class Queue

2z %

3 private class Node

4 i

5 private String item;
f private Node link;

7 public Node()

8 {

9 item = null;

10 link = null;

11 }

12 public Node(String newItem, Node linkValue)
13 {

14 item = newltem;
15 link = linkValue;
16 }

17 }L//End of Node inner class #—
18 private Node front;
19 private Node back;

20 public Queue()

21 {

22 front = null;
23 back = null;
24 }

{continued)

“9|@

@
A
_@

o

850

é MI5_SAVI3825_04_Cl5.fin Page 850 Friday, January 2,2009 4:35PM

CHAPTER 15 Linked Data Structures

Display 15.29 A Queue Class (part 2 of 2)

25
26
27
28

29
30
31
82

33
34
35
36
37
38
39
40
41
42

[43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

@
*

/**
Adds a String to the back of the queue.
=
public void addToBack(String itemName)
<The definition of this method is Self-Test Exercise 18.>

public boolean isEmpty()

{
return (front == null);
}
public void clear()
{
front = null;
back = null;
}
/s‘('k

Returns the String in the front of the queue.
Returns null if queue is empty.
(74
public String whoIsNext()
{
if (front == null)
return null;
else
return front.item;

l,-'-‘.“.3’
Removes a String from the front of the queue.
Returns false if the list is empty.
*/
public boolean removeFront()
i
if (front 1= null)
{
front = front.link;
return true;
¥
else
return false;

B e

&15_SAVI3825_04_Cl5.fin Page 851 Friday, January 2, 2009 4:35 PM

Variations on a Linked List 851

1 public class QueueDemo

I |

3 public static void main(String[] args)

a {

5 Queue q = new Queue();

6 q.addToBack ("Tom"); Items come out of the queue in

7 q.addToBack ("Dick"); the same order that they went

8 q.addToBack("Harriet"); —s—— — into the queue.

9 while(1q.isEmpty())
10 {
11 System.out.pr‘intln(q.whoIsNext());
12 q.removeFront();
13 b
14 System.out.println("The queue is empty.™);
15 }
16}
Sample Dialogue Items come out of the queue in

Tom L — the same order that they went l

Dick e into the queue. {:‘-'

Harriet
The queue is empty. |

In order to have some terminology to discuss the efficiency of our Queue class and
linked list algorithms, we first present some background on how the efficiency of algo-
rithms is usually measured.

Running Times and Big-O Notation

If you ask a programmer how fast his or her program is, you might expect an answer like
“ewios seconds,” However, the speed of a program cannot be given by a single number, A
program will typically take a longer amount of time on larger inputs than it will on smaller
inputs. You would expect that a program for sorting numbers would take less time to sort
ten numbers than it would to sort one thousand numbers. Perhaps it takes two seconds to
sort ten numbers, but ten seconds to sort one thousand numbers. How, then, should the
programmer answer the question “How fast is your program?” The programmer would
have to give a table of values showing how long the program took for different sizes of
input. For example, the table might be as shown in Display 15.31. This table does not give
a single time, but instead gives different times for a variety of different input sizes.

|
&_)
. @ &

1
z|
o
]
w
>
<
2
A5
cQ
[
‘Lh
(=1
IA
(@]
e
-
=
1
o
ag
o
o0
W
[39)
%
=
o
£
=
=
£
5
=
]
«
»
[\]
<
(=1
=]
ol
(8]
wn
<
2

852 CHAPTER 15 Linked Data Structures

Display 15.31 Some Values of a Running Time Function

Input Size Running Time
10 numbers 2 seconds
100 numbers 2.1 seconds
1,000 numbers 10 seconds
10,000 numbers 2.5 minutes
function The table is a description of what is called a function in mathemarics. Just as a

{non-void) Java method takes an argument and rerurns a value, so too does this func-
tion take an argument, which is an input size, and returns a number, which is the time
the program takes on an input of thar size. If we call this function T, then (10} is 2
seconds, T (100) is 2.1 seconds, 7 (1,000) is 10 seconds, and T (10,000) is 2.5 min-
utes. The table is just a sample of some of the values of this function 7. The program
will take some amount of time on inputs of every size. So although they are not shown
in the table, there are also values for 7(1), 7(2), ..., T(101), 7(102), and so forth,
For any positive integer N, T (V) is the amount of time it takes for the program to
-+ running time sort N numbers. The function 7'is called the running time of the program.

So far we have been assuming that this sorting program will take the same amount
of time on any list of N numbers. That need not be true. Perhaps it takes much less
time if the list is already sorted or almost sorted. In that case, T (V) is defined to be
the time taken by the “hardest” list, that is, the time taken on that list of N numbers

worst-case that makes the program run the longest. This is called the worst-case running time.
running time [, this chapter we will always mean worst-case running time when we give a running
time for an algorithm or for some code.

The time taken by a program or algorithm is often given by a formula, such as 4N
+3,5N+4,or N2, If the running time 7' (V) is 5N + 5, then on inputs of size N the
program will run for SN +5 time units.

Below is some code to search an array a with /V elements to determine whether a
particular value target is in the array:

it A =07
boolean found = false;
while ((i < N) && !(found))

{
if (a[i] == target)
found = true;
else
T++;
I

@ ¢
{&—

.‘-“' —
{?__,r W15 _SAVI3825_04_Cl5.fin Page 853 Friday, January 2, 2009 4:35 PM

Variations on a Linked List 853

We want to compute some estimate of how long it will take a computer to execute this
code. We would like an estimate that does not depend on which computer we use,
cither because we do not know which computer we will use or because we might use
several different computers to run the program at different times.

One possibility is to count the number of “steps,” but it is not easy to decide what a
step is. In this situation the normal thing to do is count the number of operations. The
term operations is almost as vague as the term step, but there is at least some agreement in
practice about what qualifies as an operation. Let us say that, for this Java code, each
application of any of the following will count as an operation; =, <, 8&, 1, [1, ==, and ++.
The computer must do other things besides carry out these operations, but these seem to
be the main things that it is doing, and we will assume that they account for the bulk of
the time needed to run this code. In fact, our analysis of time will assume that everything
else takes no time at all and that the total time for our program to run is equal to the
time needed to perform these operations. Although this is an idealization that clearly is
not completely true, it turns out that this simplifying assumption works well in practice,
and so it is often made when analyzing a program or algorithm.

Even with our simplifying assumption, we still must consider two cases: Either the
value target is in the array or it is not. Let us first consider the case when target is not
in the array. The number of operations performed will depend on the number of array
elements searched. The operation = is performed two times before the loop is executed.
Since we are assuming that target is not in the array, the loop will be executed NV times,
one for each element of the array. Fach time the loop is executed, the following opera-
tions are performed: <, &, !, [1, ==, and ++. This adds five operations for each of V loop
iterations. Finally, after /V iterations, the Boolean expression is again checked and found
to be false. This adds a final three operations (<, &, 1.3 If we tally all these operations,
we get a total of 6N + 5 operations when the target is not in the array. We will leave it as
an exercise for the reader to confirm that if the target is in the array, then the number of
operations will be 6N + 5 or less. Thus, the worst-case running time is 7' (V) = 6N + 5
operations for any array of V elements and any value of target.

We just determined that the worst-case running time for our search code is 6V + 5
operations. But an operation is not a traditional unit of time, like a nanosecond, second,
or minute, If we want to know how long the algorithm will take on some particular
computer, we must know how long it takes that computer to perform one operation. If
an operation ean be performed in one nanosecond, then the time will be 6V + 5 nano-
seconds. If an operation can be performed in one second, the time will be 6V + 5 sec-
onds. If we use a slow computer that takes ten seconds to perform an operation, the
time will be 60N + 50 seconds. In general, if it takes the computer ¢ nanoseconds
to perform one operation, then the actual running time will be approximately

2

3 Because of short-circuit evaluation, ! (found) is not evaluated, so we actually get two, not
three, operations. However, the important thing is to obtain a good upper bound. If we
add in one extra operation, that is not significant.

@«
@
®

o
’

M

5 SAVI3825_04_C15.fim Page 854 Friday, January 2, 2009 4:35 PM

854 CHAPTER 15 Linked Data Structures

big-O

notation

¢ (6N + 5) nanoseconds. (We said approximately because we are making some simplify-
ing assumptions and therefore the result may not be the absolutely exact running
time.) This means that our running time of 6/ + 5 is a very crude estimate. To get the
running time expressed in nanoseconds, you must multiply by some constant that
depends on the particular computer you are using. Our estimate of 6V + 5 is only
accurate to within a constant multiple.

