
 Linked Data
 Structures

 Efficiency of Hash Tables 783
 Example: A Set Template Class 784
 Efficiency of Sets Using Linked Lists 790

 17.3 ITERATORS 791
 Pointers as Iterators 792
 Iterator Classes 792
 Example: An Iterator Class 794

 17.4 TREES 800
 Tree Properties 801
 Example: A Tree Template Class 803

 17.1 NODES AND LINKED LISTS 733
 Nodes 733
 Linked Lists 738
 Inserting a Node at the Head of a List 740
 Pitfall: Losing Nodes 743
 Inserting and Removing Nodes Inside a List 743
 Pitfall: Using the Assignment Operator with Dynamic

 Data Structures 747
 Searching a Linked List 747
 Doubly Linked Lists 750
 Adding a Node to a Doubly Linked List 752
 Deleting a Node from a Doubly Linked List 752
 Example: A Generic Sorting Template Version of

 Linked List Tools 759

 17.2 LINKED LIST APPLICATIONS 763
 Example: A Stack Template Class 763
 Example: A Queue Template Class 770
 Tip: A Comment on Namespaces 773
 Friend Classes and Similar Alternatives 774
 Example: Hash Tables with Chaining 777

 17

 Chapter Summary 808 Answers to Self-Test Exercises 809 Programming Projects 818

M17_SAVT071X_01_SE_C17.indd 731M17_SAVT071X_01_SE_C17.indd 731 2/8/12 3:53 PM2/8/12 3:53 PM

 If somebody there chanced to be

 Who loved me in a manner true

 My heart would point him out to me

 And I would point him out to you.

 GILBERT AND SULLIVAN, Ruddigore

 Introduction
 A linked list is a list constructed using pointers. A linked list is not fixed in size but can
grow and shrink while your program is running. A tree is another kind of data structure
constructed using pointers. This chapter introduces the use of pointers for building
such data structures. The Standard Template Library (STL) has predefined versions
of these and other similar data structures. The STL is covered in Chapter 19 . It often
makes more sense to use the predefined data structures in the STL rather than defining
your own. However, there are cases where you need to define your own data structures
using pointers. (Somebody had to define the STL.) Also, this material will give you
some insight into how the STL might have been defined and will introduce you to
some basic widely used material.

 Linked data structures produce their structures using dynamic variables, which
are created with the new operator. The linked data structures use pointers to connect
these variables. This gives you complete control over how you build and manage your
data structures, including how you manage memory. This allows you to sometimes do
things more efficiently. For example, it is easier and faster to insert a value into a sorted
linked list than into a sorted array.

 There are basically three ways to handle data structures of the kind discussed in this
chapter:

 1. The C-style approach of using global functions and struct s with everything public

 2. Using classes with all member variables private and using accessor and mutator
functions

 3. Using friend classes (or something similar, such as private or protected inheritance
or locally defi ned classes)

 We give examples of all three methods. We introduce linked lists using method 1. We
then present more details about basic linked lists and introduce both the stack and
queue data structures using method 2. We give an alternate definition of our queue
template class using friend classes (method 3), and also use friend classes (method 3)
to present a tree template class. This way you can see the virtues and shortcomings of
each approach. Our personal preference is to use friend classes, but each method has its
own advocates.

 17 Linked Data Structures

M17_SAVT071X_01_SE_C17.indd 732M17_SAVT071X_01_SE_C17.indd 732 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 733

 Sections 17.1 through 17.3 do not use the material in Chapters 13 through 15
(recursion, inheritance, and polymorphism) , with one small exception: We have
marked our class destructors with the modifier virtual following the advice given
in Chapter 15 . If you have not yet read about virtual functions (Chapter 15) , you
can pretend that "virtual" does not appear in the code. For in the purposes of this
chapter, it makes no difference whether "virtual" is present or not. Section 17.4 uses
recursion (Chapter 13) but does not use Chapters 14 and 15 .