Estimates on running time, such as the one we just went through, are normally
expressed in something called big-O notation. (The O is the letter “Oh,” not the digit
zero.) Suppose we estimate the running time to be, say, 6N + 5 operations, and sup-
pose we know that no matter what the exact running time of each different operation
may turn out to be, there will always be some constant factor £such that the real run-
ning time is less than or equal to ¢ (6N + 5). Under these circumstances, we say that
the code (or program or algorithm) runs in time OGN + 5). This is usually read as
“big-O of 6N + 5.” We need not know what the constant ¢ will be. In fact, it will
undoubtedly be different for different computers, but we must know that there is one
such ¢ for any reasonable computer system. If the computer is very fast, the ¢ might be
less than |—say, 0.001. If the computer is very slow, the ¢ might be very large—say,
1,000, Moreover, since changing the units (say from nanosecond to second) only
involves a constant multiple, there is no need to give any units of time.

Be sure to notice that a big-O estimate is an upper-bound estimate, We always
approximate by taking numbers on the high side rather than the low side of the true
count. Alse notice that when performing a big-O estimate, we need not determine an
exact count of the number of operations performed. We only need an estimate that is
correct up to a constant multiple. If our estimate is twice as large as the rue number,
that is good enough.

An order-of-magnitude estimate, such as the previous 6V + 5, contains a parameter
for the size of the task solved by the algorithm (or program or piece of code). In our sam-
ple case, this parameter /N was the number of array elements to be searched. Not surpris-
ingly, it takes longer to search a larger number of array elements than it does to search a
smaller number of array elements. Big-O running-time estimates are always expressed as a
function of the size of the problem. In this chapter, all our algorithms will involve a range
of values in some container. In all cases N will be the number of elements in that range.

The following is an alternative, pragmatic way to think about big-O estimates:

Only look at the term with the highest exponent and
do not pay attention to constant multiples.

For example, all of the following are O (N ?):
N2+2N+1, 3N2+7, 100N?+N
All of the following are O(N?):
N3+5N2+N+1, 8N3+7, 100N?+4N+1

‘ @ MI5_SAVI3825_04_CI15.fin Page 855 Friday, January 2, 2009 4:35 PM

Variations on a Linked List

These big-O running-time estimates are admittedly crude, but they do contain some
information. They will not distinguish between a running time of 5V + 5 and a running
time of 100V, but they do let us distinguish between some running times and so deter-
mine that some algorithms are faster than others. Look at the graphs in Display 15.32
and notice that all the graphs for functions that are O(V) eventually fall below the graph
for the function 0.5N2. The result is inevitable: An O(NV) algorithm will always run
faster than any O(V L algorithm, provided we use large enough values of N. Although
an O(NV?) algorithm could be faster than an O(V) algorithm for the problem size you
are handling, programmers have found that, in practice, O(/V) algorithms perform bet-
ter than O(N) algorithms for most practical applications that are intuitively “large.”
Similar remarks apply to any other two different big-O running times.

Display 15.32 Comparison of Running Times

-, \// "
I h_‘e' ,&& \-}"‘
- 3 G 4
®) S A s
| A .{x_ Qiﬁ
ﬁ:‘
g
s
R
=
c
g
S
b~
N (problem size)

855

% l é M15_SAVI3825_04_Cl15.fin Page 856 Friday, January 2, 2009 4:35 PM

%

856 CHAPTER 15 Linked Data Structures

linear
running time
quadratic
running time

Some terminology will help with our descriptions of generic algorithm running
times. Linear running time means a running time of T(N) = alN + &. A linear run-
ning time is always an O(N') running time. Quadratic running time means a run-
ning time with a highest term of N2. A quadratic running time is always an O(N?)
running time. We will also occasionally have logarithms in running-time formulas.
Those normally are given without any base, since changing the base is just a con-
stant multiple. If you see log IV, think log base 2 of N, but it would not be wrong to
think log base 10 of /V. Logarithms are very slow growing functions. So, an O(log V)
running time is very fast.

In many cases, our running-time estimates will be better than big-O estimates. In
particular, when we specify a linear running time, that is a tight upper bound and
you can think of the running time as being exactly 7' (N) = ¢/, although the ¢ is still
not specified.

Self-Test Exercises

19. Show that a running time 7' (N') = alV + b is an O(V) running time. (Hint: The
only issue is the plus 4. Assume N is always at least 1.)

20. Show that for any two bases 4 and & for logarithms, if 2 and b are both greater
than 1, then there is a constant ¢ such that log, N'< ¢ (logy V). Thus, there is no
need to specify a base in O(log N). That is, O(log, N) and O(log, N) mean the

same thing,

Efficiency of Linked Lists

Now that we know about big-O notation, we can express the efficiency of various
methods for our linked data structures. As an example of analyzing the run-time
efficiency of an algorithm, consider the find method for the linked list class in Dis-
play 15.3. This method starts at the head of the list and sequentially iterates through
each node to see whether it matches the rarget. If the linked list contains many
nodes, then we might get lucky if the rarget is found at the head of the list. In this
case the computer only had ro execute one step: Check the head of the list for the
target. In the worst case the compute might have to search through all » nodes
before finding (or not finding) the rarget. In this case the computer had to execure n
steps. The worst case will obviously take longer to execute than the best case, On
average we might expect to search through about half of the list before finding the
target. This would require 7/2 steps. In our big-O notation, the find operation is
O(n). However, the addToStart method requires only linking a new node to the
head of the list. This runs in O(1) steps (that is, a constant upper bound on the run-
ning time that is independent of the size of the input).

|8

Al

hash table
hash map

|
IT-)
hash function

collision
chaining

I
@"'M [5_SAVI3825_04_C15.fin Page 857 Friday, January 2, 2009 4:35PM

Hash Tables with Chaining

Next we shall briefly examine more elaborate data structures that are capable of per-
forming find operations in fewer steps. However, a detailed treatment of these more
advanced data structures is beyond the scope of this chapter. The goal of this chapter is to
teach you the basic techniques for constructing and manipulating data structures based
on nodes and links (that is, nodes and references). The linked lists served as good exam-
ples for our discussion.

15.5 Hash Tables with Chaining
Seek, and ye shall find.

MATTHEW 7:7

A hash table or hash map is a data structure that efficiently stores and retrieves data
from memory. There are many ways to construct a hash table; in this section we will use
an array in combination with singly linked lists. In the previous section we saw that a
linked list generally requires linear, or O(n), steps to determine if a target is in the list. In
contrast, a hash table has the potential to execute a fixed number of steps to look up a tar-
get, regardless of the size of 7. We saw that a constant-time lookup is written (1), How-
ever, the hash table we will present may still require # steps, but such a case is unlikely.

An object is stored in a hash table by associating it with a ke, Given the key, we can
retrieve the object. Ideally, the key is unique 1o each object. If the object has no intrin-
sically unique key, then we can use a hash function to compute one. In most cases the
hash function computes a number.

For example, let’s use a hash table to store a dictionary of words. Such a hash table
might be useful to make a spell checker—words missing from the hash table might not be
spelled correctly. We will construct the hash table with a fixed array in which each array
clement references a linked list. The key computed by the hash function will map to the
index of the array, The actual data will be stored in a linked list at the hash value’s index.

Display 15.33 illustrates the idea with a fixed array of ten entries. Initially each entry of

the array hashArray contains a reference to an empty singly linked list. First we add the
word "cat", which has been assigned the key or hash value of 2 (we'll show how this was
computed shortly). Next we add “dog” and "bird", which are assigned hash values of 4
and 7, respectively. Each of these strings is inserted as the head of the linked list using the
hash value as the index in the array, Finally, we add "turtle", which also has a hash of 2.
Since "cat" is already stored at index 2, we now have a collision, Both "turtle” and
“cat" map to the same index in the array. When this occurs in a hash table with chain-
ing, we simply insert the new node onto the existing linked list. In our example there are
now two nodes at index 2: "turtle" and "cat".

To retrieve a value from the hash table, we first compute the hash value of the rarget.
Next we search the linked list that is stored at hashArray[hashvalue] for the target,
using an iterator to sequentially search the linked list. If the target is not found in this
linked list, then the target is not stored in the hash table. If the size of the linked list is
small then the retrieval process will be quick.

@_

857

[
* ’ é MI5_SAVI3825_04_C15.fin Page 858 Friday, January 2, 2009 4:35 PM

®

|

858

CHAPTER 15 Linked Data Structures

Display 15.33 Constructing a Hash Table

1.