 17.1 Nodes and Linked Lists

 A linked list, such as the one diagrammed in Display 17.1 , is a simple example of
a dynamic data structure. It is called a dynamic data structure because each of the
boxes in Display 17.1 is a variable of a struct or class type that has been dynamically
created with the new operator. In a dynamic data structure, these boxes, known as
 nodes , contain pointers, diagrammed as arrows, that point to other nodes. This section
introduces the basic techniques for building and maintaining linked lists.

 Nodes

 A structure like the one shown in Display 17.1 consists of items that we have drawn
as boxes connected by arrows. The boxes are called nodes , and the arrows represent
pointers. Each of the nodes in Display 17.1 contains a string value, an integer, and a
pointer that can point to other nodes of the same type. Note that pointers point to
the entire node, not to the individual items (such as 10 or "rolls") that are inside
the node.

 Nodes are implemented in C++ as struct s or classes. For example, the struct type
definitions for a node of the type shown in Display 17.1 , along with the type definition
for a pointer to such nodes, can be as follows:

 struct ListNode
 {

 string item;
 int count;
 ListNode *link;

 }

 Typedef ListNode* ListNodePtr;

 The order of the type definitions is important. The definition of ListNode must come
first, since it is used in the definition of ListNodePtr .

 The box labeled head in Display 17.1 is not a node but a pointer variable that can
point to a node. The pointer variable head is declared as follows:

 ListNodePtr head;

 dynamic data
 structure

 node structures

 node type
 definition

M17_SAVT071X_01_SE_C17.indd 733M17_SAVT071X_01_SE_C17.indd 733 2/8/12 3:53 PM2/8/12 3:53 PM

734 CHAPTER 17 Linked Data Structures

 Even though we have ordered the type definitions to avoid some illegal forms of
circularity, the preceding definition of the struct type ListNode is still circular.
The definition of the type ListNode uses the type name ListNode to define the
member variable link . There is nothing wrong with this particular circularity, which
is allowed in C++. One indication that this definition is not logically inconsistent
is the fact that you can draw pictures, such as Display 17.1 , that represent such
structures.

 We now have pointers inside struct s and have these pointers pointing to struct s
that contain pointers, and so forth. In such situations the syntax can sometimes get
involved, but in all cases the syntax follows those few rules we have described for
pointers and struct s. As an illustration, suppose the declarations are as just shown,
the situation is as diagrammed in Display 17.1 , and you want to change the number
in the first node from 10 to 12 . One way to accomplish this is with the following
statement:

 (*head).count = 12;

 The expression on the left side of the assignment operator may require a bit of
explanation. The variable head is a pointer variable. The expression *head is thus the
thing it points to, namely the node (dynamic variable) containing "rolls" and the
integer 10 . This node, referred to by *head , is a struct , and the member variable of
this struct , which contains a value of type int , is called count ; therefore, (*head).
count is the name of the int variable in the first node. The parentheses around *head
are not optional. You want the dereferencing operation, * , to be performed before the
dot operation. However, the dot operator has higher precedence than the dereferencing

 changing
 node data

head
"rolls"

10

"jam"

3

"tea"

2

end marker

 Display 17.1 Nodes and Pointers

M17_SAVT071X_01_SE_C17.indd 734M17_SAVT071X_01_SE_C17.indd 734 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 735

operator, * , and so without the parentheses, the dot operation would be performed first
(which would produce an error). The next paragraph describes a shortcut notation that
can avoid this worry about parentheses.

 C++ has an operator that can be used with a pointer to simplify the notation for
specifying the members of a struct or a class. Chapter 10 introduced the arrow
operator, -> , but we have not used it extensively before now. So, a review is in order.
The arrow operator combines the actions of a dereferencing operator, * , and a dot
operator to specify a member of a dynamic struct or class object that is pointed to
by a given pointer. For example, the previous assignment statement for changing the
number in the first node can be written more simply as

 head->count = 12;

 This assignment statement and the previous one mean the same thing, but this one is
the form normally used.