2,
3.
|
®
4.

Existing hash table initialized with ten empty linked lists

hashArray = new LinkedList 3[SIZE]; // SIZE 10

n

0 1 3 3 4 3 4] 7] &

hashArray Imempry i_empry | err;}ty Ter;'pty [_empty |empry |empry | empty iempry |emptyJ

After adding “cat” with hash of 2

(] 1 2 B 4 5 i 7 8 "J

hashArray Iem;)ry _1 empty | | | er.n.pty T|cmpty [nal | empty 1 empty | empty ’ empty |

| oar

After adding “dog” with hash of 4 and “bird” with hash of 7

4] 1 2 3 4 5 8 7 | 9
hashArray |impty—-i- empty ! | | empr; I | empty | empty | | [empty l empty :
! ! |
| wal | | _du;;- _ _|.1ir<'.|_ |

After adding “curtle” with hash of 2 — collision and chained to linked list with “cat”

] | 2 3 4 3 & 7 L] 9

| fmp[!r' | |.'l'l|||1l}' |

hashArray

I.'IFI.l If}'

L"I“.Fl‘}" | | rl'l'lpl.:r' | I {‘m]'l[}' | 1.'|'|'|J'I|.:r' !
I

|_
|

v ‘- v

mirtle | | dog I] birdd

2

A Hash Function for Strings

A simple way to compute a numeric hash value for a string is to sum the ASCII value
of every character in the string and then compute the modulus of the sum using the
size of the fixed array. A subset of ASCII codes is given in Appendix 3. Code to com-
pute the hash value is shown below:

|
(T;

~o|@

*) é MI5_SAVI3825_04_Cl5.fin Page 859 Friday, January 2,2009 4:35 PM

®

©—

@

Hash Tables with Chaining

private int computeHash(String s)

i

int hash = 0;

for (int 1 = 0; 1 < s.length(); i++)

{

hash += s.charAt(i);

1

return hash % SIZE;// SIZE = 10 in example
}

For example, the ASCII codes for the string "dog" are as follows:

d —> 100
4] > 111
g — 103

The hash function is computed as follows:

Sum = 100 + 111 + 103 = 314
Hash = Sum % 10 = 314 % 10 =4

In this example we first compute an unbounded value, the sum of the ASCII values in
the string. However, the array was defined to only hold a finite number of elements. To
scale the sum to the size of the array, we compute the modulus of the sum with respect to
the size of the array, which is 10 in the example. In practice the size of the array is generally
a prime number larger than the number of items that will be put into the hash table. The
computed hash value of 4 serves like a fingerprint for the string "dog", However, different
strings may map to the same value. We can verify that "cat” maps to (99 + 97 + 116) %
10 = 2 and also that "turtle” mapsto (116 + 117 + 114+ 116+ 108 + 101) % 10 = 2.

A complete code listing for a hash table class is given in Display 15.34, and a dem-
onstration is provided in Display 15.35. The hash table definition in Display 15.34
uses an array in which each element is a LinkedList2 class defined in Display 15.7.

Display 15.34 A Hash Table Class (part1 of 2)

i
2
3
4
5

=~

public class HashTable

{

// Uses the generic LinkedlList2 class from Display 15.7
private LinkedList2[] hashArray;
private static final int SIZE = 10;

public HashTable()

1
hashArray = new Linkedlist2 [SIZE];
(continued)

‘A prime number avoids common divisors after modulus that can lead to collisions,

859

3|8

|
* ‘ é M15_SAVI3825_04_CI15.fm Page 860 Friday, January 2, 2009 4:35 PM
&

860 CHAPTER15 Linked Data Structures

Display 1534 A Hash Table Class {(parl 2 of 2)

9 for (int i=0; i < SIZE; i++)

10 hashArray[i] = new LinkedList2();

11 }

12 private int computeHash(String s)

13 {

14 int hash = 0;

15 for (int i = 0; 1 < s.length(); i++)

16 {

17 hash += s.charAt(i);

18 }

19 return hash ¥ SIZE;

20 }

21 Viss

22 Returns true if the target is in the hash table,

23 false if it is not.

24 */

25 public boolean containsString(String target)

26 {
l 27 int hash = computeHash(target); %
? 28 LinkedList2 list = hashArray[hash]; :

29 if (list.contains(target))

30 return true;

31 return false;

32 S

33 /%%

34 Stores or puts string s into the hash table

35 */

36 public void put(String s)

37 i

38 int hash = computeHash(s);// Get hash value

39 LinkedList? list = hashArray[hash];

40 if (1list.contains(s))

41 {

42 // Only add the target if it's not already

43 // on the list.

44 hashArray[hash] .addToStart(s);

45 }

46 }

47 '} // End HashTable class

? —+1@

L
t

(% TMI5_SAVI3825_04_CI15.fim Page 861 Friday, January 2, 2009 4:35 PM

Hash Tables with Chaining 861

Display 15.35 Hash Table Demonstration

1 public class HashTableDemo
2 q
3 public static void main(String(] args)
4 {
5 HashTable h = new HashTable();
[System.out.println("Adding dog, cat, turtle, bird");
7 h.put("dog");
B h.put("cat™);
9 h.put("turtle™);
10 h.put("bird");
11 System.out.println("Contains dog? " +
12 h.containsString('dog™));
13 System.out.println("Contains cat? "o+
14 h.containsString("cat”));
15 System.out.println("Contains turtle? " +
16 h.containsString("turtle™));
17 System.out.println(’Contains bird? " +
18 h.containsString("bird"));
_la 19 System.out.println("Contains fish? "ot =
b, 28 h.containsString("fish")); ;
| 21 System.out.println("Contains cow? "ot
22 h.containsString("cow™));
13 b
24 }
Sample Dialogue
Adding dog, cat, turtle, bird
Contains dog? true
Contains cot? true
Contains turtle? true
Contains bird? true
Contains fish? false
Contains cow? False
|
® ®

fl
Ik,,) MI5_SAVI3825_04_CI5.fin Page 862 Friday, January 2, 2009 4:35 PM

862 CHAPTER 15 Linked Data Structures

Efficiency of Hash Tables

The efficiency of our hash table depends on several factors. First, le’s examine some
extreme cases. The worst-case run-time performance occurs if every item inserted into
the table has the same hash key. Everything will then be stored in a single linked list.
With » items, the find operation will require On) steps. Fortunarely, if the items that
we insert are somewhat random, the probability that all of them will hash to the same
key is highly unlikely: In contrast, the best-case run-time performance occurs il every
item inserted into the table has a different hash key. This means that there will be no
collisions, so the find operation will require constant, or O(1), steps because the target
will always be the first node in the linked list.

We can decrease the chance of collisions by using a better hash function. For exam-
ple, the simple hash function that sums each letter of a string ignores the ordering of
the letters. The words "rat" and “tar" would hash to the same value. A better hash
function for a string s is to multiply each letter by an increasing weight depending
upon the position in the word. For example:

int hash = 0;
for (int 1 = 0; i < s.length(); i++)
{
hash = 31 * hash + s.charAt(i); |
i } L
? Another way to decrease the chance of collisions is by making the hash table bigger. (T

For example, if the hash table array stored 10,000 entries but we are only inserting

1,000 items, then the probability of a collision is much smaller than if the hash table

array stored only 1,000 entries. However, 2 drawback to creating an extremely large

hash table array is wasted memory. If only 1,000 items are inserted into the 10,000-

entry hash table then at least 9,000 memory Jocations will go unused. This illustrates

time-space the time-space tradeoff. It is usually possible to increase run-time performance at the
tradeoff expense of memory space, and vice versa.

Self-Test Exercises

21. Suppose that every student in your university is assigned a unique nine-digic 1D
number. You would like to create a hash table that indexes ID numbers to an
object representing a student. The hash table has a size of IV, where N has less
than nine digits. Describe a simple hash function that you can use to map from
ID number to a hash index.

22. Write an outputHashTable() method for the HashTable class that outputs
every item stored in the hash table.

®
. ‘ e

% ‘ é MI15_SAVI3825_04_CI5.fin Page 863 Friday, January 2, 2009 4:35 PM

3

oy

-

Sets

15.6 Sets

There are two classes in good society in England. The equestrian classes

and the neurotic classes.

GEORGE BERNARD SHAW, [fearthreak House

A set is a collection of elements in which order and multiplicity are ignored. Many prob-
lems in computer science can be solved with the aid of a ser data structure. A variation
on linked lists is a straightforward way to implement a set. In this implementation the
items in each set are stored using a singly linked list. The data variable contains a refer-
ence to an object we wish to store in the set, whereas the 1ink variable refers to the next
Node<T> in the list (which in turn contains a reference to the next object to store in the
set). The node class for a generic set of objects can begin as follows:

private class Node<T>

{

private T data;
private Node<T> link;

A complete listing is provided in Display 15.37. The Node class is a private inner
class, similar to how we constructed the generic LinkedList3<T> class in Display 15.8.
In fact, the set operations of add, contains, output, clear, size, and isEmpty are vir-
tually identical to those from Display 15.8. The add method (which was oddTeStart)
has been slightly changed to prevent duplicate items from being added into the set.
Display 15.36 illustrates two sample sets stored using this data structure. The set
round contains "peas”, "ball", and "pie", whereas the set green contains "peas” and
"grass”. Since the linked list is storing a reference to each object in the set, it is possi-
ble to place an item in multiple sets by referencing it from multiple linked lists. In Dis-
play 15.36, "peas” is in both sets since it is round and green.

Fundamental Set Operations

The fundamental operations that our set class should support are as follows:

» Add Element. Add a new item into a set.
* Contains. Determine if a target item is a member of the set.
o Union. Return a set that is the union of two sets.
» Intersection. Return a set that is the intersection of two sets.
We should also make an iterator so that every element can be retrieved from a set. This

is left as a programming project for the reader. Other useful set operations include
methods to retrieve the cardinality of the set and to remove items from the set.

®

863

~4|@

@' MI5_5AVI3825_04_C15.fim Page 864 Friday, January 2, 2009 4:35 PM

864 CHAPTER 15 Linked Data Structures

Display 15.36 Sets Using Linked Lists

round ——»> _ | rom— ‘\.\-__} \\nu[l
peas prass ball pie
green ——p / o V|t

Code to implement sets is provided in Display 15.37. The add method is similar to
adding a node to the front of a linked list. The head variable always references the first
node in the list. The contains method is identical to the find method for a singly

| linked list. We simply loop through every item in the list looking for the target.
) The union method combines the elements in the calling object’s set with the ele- 3
é} ments from the set of the input argument, otherSet. To union these sets we first create (e
| a new empty Set<T> object. Next, we iterate through both the calling object’s set and |
otherSet’s set. All elements are added (which creates new references to the items in
the set) to the new set. The add method enforces uniqueness, so we don’t have to check
for duplicate elements in the union method.

The intersection method is similar to the union method in that it also creates a new
empty Set<T> object. In this case we populate the set with items that are common to both
the calling object’s set and otherSet’s set. This is accomplished by iterating through every
item in the calling object’s set. For each item, we invoke the contains method for otherSet.

If contains returns true, then the item is in both sets and can be added to the new set.

A short demonstration program is shown in Display 15.38.

Display 15.37 Set<T> Class (part 1 0f 4)

// Uses a linked list as the internal data structure
// to store items in a set.
public class Set<T>
{
private class Node<T>
{
private T data;
private Node<T> link;

0o ~N YV AW N

|
* ’ é MI15_SAVI3825_04_C15.fin Page 865 Friday, Januvary 2, 2009 4:35 PM

K Lo
N

Display 15.37 Set<T> Class (part 20f4)

8
10
11
12
13
14
15
1o
17
18
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51

Sets

public Node()

{
data = null;
link = null;
b
public Mode(T newData, Node<T= TinkValue)
i
data = newData;
link = linkValue;
¥

}//End of Node<T> inner class
private Node<T> head;

public Set()
{
head = null;
]
JHw
Add o new item to the set, If the item
is already in the set, false is returned;
otherwise, true is returned.

Y/
public boolean add(T newltem)
i
if (lcontains(newItem))
i
head = new Node<T>(newItem, head);
return true;
¥
return false;
}
public boolean contains(T item)
{
Node<T> position = head;
T itemAtPosition;
while (position != null)
{
itemAtPosition = position.data;
if (itemAtPosition.equals(item))
return true;
position = position.link;
F
return false: //target wos not found
1

{continued)

865

—

® o

i

N

2

} é MI5_SAVI3825_04_CI5.fim Page 866 Friday, January 2,2009 4:35 PM él ‘

(®

i

866 CHAPTER 15 Linked Data Structures

Display 1537 Set<T> Class (part 3 of 4)

52 public void output()
b3 {
54 Node position = head;
55 while (position != null)
56 {
57 System.out.print(position.data.toString(>+ " ")
58 position = position.link;
59 }
60 System.out.printin();
61 }
62 Vi
63 Returns a new set that is the union
64 of this set and the input set.
65 */
66 public Set<T> union(Set<T> otherSet)
67 {
68 Set<T> unionSet = new Set<T>();
69 // Copy this set to unionSet.
70 Node<T> position = head;
71 while (position != null)
- 72 {
73 unionSet.add(position.data);
74 position = position.link;
75 1
76 // Copy otherSet items to unionSet.
77 // The add method eliminates any duplicates.
78 position = otherSet.head;
79 while (position != null)
80 i
81 unionSet.add(position.data);
82 position = position.link;
83 1
84 return unionSet;
85 }
86 /**
87 Returns a new set that is the intersection
88 of this set and the input set.
89 */
90 public Set<T> intersection(Set<T> otherSet)
91 i
92 Set<T> interSet = new Set<T>();
93 // Copy only items in both sets.
94 Node<T> position = head;
95 while (position != null)
96 {
97 if (otherSet.contains(position.data))

o A

'!‘_.

C K
R
8 &

% i

* ‘ é& MI5_SAVI3825_04_CI5.fin Page 867 Friday, January 2, 2009 4:35 PM

O

. I@._

Sets

Display 1537 Set<T> Class (part4 of 4)

98 interSet.add(position.data);

99 position = position.link;
100 }
101 return interSet; The clear, size, and isEmpty methods are identical
162 b to those in Display 15.8 for the LinkedList3 class.
103 1}

“Q o\ U L fnt

Dispfay 1538 Set Class Demo (part 1 of 2)

1 “class SetDemo

2

3 public c% static void main(String[] args)

4 i

5 // Round things

(] Set round = new Set<String>();

7 // Green things

8 Set green = new Set<String>();

9 // Add some data to both sets

10 round.add("peas");

11 round.add("ball™);

12 round.add("pie");

13 round.add("grapes™);

14 green.add("peas™);

15 green.add("grapes");

16 green.add("garden hose");

17 green.add("grass™);

18 System.out.println("Contents of set round: yh
19 round.output();
20 System.out.println("Contents of set green: ");
21 green.output();

&2 System.out.println();

23 System.out.println("ball in set round? " +
24 round.contains("ball™));

25 System.out.println("ball in set green? " +
26 green.contains("ball™));

(continued)

867

o
& e

|é’) W15 _SAVI3825_04_CI5.fin Page 868 Friday, January 2,2009 4:35PM

C.
& @

868 CHAPTER 15 Linked Data Structures

Display 15.38 Set Class Demo {part 2 of 2)

27 System.out.println("ball and peas in same set? "ot
28 ((round.contains("ball") &&

29 (round.contains("peas"))) ||

30 (green.contains(“ball") &&

31 (green.contains("peas")))));

32 System.out.println("pie and grass in same set? "ot
33 ((round.contains("pie™) &&

34 (round.contains("grass"))) ||

35 (green.contains(”pie") &&

36 (green.contains(“grqss“)))));

37 System.out.print(“Union of green and round: "5

38 round.union(green) .output(J);

39 System.out.print(“Intersection of green and round: ");
40 round. intersection(green) .output()

41 }

42]

Sample Dialogue

!} Contents of set round:
1 grapes pie ball peas
| Contents of set green:
Grass garden hose grapes peas

|

ball in set round? true

ball in set green? false

ball and peas in same set? true

pie and grass in same set? false

Union of green and round: garden hose grass peas ball pie grapes
Intersection of green and round: peds grapes

Efficiency of Sets Using Linked Lists

We can analyze the efficiency of our set data structure in terms of the fundamental set
operations. Adding an item to the set always inserts a new node on the front of the list.
This requires constant, or O(/), steps. The contains method iterates through the
entire set looking for the target, which requires O(n) steps. When we invoke the union
method for sets A and B, it iterates through both sets and adds each item into a new
set. If there are # items in set A and m items in set B, then 7 + m add methods are
invoked. However, there is a hidden cost because the add method searches through its
entire list for any duplicates before a new item is added. Althaugh beyond the scope of
this text, the additional cost results in O(m + n)? steps. Finally, the intersection
method applied to sets A and B invokes the contains method of set B for each item in

4?