 The string in the first node can be changed from "rolls" to "bagels" with the
following statement:

 head->item = "bagels";

 The result of these changes to the first node in the list is diagrammed in Display 17.2 .

 the -> operator

head->count = 12;
head->item = "bagels";

head
"bagels"

12

"jam"

3

"tea"

2

NULL

head
"rolls"

10

"jam"

3

"tea"

2

NULL

Before After

 Display 17.2 Accessing Node Data

M17_SAVT071X_01_SE_C17.indd 735M17_SAVT071X_01_SE_C17.indd 735 2/8/12 3:53 PM2/8/12 3:53 PM

736 CHAPTER 17 Linked Data Structures

 Look at the pointer member in the last node in the list shown in Display 17.2 . This
last node has the word NULL written where there should be a pointer. In Display 17.1 ,
we filled this position with the phrase “end marker,” but “end marker” is not a C++
expression. In C++ programs we use the constant NULL as a marker to signal the end of
a linked list (or the end of any other kind of linked data structure).

 NULL is typically used for two different (but often coinciding) purposes. First,
 NULL is used to give a value to a pointer variable that otherwise would not have
any value. This prevents an inadvertent reference to memory, since NULL is not
the address of any memory location. The second category of use is that of an end
marker. A program can step through the list of nodes as shown in Display 17.2 and
know that it has come to the end of the list when the program reaches the node that
contains NULL .

 As noted in Chapter 10 , the constant NULL is actually the number 0, but we prefer
to think of it and spell it as NULL to make it clear that it means this special-purpose
value that you can assign to pointer variables. The definition of the identifier NULL
is in a number of the standard libraries, such as <iostream> and <cstddef> , so you
should use an include directive with either <iostream> , <cstddef> , or some other
suitable library when you use NULL . The definition of NULL is handled by the C++
preprocessor, which replaces NULL with 0 . Thus, the compiler never actually sees
 "NULL" , so there are no namespace issues; therefore, no using directive is needed
for NULL .

 The Arrow Operator, ->
 The arrow operator, -> , specifies a member of a struct or a member of a class object that
is pointed to by a pointer variable. The syntax is

 Pointer_Variable->Member_Name

 This refers to a member of the struct or class object pointed to by the Pointer_
Variable . Which member it refers to is given by the Member_Name . For example, suppose
you have the following definition:

 struct Record
 {
 int number;
 char grade;
 } ;

 The following creates a dynamic variable of type Record and sets the member variables of
the dynamic struct variable to 2001 and 'A' :

 Record *p;
 p = new Record;
 p->number = 2001;
 p->grade = 'A';

 NULL

 NULL is 0

M17_SAVT071X_01_SE_C17.indd 736M17_SAVT071X_01_SE_C17.indd 736 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 737

 A pointer can be set to NULL using the assignment operator, as in the following,
which declares a pointer variable called there and initializes it to NULL :

 double *there = NULL;

 The constant NULL can be assigned to a pointer variable of any pointer type.

 NULL
 NULL is a special constant value that is used to give a value to a pointer variable that would
not otherwise have a value. NULL can be assigned to a pointer variable of any type. The
identifier NULL is defined in a number of libraries including the library with header file
 <cstddef> and the library with header file <iostream> . The constant NULL is actually
the number 0, but we prefer to think of it and spell it as NULL .

 Linked Lists as Arguments
 You should always keep one pointer variable pointing to the head of a linked list. This
pointer variable is a way to name the linked list. When you write a function that takes a
linked list as an argument, this pointer (which points to the head of the linked list) can be
used as the linked list argument.

 Self-Test Exercises

 1. Suppose your program contains the following type defi nitions:

 struct Box
 {
 string name;
 int number;
 Box *next;
 };

 typedef Box* BoxPtr;

 What is the output produced by the following code?