Do

i 8 “MI5_SAVI3825_04_Cl5.fin Page 869 Friday, January 2, 2009 4:35 PM

Trees

set A. Since the contains method requires O(m) steps for each item in set A4, then this
requires O(m) X O(n) steps, or O(mn) steps. These are inefficient methods in our
implementation of sets. A different approach to represent the set—for example, one
that used hash tables instead of a linked list—could result in an intersection method
that runs in O(z + m) steps. Nevertheless, our linked list implementation would prob-
ably be fine for an application that uses small sets or for an application that does not
frequently invoke the intersection method, and we have the benefit of relatively sim-
ple code that is easy to understand.

If we really needed the efficiency, then we could maintain the same interface to the
Set<T> class but replace our linked list implementation with something else. If we used the
hash table implementation from Section 15.5, then the contains method could rmn in
O 1) steps instead of () steps. It might seem like the intersection method will now run
in O(n) steps, but by switching t a hash table it becomes more difficult to iterate through
the set of items. Instead of traversing a single linked list to retrieve every item in the sex, the
hash table version must now iterate through the hash table array and then for each index in
the array iterate through the linked list at that index. If the array is size V-and the number of
items in the hash table is #, then the iteration time becomes O(V + 7). In practice, we would
expect N to be larger than 7. So although we have decreased the number of steps it takes to
look up an item, we have increased the number of steps it takes to iterate over every item. If
this was troublesome, you could overcome this problem with an implementation of Set<T>
that used both a linked list (to facilitate iteration) and a hash table (for fast lookup). How-
ever, the complexity of the code is significantly increased using such an approach. You are
asked to explore the hash table implementation in Programming Project 10.

Self-Test Exercises

23. Write 2 method named difference that returns the difference between two
sets. The method should return a new set that has items from the first set that
are not in the second set. For example, if setA contains {1, 2, 3, 4} and setB
contains {2, 4, 5}, then setA.difference(setB) should return the set {1, 3}.

24. What is the run time of the difference method for the previous question? Give
your answer using big-O notation.

15.7 Trees

I think that I shall never see a data structure as uscful as a tree.

ANONYMOUS

The tree data structure is an example of a more complicated data structure made with
links. Moreover, trees are a very important and widely used data structure. So, we will

869

O

| é) MI5_SAVI3825_04_CI15.fin Page 870 Friday, January 2, 2009 4:35PM

870 CHAPTER 15 Linked Data Structures

binary tree

root node

leaf node
empty tree

briefly outline the general techniques used to construct and manipulate trees. This sec-
tion is only a very brief introduction to trees to give you the flavor of the subject.
This section uses recursion, which is covered in Chapter 11.

Tree Properties

A tree is a data structure that is structured as shown in Display 15.39. In particu-
lar, in a tree you can reach any node from the top (root) node by some path that
follows the links. Note that there are no cycles in a tree. If you follow the links,
you eventually get to an “end.” A definition for a tree class for this sort of tree of
ints is outlined in Display 15.39. Note that each nade has two references to other
nodes (two links) coming from it. This sort of tree is called a binary tree, because
each node has exactly two link instance variables. There are other kinds of trees
with different numbers of link instance variables, but the binary tree is the most
common case.

The instance variable named root serves a purpose similar to that of the instance
variable head in a linked list (Display 15.3). The node whose reference is in the root
instance variable is called the root node. Any node in the tree can be reached from the
root node by following the links.

The term #ree may seem like a misnomer. The root is at the top of the tree, and
the branching structure looks more like a root branching structure than a tree
branching structure. The secret to the terminology is to turn the picture (Display
15.39) upside down, The picture then does resemble the branching structure of a
tree, and the root node is where the tree’s root would begin, The nodes at the
ends of the branches with both link instance variables set to null are known as
leaf nodes, a terminology that may now make some sense. By analogy to an
empty linked list, an empty tree is denoted by setting the link variable root equal
to null.

Note that a tree has a recursive structure. Each tree has, in effect, two subtrees
whose root nodes are the nodes pointed to by the leftLink and rightLink af the root
node. These two subtrees are circled in Display 15.39. This natural recursive structure
makes trees particularly amenable to recursive algorithms. For example, consider the
task of searching the tree in such a way that you visit each node and do something
with the data in the node (such as writing it out to the screen). There is a general plan
of attack that goes as follows:

Preorder Processing
1. Process the data in the root node.
2. Process the left subtree.

3. Process the right subtree.

—e)| .

o
’

,é A15_SAVI3825_04_Cl5.fin Page 871 Friday, January 2, 2009 4:35 PM

Trees

Display 15.39 A Binary Tree

root

’7 10 30
[null null

| null null
2%
left subtree right subtree
1 public class IntTree
2 1
3 public class IntTreeNode
4 {
5 private int data;
6 private IntTreeNode leftLink;
7 private IntTreeNode rightlLink;
8 } //End of IntTreeNode inner class
g private IntTreeNode root;
<The methods and other inner classes arée not shown.>
10 1}
You obtain a number of variants on this search process by varying the order of these
three steps. Two more versions follow:
inorder Inorder Processing

1. Process the left subtree.
2. Process the data in the root node.

3. Process the right subtree.

- +

871

®

%@

—@®
* o

q

{8

|
‘ é MI15_SAVI3825_04_C15.fin Page 872 Friday, January 2, 2009 4:35 PM

872 CHAPTER15 Linked Data Structures

postorder

Binary Search

Tree Storage
Rule

binary search

D '{"ﬁ*

tree

Postorder Processing
1. Process the left subtree.
2. Process the right subtree.

3. Process the data in the root node.

The tree in Display 15.39 has numbers that were stored in the tree in a special way
known as the Binary Search Tree Storage Rule. The rule is summarized in the follow-
ing box.

Binary Search Tree Storage Rule

1. All the values in the left subtree are less than the value in the root node.
2. All the values in the right subtree are greater than or equal to the value in the root node.
3. This rule applies recursively to each of the two subtrees.

(The base case for the recursion is an empty tree, which is always considered to satisfy
the rule.)

A tree that satisfies the Binary Search Tree Storage Rule is referred to as a binary
search tree.

Note that if a tree satisfies the Binary Search Tree Storage Rule and you output the
values using the Inorder Processing method, then the numbers will be output in order
from smallest to largest.

For trees that follow the Binary Search Tree Storage Rule and that are short and fat
rather than tall and thin, values can be very quickly retrieved from the tree using a binary
search algorithm that is similar in spirit to the binary search algorithm we presented in
Display 11.6. The topic of searching and maintaining a binary storage tree to realize this
efficiency is a large topic that goes beyond what we have room for here. However, we
give one example of a class for trees that satisfy the Binary Search Tree Storage Rule.

EXAMPLE: A Binary Search Tree Class x

Display 15.40 contains the definition of a class for a binary search tree that satisfies the
Binary Search Tree Storage Rule. For simplicity, this tree stores integers, but a routine
modification can produce a similar tree class that stores objects of any class that imple-
ments the Comparable interface. Display 15.41 demonstrates the use of this tree class.
Note that no matter in which order the integers are inserted into the tree, the output,
which uses inorder traversal, outputs the integers in sorted order.

(continued on page 8e8)
F

Y76

-1|@

é MI5_SAVI3825_04_C15.fin Page 873 Friday, January 2, 2009 4:35 PM

Display 15.40 A Binary Search Tree for Integers (part of 2)

(=T I R = N o L

PR R R PR
W oo NV R WP ©

20

21
22
23
24

25
26
27
28

29
30
31
32

33
34
35
36

JS

Trees

/**
Class invariant: The tree satisfies the binary search tree storage rule.
g
public class IntTree The only reason this inner
{ class Is static is that it is
private static class IntTreeNode .= used in the static methods
{ insertInSubtree,
private int data; isInSubtree, and
private IntTreeNode leftlink; showElementsInSubtree

private IntTreeNode rightlLink;

public IntTreeNode(int newData, IntTreeNode newLeftLink,
IntTreeNode newRightLink)

{
data = newData;
leftLink = newLeftbLink;
rightLink = newRightlink;
1

} //End of IntTreeNode inner class

private IntTreeNode root;

public IntTree() This class should have more methods. This
{ Is just a sample of possible methods
root = null; fﬁ
}
public void add(int item)
i
root = insertInSubtree(item, root);
}
public boolean contains(int item)
{
return isInSubtree(item, root);
F
public void showElements()
{
showElementsInSubtree(root);
1

__@l

(continucd)

873

* ' é MI5_SAVI3825_04_C15.fm Page 874 Friday, January 2, 2009 4:35 PM
:ﬁ} |

874 CHAPTER 15 Linked Data Structures

Display 15.40 A Binary Search Tree for Integers (part 2 of2)

37 Vo
38 Returns the root node of a tree that is the tree with root node
39 subTreeRoot, but with a new node added that contains item.
40 */
41 private static IntTreeNode insertInSubtree(int item,
42 IntTreeNode subTreeRoot)
43 {
44 if (subTreeRoot == null)
45 return new IntTreeNode(item, null, null);
46 else if (item < subTreeRoot.data)
47 i
48 subTreeRoot.leftLink = insertInSubtree(item, subTreeRoot.leftLink);
49 return subTreeRoot;
50 }
51 else //item >= subTreeRoot.data
52 {
53 subTreeRoot.rightlLink = insertInSubtree(item, subTreeRoot.rightLink);
54 return subTreeRoot;
55]
56 b
b 57 private static boolean isInSubtree(int item, IntTreeNode subTreeRoot))
58 {
59 if (subTreeRoot == null)
60 return false;
61 else if (subTreeRoot.data == item)
62 return true;
63 else if (item < subTreeRoot.data)
64 return isInSubtree(item, subTreeRoot.leftLink);
65 else //item >= link.data
66 return isInSubtree(item, subTreeRoot.rightLink);
67 }
68 private static void showElementsInSubtree(IntTreeNode subTreeRoot)
69 { //Uses inorder traversal.
70 if (subTreeRoot != null)
71 {
72 showElementsInSubtree(subTreeRoot.leftLink);
73 System.out.print(subTreeRoot.data + =R
74 showElementsInSubtree(subTreeRoot. rightLink);
75 } //else do nothing. Empty tree has nothing to display.
76 ¥
77 }

% } é M15_SAVI3825_04_Ci5.fin Page 875 Friday, January 2,2009 4:35PM

O}

Trees 875

Display 15.41 Demonstration Program for the Binary Search Trec

1 import java.util.Scanner;

2 public class BinarySearchTreeDemo

£ |

4 public static void main(Stringl] args)

3 {

6 Scanner keyboard = new Scanner(System.in);

7 IntTree tree = new IntTree();

8 System.out.println("Enter a list of nonnegative integers.");

9 System.out.printin("Place a negative integer at the end.");
10 int next = keyboard.nextInt();
11 while (next >= @)
12 {
13 tree.add(next);
14 next = keyboard.nextInt();
15 }

16 System.out.printin("In sorted order:");

17 tree.showElements(); [
18 }
19} [T

Sample Dialogue

Enter a list of nonnegative integers.

Place a negative integer at the end.
40

30

20

10

11

22

33

44

-1

In sorted order:

10 11 20 22 30 33 40 44

@
@
® e

% ‘ é MI5_SAVI3825_04_Cl5.fin Page 876 Friday, January 2, 2009 4:35 PM

|

876 CHAPTER15 Linked Data Structures

EXAMPLE: (continued)

The methods in this class make extensive use of the recursive nature of binary trees. If
aNode is a reference to any node in the tree (including possibly the root node), then the
entire tree with root aNode can be decomposed into three parts:

1. The node aNode.

2. The left subtree with root node aNode. leftLink.
3. The right subtree with root node aNode.. rightLink.

The left and right subtrees do themselves satisfy the Binary Search Tree Storage Rule, so
it is natural to use recursion to process the entire tree by doing the following:

1. Processing the left subtree with root node aNode. leftLink

2. Processing the node aNode

3. Processing the right subtree with root node aNode. rightiink

Note that we processed the root node after

the left subtree (inorder traversal).

This guarantees that the numbers in the tree are output in the order smallest to
largest. The method showElementsInSubtree uses a very straightforward implemen-

Other methods are a bit more subtle in that only one of the two subtrees needs to be
processed. For example, consider the method isInSubtree, which returns true or false
| depending on whether or not the parameter item is in the tree with root node

g tation of this technique.

subTreeRoot. To sce if the item is anyplace in the

tree, you set subTreeRoot equal to the

root of the entire tree, as we did in the method contains. However, to express our recur-
sive algorithm for isInSubtree, we need to allow for the possibility of subtrees other

than the entire tree.

The algorithm for isInSubtree expressed in pseudocode is as follows:

if (The root node subTreeRoot is empty.)
return false;

else if (The node subTreeRoot contains item.)

return true;
else if (item < subTreeRoot.data)
coturn (The result of searching the

return (The result of searching the

tree with

root node subTreeRoot. leftLink);
tree with else //item > link.data
root node subTreeRoot.rightLink);

The reason this algorithm gives the correct result is that the tree satisfies the Binary

Search Tree Storage Rule, so we know that if

item < subTreeRoot.data

o
% @

—&
-

* l é MI5_SAVI3825_04_C15.fim Page 877 Friday, January 2,2009 4:35PM

)

Q<

Trees

EXAMPLE: (continued)
then item is in the left subtree (if it is anywhere in the tree), and if
item > subTreeRoot.data

then item is in the right subtree (if it is anywhere in the tree).
The method with the following heading uses techniques very much like those used in
isInSubtree:

private IntTreeNode insertInSubtree(
int item, IntTreeNode subTreeRoot)

However, there is something new here. We want the method insertInSubtree to insert a
new node with the data item into the tree with root node subTreeRoot. But in this case we
want to deal with subTreeRoot as a variable and not use it only as the value of the variable
subTreeRoot. For example, if subTreeRoot contains null, then we want to change the value
of subTreeRoot fo a reference to a new node containing item. However, Java parameters can-
not change the value of a variable given as an argument. {Review the discussion of parameters
in Chapter 5 if this sounds unfamiliar.) So, we must do something a little different. To change
the value of the variable subTreeRoot, we return 2 reference to what we want the new value to
be, and we invoke the method subTreeRoot as follows:

subTreeRoot = insertInSubtree(item, subTreeRoot) ;

That explains why the method insertInSubtree returns a reference to a tree node, but we
still have to explain why we know it returns a reference to the desired (modified) subtree.
Note that the method insertInSubtree searches the tree just as the method isInSubtree
does, but it does not stop if it finds item; instead, it searches until it reaches a leaf node—that is,
a node containing null. This null is where the item belongs in the tree, so it replaces null with
a new subtree containing a single node that contains item. You may need to think about the
method insertInSubtree a bit to see that it works correctly; allow yourself some time to study
the method insertInSubtree and be sure you are convinced that after the addition, like so,

subTreeRoot = insertInSubtree(item, subTreeRoot);

the tree with root node subTreeRoot still satisfies the Binary Search Tree Storage Rule.
The rest of the definition of the class IntTree is routine.

ilg

@

4=

o)

| {é ‘WM15_SAVI3825_04_Cl15.fin Page 878 Friday, January 2, 2009 4:35 PM

= @

878 CHAPTER15 Linked Data Structures

Efficiency of Binary Search Trees “*

When searching a tree that is as short as possible (all paths from root to a leaf differ by
at most one node), the search method isInSubtree, and hence also the method con-
tains, is about as efficient as the binary search on a sorted array (Display 11.6). This
should not be a surprise since the two algorithms are in fact very similar. In big-O
notation, the worst-case running time is O(log #), where 7 is the number of nodes in
the tree. That means that searching a short, fat binary tree is very efficient. To obtain
this efficiency, the tree does not need to be as short as possible so long as it comes close
to being as short as possible. As the tree becomes less short and fat and more tall and
thin, the efficiency falls off until, in the extreme case, the efficiency is the same as that
of searching a linked list with the same number of nodes.

Maintaining a tree so that it remains short and fat as nodes are added is a topic that
is beyond the scope of what we have room for in this book. (The technical term for
short and fat is balanced.) We will only note that if the numbers that are stored in the
tree arrive in random order, then with very high probability the tree will be short and
fat enough to realize the efficiency discussed in the previous paragraph.

Self-Test Exercises |

25. Suppose that the code for the method showElementsInSubtree in Display 15.40 (®
were changed so that T

.

showElementsInSubtree(subTreeRoot.leftlLink);
System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.rightLink);

were changed to

System.out.print(subTreeRoot.data + " ™);
showElementsInSubtree(subTreeRoot.leftlLink);
showElementsInSubtree(subTreeRoot.rightLink);

Will the numbers still be output in ascending order?