 BoxPtr head;
 head = new Box;
 head->name = "Sally";
 head->number = 18;
 cout << (*head).name << endl;
 cout << head->name << endl;
 cout << (*head).number << endl;
 cout << head->number << endl;

(continued)

M17_SAVT071X_01_SE_C17.indd 737M17_SAVT071X_01_SE_C17.indd 737 2/8/12 3:53 PM2/8/12 3:53 PM

738 CHAPTER 17 Linked Data Structures

 Linked Lists

 Lists such as those shown in Display 17.1 are called linked lists. A linked list is a list
of nodes in which each node has a member variable that is a pointer that points to the
next node in the list. The first node in a linked list is called the head , which is why
the pointer variable that points to the first node is named head . Note that the pointer
named head is not itself the head of the list but only points to it. The last node has no
special name, but it does have a special property: It has NULL as the value of its member
pointer variable. To test whether a node is the last node, you need only test whether the
pointer variable in the node is equal to NULL .

 Our goal in this section is to write some basic functions for manipulating linked
lists. For variety, and to simplify the notation, we will use a simpler type of data for
the nodes than that used in Display 17.2 . These nodes will contain only an integer and
a pointer. However, we will make our nodes more complicated in one sense. We will
make them objects of a class, rather than just a simple struct . The node and pointer
type definitions that we will use are as follows:

 class IntNode
 {
 public :
 IntNode() {}
 IntNode(int theData, IntNode* theLink)
 : data(theData), link(theLink) {}
 IntNode* getLink() const { return link; }
 int getData() const { return data; }

 2. Suppose that your program contains the type defi nitions and code given in
 Self-Test Exercise 1 . That code creates a node that contains the string "Sally"
and the number 18. What code would you add to set the value of the member
variable next of this node equal to NULL?

 3. Consider the following structure defi nition:

 struct ListNode
 {
 string item;
 int count;
 ListNode *link;
 };
 ListNode *head = new ListNode;

 Give code to assign the string " Wilbur's brother Orville " to the member
variable item of the variable to which head points.

Self-Test Exercises (continued)

 linked list

 head

 node type
 definition

M17_SAVT071X_01_SE_C17.indd 738M17_SAVT071X_01_SE_C17.indd 738 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 739

 void setData(int theData) { data = theData; }
 void setLink(IntNode* pointer) { link = pointer; }
 private :
 int data;
 IntNode *link;
 };
 typedef IntNode* IntNodePtr;

 Note that all the member functions in the class IntNode are simple enough to have
inline definitions.

 Notice the two-parameter constructor for the class IntNode . It will allow us to
create nodes with a specified integer as data and with a specified link member. For
example, if p1 points to a node n1 , then the following creates a new node pointed to by
 p2 such that this new node has data 42 and has its link member pointing to n1 :

 IntNodePtr p2 = new IntNode(42, p1);

 After we derive some basic functions for creating and manipulating linked lists with
this node type, we will convert the node type and the functions to template versions so
they will work to store any type of data in the nodes.

 As a warm-up exercise, let us see how we might construct the start of a linked list
with nodes of this type. We first declare a pointer variable, called head , that will point
to the head of our linked list:

 IntNodePtr head;

 To create our first node, we use the operator new to create a new dynamic variable that
will become the first node in our linked list:

 head = new IntNode;

 We then give values to the member variables of this new node:

 head->setData(3);
 head->setLink(NULL);

 Notice that the pointer member of this node is set equal to NULL because this node is
the last node in the list (as well as the first node in the list). At this stage our linked list
looks like this:

3

NULL

head

 That was more work than we needed to do. By using the IntNode constructor with
two parameters, we can create our one-node linked list much easier. The following is
an easier way to obtain the one-node linked list just pictured:

 head = new IntNode(3, NULL);

 a one-node
 linked list

M17_SAVT071X_01_SE_C17.indd 739M17_SAVT071X_01_SE_C17.indd 739 2/8/12 3:53 PM2/8/12 3:53 PM

740 CHAPTER 17 Linked Data Structures

 As it turns out, we will always create new nodes using this two-argument constructor
for IntNode . Many programs would even omit the zero-argument constructor from
the definition of IntNode so that it would be impossible to create a node without
specifying values for each member variable.

 Our one-node list was built in an ad hoc way. To have a larger linked list, your
program must be able to add nodes in a systematic way. We next describe one simple
way to insert nodes in a linked list.