26. How can you change the code for the method showElementsInSubtree in Dis-
play 15.40 so that the numbers are output from largest to smallest instead of
from smallest to largest?

T

B

.‘@

®

B

@ M I5_SAVI3825_04_C15.fin Page 879 Friday, January 2, 2009 4:35 PM

Chapter Summary

Chapter Summary

A linked list is a data structure consisting of objects known as nodes, such that
cach node contains data and also a reference to one other node so that the nodes
link together to form a list.

Setting a link instance variable to null indicates the end of a linked list (or other
linked data structure). null is also used to indicate an empty linked list (or other
empty linked data structure).

You can make a linked list (or other linked data structure) self-contained by mak-
ing the node class an inner class of the linked list class.

[n many situations, a clone method or copy constructor is best defined so that it
makes a deep copy.

You can use an iterator to step through the elements of a collection, such as the ele-
ments in a linked list.

Nodes in a doubly linked list have two links—one to the previous node in the list
and one to the next node. This makes some operations such as insertion and dele-
tion slightly easier.

A stack is a data structure in which elements are removed in the reverse of the
order they were added to the stack. A queuc isa data structure in which elements
are removed in the same order that they were added to the queue.

Big-O notation specifies an upper bound for how many steps or how long a pro-
gram will take to run based on the size of the input to the program. This can be
used to analyze the efficiency of an algorithm.

A hash table is a data structure that is used to store objects and retrieve them effi-
ciently. A hash function is used to map an object to a value that can then be used
to index the object.

Linked lists can be used to implement sets, including common operations such as
union, intersection, and set membership.

A binary tree is a branching linked data structure consisting of nodes that each
have two link instance variables. A tree has a special node called the root node.
Every node in the tree can be reached from the root node by following links.

[values are stored in a binary tree in such a way that the Binary Search Tree Stor-
age Rule is followed, then there are efficient algorithms for reaching values stored
in the tree.

879

.

* ' é M15_SAVI3825_04_C15.fin Page 880 Friday, January 2,2009 4:35PM

O

e

880

CHAPTER 15

Linked Data Structures

Answers to Self-Test Exercises

1.

mustard 1
hot dogs 12
apple pie 1

This method has been added to the class LinkedList1 on the accompanying

CD.
public boolean isEmpty()
{

return Chead == null);
t
This method has been added to the class LinkedList1 on the accompanying
CD.
public void clear()
{

head = null;
}

If you defined your method to remove all nodes using the deleteHeadNode |
method, your method is doing wasted work. :
®

Yes. 1f we make the inner class Node a public inner class, it could be used outside |
the definition of LinkedList2, whereas leaving it as private means it cannot be
used outside the definition of LinkedList2.

It would make no difference. Within the definition of an outer class there is full
access to the members of an inner class whatever the inner class member’s access
modifier is. To put it another way, inside the private inner class Node, the modi-
fiers private and package access are equivalent to public.

Because the outer class has direct access to the instance variables of the inner class
Node, no access or mutator methods are needed for Node,

It would be legal, but it would be pretty much a useless method, because you
cannot use the type Node outside of the class LinkedList2. For example, out-
side of the class LinkedList2, the following is illegal (1istObject is of type
LinkedList2):

Node v = listObject.startNode(); //Illegal

whereas the following would be legal outside of the class LinkedList2 (although
it’s hard to think of anyplace you might use it):

Object v = listObject.startNode()

9 4|

} é M5 _SAVI3825_04_Cl5.fm Page 881 Friday, January 2, 2009 4:35 PM

—

Answers to Self-Test Exercises 881

8. public class LinkedList2

{
public class Entry

{
private String item;
private int count;

public Entry()

{
item = null;
count = 0;
1
public Entry(String itemData, int countData)
{
item = itemData;
count = countData;
1
public void setItem(String itemData)
{
item = itemData;
1

public void setCount(int countData)

i

count = countData;
}
public String getItem()
i

return item;
H
public int getCount()
{

return count;
1

} // End of Entry inner class

private class Node

{
private Entry item;
private Node link;

public Node()
{

null;
null;

item
link

®

* 4 é M15_SAVI3825_04_CI15.fin Page 882 Friday, January 2,2009 4:35PM
8

882 CHAPTER15 Linked Data Structures

pubiic Node(Entry newltem, Node linkValue)
{

newltem;

linkValue;

item
link

}
} //End of Node inner class

private Node head;
<«Other definitions from LinkedlList2 go here>

} // End of LinkedList2 class

The rest of the definition of LinkedList2 is essentially the same as in Display
15.7, but with the type String replaced by Entry. A complete definition is given
in the subdirectory named “Exercise 8” on the CD that accompanies this text.

9. No, T is not guaranteed to have a copy constructor. Even if T has a copy con-
structor, it is illegal to use T with new like this.

10. No, you can use any descendent class of Object (which means any class type) as
the returned type, because the value returned will still be of type Object.

! 11. The delete method must now search through the list to find the previous node
.’:.} and then change the link to bypass the current position. This is less efficient than
| the code in Display 15.17 since the reference to the previous node is already set.

public void delete()

{
if (position == null)
{
throw new IllegalStateException(D)}~
1
else
{

Node current = head;
Node previous = null;

while (current != null)

{
if (current == position)
{

// Found the node to delete
// Check if we're at the head
if (previous == null)
{
head = head.link;
position = head;
}
else// Delete in middle of list

{

}

e

% 1 é MI5_SAVI3825_04_CI5.fin Page 883 Friday, January 2, 2009 4:35 PM

Answers to Self-Test Exercises

previous.link = position.link;
position = position.link;

H

return;

}
previous = current; // Advance references

current = current.link;

1
|

12. One problem with adding after the iterator’s position is that there is no way to
add to the front of the list. It would be possible to make a special case in which
the new node were added to the front (e.g., if position is null, add the new data

to the head) if desired.

public void addAfterHere(String newData)
{
if (position == null & head != null)
{
// At end of list; can't add here
throw new IllegalStateException();
|3
else if (head == null)
// at head of empty list, add to front
LinkedList2Iter.this.addToStart(newData);
else

{
// Add after current position
Node temp = new Node(newData, position.link);
position.link = temp;

H

13. public void changeHere(String newData)

i
if (position == null)
throw new IllegalStateException(J;
else
position.item = newData;
t

14. When invoking i.next(), the value of the node that 1 is referencing is copied
to a local variable, the iterator moves to the next node in the link, and then the
value of the local variable is returned. Therefore, the value that i is referencing
prior to the invocation is returned.

I5. Insertion and deletion is slightly easier with the doubly linked list because we no
longer need a separate instance variable ta keep track of the previous node due to
the previous link. However, all operations require updating more links (e.g.,
both the next and previous instead of just the previous).

o

883

o
B o

* ‘ é MI5_SAVI3825_04_Cl15.fin Page 884 Friday, January 2, 2009 4:35 PM

®

|

884 CHAPTER 15 Linked Data Structures

16. Use the iterator:

DoublyLinkedlList.DoublylLinkedIterator i = list.iterator();
i.restart();
i.insertHere("Element At Front");

17. Pop the top of the stack and then push it back on:

String s = stack.pop();
Stack.push(s);
// s contains the string on the top of the stack

18. public void addToBack(String itemName)
{
Node newEntry =
new Node(itemName, null);
if (front == null) //empty queue
{
back = newEntry;
front = back;
i
else

{
"? back.link = newEntry;

4

back = back.link;

}
19. Just note that aN + b < (a + b)N, as long as 1 < V.

20. This is mathematics, not Java. So, = will mean eguals, not assignment.
First note that log, NV = (log, 6)(log, N).

To see this first identity, just note that if you raise 4 to the power log, N, you get
N, and if you raise 4 to the power (log, #)(log, V) you also get V.

If you set ¢ = (log,), you get log, N = ¢ (logy, V).

21. The simplest hash function is to map the ID number to the range of the hash
table using the modulus operator:

hash = ID % N; // N is the hash table size

22. public void outputHashTable()
{
for (int i=0; i< SIZE; i++)
{
if (hashArray[i].size() > ©)
hashArray[i] .outputLlist();

KL
A
Iy
g

&

VideoNote
Solution to

Programming
Project 15.1

23.

24,

25.
26.

é M1% SAVI3825_04_CI5.fin Page 885 Friday, January 2,2009 4:35PM

Programming Projects B85

This code is similar to intersection, but adds elements if they are not in
otherSet:

public Set<T> difference(Set<T> otherSet)
{
Set<T> diffSet = new Set<T>();
// Copy only items in this set but not otherSet
Node<T> position = head;
while (position != null)
{
if (!otherSet.contains(position.data))
diffSet.add(position.data);
position = position.link;
¥
return diffSet;
¥

As implemented above the complexity is identical to the intersection method.
For every clement in the set, we invoke the contains method of otherSet. This
requires ONnm) steps, where n is the number of items in the calling object’s set
and 72 is the number of items in otherSet’s set.

MNa.
Change
showElementsInSubtree(subTreeRoot. leftLink);

System.out.print(subTreeRoot.data + "),
showElementsInSubtree(subTreeRoot. rightLink);

to

showElementsInSubtree(subTreeRoot. rightLink);
System.out.print(subTreeRoot.data + " ")
showElementsInSubtree(subTreeRoot. leftlink);

Programming Projects

0 myCodeMale Many of these Programming Projects can be solved using AW's MyCodeMate.

To access these please go to: www.mycodemate.com.

1. Inan ancient land, the beautiful princess Eve had many suitors. She decided on

the following procedure to determine which suitor she would marry. First, all of
the suitors would be lined up one after the other and assigned numbers, The first
cuitor would be number 1, the second number 2, and so on up to the last suitor,
number n. Starting at the suitor in the first position, she would then count three
suitors down the line (because of the three letters in her name), and rhe third
suitor would be eliminated from winning her hand and removed from the line,

-4

886

QIR :

OIED ¢

CHAPTER 15

' d’) MT5_SAVI3825_04_C15.fin Page 886 Friday, January 2, 2009 4:35 PM

Linked Data Structures

Eve would then continue, counting three more suitors, and eliminate every third
suitor. When she reached the end of the line, she would continue counting from
the beginning.

For example, if there were six suitors, the elimination process would proceed

as follows:

123456 Initial list of suitors; start counting from 1.

12456 Suitor 3 eliminated; continue counting from 4.
1245 Suitor 6 eliminated; continue counting from 1.
125 Suitor 4 eliminated; continue counting from 5.
15 Suitor 2 eliminated; continue counting from 5.
1 Suitor 5 eliminated; 1 is the lucky winner.

Write a program that creates a circular linked list of nodes to determine which
position you should stand in to marry the princess if there are 7 suitors. Your
program should simulate the climination process by deleting the node that
corresponds to the suitor that is eliminated for each step in the process.

Although the long data type can store large integers, it can't store extremely large
values such as an integer with 200 digits. Create a HugeNumber class that uses a
linked list of digits to represent integers of arbitrary length. The class should have
a method to add a new most significant digit to the existing number so that
longer and longer numbers can be created. Also add methods to reset the num-
ber and to return the value of the huge integer as a String along with appropri-
ate constructor or accessor methods. Write code to test your class.

Note: Use of a doubly linked list will make the next problem easier to implement.

Add a copy constructor to the HugeNumber class described in the previous prob-
lem that makes a deep copy of the input HugeNumber. Also create an add method
that adds an input HugeNumber to the instance’s HugeNumber value and returns a
new HugeNumber that is set to the sum of the two values. Write code to test the
additions to your class.

Give the definition of a generic class that uses a doubly linked list of data items.
Include a copy constructor, an equals method, a clone method, a toString
method, a method to produce an iteraror, and any other methods that would
normally be expected. Write a suitable test program.

Complete the definition of the binary search tree class IntTree in Display 15.39 by
adding the following: Make IntTree implement the Cloneable interface, including
the definition of a clone method; add a copy constructor; add an equals method;
add a method named sameContents as described later in this project; add a
toString method; and add a method to produce an iterator. Define equals so that
two trees are equal if (and only if) the two trees have the exact same shape and have
the same numbers in corresponding nodes. The clone method and the copy

@

®
® o

9.

@ M15_SAVI3825_04_CI15.fin Page 887 Friday, January 2, 2009 4:35 PM

Programming Projects 887

constructor should each produce a deep copy that is equal to the original list accord-
ing to the equals method. The boolean valued method sameContents has one
parameter of type IntTree and returns true if the calling object and the argument
tree contain exactly the same numbers, and returns false otherwise. Note that
equals and sameContents are not the same. Also, write a suitable test program.

Wirite an addSorted method for the generic linked list from Display 15.8 such
that the method adds a new node in the correct location so that the list remains
in sorted order. Note that this will require that the type parameter T extend the
Comparable interface. Write a suitable test program.

Add a remove method and an iterator for the Set class in Display 15.37. Write a
suitable test program.

The hash table from Display 15.34 hashed a string to an integer and stored the
same string in the hash table. Modify the program so that instead of storing
strings it stores Employee objects as defined in Display 7.2. Use the name instance
variable as the input to the hash function. The modification will require changes
to the linked list, since the LinkedList2 class only created linked lists of strings.
For the most generality, modify the hash table so that it uses the generic
LinkedList3 class defined in Display 15.8. You will also need to add a get
method that returns the Employee object stored in the hash table that corre-
sponds to the input name. Test your program by adding and retrieving several
names, including names that hash to the same slot in the hash table.

Display 15.34 and 15.35 provide the beginnings of a spell checker. Refine the
program to make it more useful. The modified program should read in a text
file, parse each word, see if it is in the hash table, and, if not, output the line
number and word of the potentially misspelled word, Discard any punctuation
in the original text file. Use the words. txt file as the basis for the hash table dic-
tionary. This file can be found on the CD accompanying the textbook and also
on the book's website. The file contains 45,407 common words and names in
the English language. Note that some words are capitalized. Test your spell
checker on a short text document.

Change the Set<T> class of Display 15.37 so that internally it uses 2 hash table to
store its data instead of a linked list. The headers of the public methods should
remain the same so that a program such as the demonstration in Display 15.38
should still work without requiring any changes. Add a constructor that allows
the user of the new Set<T> class to specify the size of the hash table array.

For an additional challenge, implement the set using both a hash table and a
linked list. Items added to the set should be stored using both data structures.
Any operation requiring lookup of an item should use the hash table, and any
operation requiring iteration through the items should use the linked list.

®

i

Next, define a class named Circle that implements shape. The Circle class should have an instance
variable for the radius, a constructor that sets the radius, accessor/mutator methods for the radius, and
an implementation of the area method. Also define a class named Rectangle that implements
Shape. The Rectangle class should have instance variables for the height and width, a constructor
that sets the height and width, accessor mutator methods for the height and width, and an
implementation of the area method.

The following test code should then output the area of the Circle and Rectangle objects:

public static void main(String{]l args)
l
Circle ¢ = new Circle(4); // Badius of 4
Rectangle r = new Rectangle (4,3): // Height=4, Width=3
ShowArea (c)
ShowArea (r);

public static void ShowArea (Shape s)
|

double area = a.areal(};
System.out.println("The area of the shape is " + area);

/Ehapter 14

7. Programming Project 6.13 implemented a simple trivia game using an array of Trivia objects.
Redo this project but use an ArrayList of Trivia objects instead of an array. The runtime behavior

should remain identical to before.

Chapter 15

11. The following figure is called a graph. The circles are called nodes and the lines are called edges. An
edge connects two nodes. You can interpret the graph as a maze of rooms and passages. The nodes can
be thought of as rooms and an edge connects one room to another. Note that each node has at most

four edges in the graph below.

888 CHAPTER 15

11.

A

@
®

|'é)"'~:1‘ i5_SAVI3825_04_Cl15.fm Page 888 Friday, January 2,2009 4:35 PM

Linked Data Structures

The following figure is called a graph. The circles are called nodes and the lines
are called edges. An edge connects two nodes. You can interpret the graph as a
maze of rooms and passages. The nodes can be thought of as rooms and an edge
connects one room to another. Note that each node has at most four edges in the
graph below.

North

Start T
—C) (O—

0 O—O—C
O—0 O Om

Write a program that implements the maze above using references to instances
of a Node class, Each node in the graph will correspond to an instance of Node.
The edges correspond to links that connect one node to another and can be
represented in Node as instance variables that reference another Node class. Start
the user in node A. The user’s goal is to reach the finish in node L. The program
should output possible moves in the north, south, east, or west direction. Sample
execution is shown below.

You are in room Aseéeg_maze of twisty little passages, all alike. You
can go east o 50‘\&h

E
You are in room B of a maze of twisty little passages, all alike. You
can go west or south.

5

You are in room F of a maze of twisty little passages, all alike. You
can go north or east.

E

—®

g

-

+@