 Inserting a Node at the Head of a List

 In this subsection we assume that our linked list already contains one or more nodes,
and we develop a function to add another node. The first parameter for the insertion
function will be a call-by-reference parameter for a pointer variable that points to the
head of the linked list—that is, a pointer variable that points to the first node in the
linked list. The other parameter will give the number to be stored in the new node.
The function declaration for our insertion function is as follows:

 void headInsert(IntNodePtr& head, int theData);

 To insert a new node into the linked list, our function will use the new operator and
our two-argument constructor for IntNode . The new node will have theData as its
data and will have its link member pointing to the first node in the linked list (before
insertion). The dynamic variable is created as follows:

 new IntNode(theData, head)

 We want the pointer head to point to this new node, so the function body can simply be

 {
 head = new IntNode(theData, head);
 }

 Display 17.3 contains a diagram of the action

 head = new IntNode(theData, head);

 when theData is 12 . The complete function definition is given in Display 17.4 .
 You will want to allow for the possibility that a list contains nothing. For example, a

shopping list might have nothing in it because there is nothing to buy this week. A list
with nothing in it is called an empty list . A linked list is named by naming a pointer
that points to the head of the list, but an empty list has no head node. To specify an
empty list, use the value NULL . If the pointer variable head is supposed to point to the
head node of a linked list and you want to indicate that the list is empty, then set the
value of head as follows:

 head = NULL;

 Whenever you design a function for manipulating a linked list, you should always
check to see if it works on the empty list. If it does not, you may be able to add a
special case for the empty list. If you cannot design the function to apply to the empty

 empty list

M17_SAVT071X_01_SE_C17.indd 740M17_SAVT071X_01_SE_C17.indd 740 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 741

list, then your program must be designed to handle empty lists some other way or to
avoid them completely. Fortunately, the empty list can often be treated just like any
other list. For example, the function headInsert in Display 17.4 was designed with
nonempty lists as the model, but a check will show that it works for the empty list
as well.

head

3

NULL

15

head

12

3

NULL

15

head

12

3

NULL

15

Linked list before insertion

Node created by

new IntNode(12, head)

Linked list after execution of

head = new IntNode(12, head);

 Display 17.3 Adding a Node to the Head of a Linked List

M17_SAVT071X_01_SE_C17.indd 741M17_SAVT071X_01_SE_C17.indd 741 2/8/12 3:53 PM2/8/12 3:53 PM

742 CHAPTER 17 Linked Data Structures

 Display 17.4 Functions for Adding a Node to a Linked List

 NODE AND POINTER TYPE DEFINITIONS

 class IntNode
 {
 public :
 IntNode() {}
 IntNode(int theData, IntNode* theLink)
 : data(theData), link(theLink) {}
 IntNode* getLink() const { return link; }
 int getData() const { return data; }
 void setData(int theData) { data = theData; }
 void setLink(IntNode* pointer) { link = pointer; }
 private :
 int data;
 IntNode *link;
 } ;

 typedef IntNode* IntNodePtr;

 FUNCTION TO ADD A NODE AT THE HEAD OF A LINKED LIST

 FUNCTION DECLARATION

 void headInsert(IntNodePtr& head, int theData);
 //Precondition: The pointer variable head points to
 //the head of a linked list .
 //Postcondition: A new node containing theData
 //has been added at the head of the linked list .

 FUNCTION DEFINITION

 void headInsert(IntNodePtr& head, int theData)
 {
 head = new IntNode(theData, head);
 }

 FUNCTION TO ADD A NODE IN THE MIDDLE OF A LINKED LIST
 FUNCTION DECLARATION

 void insert(IntNodePtr afterMe, int theData);
 //Precondition: afterMe points to a node in a linked list .
 //Postcondition: A new node containing theData
 //has been added after the node pointed to by afterMe .

 FUNCTION DEFINITION

 void insert(IntNodePtr afterMe, int theData)
 {
 afterMe->setLink(new IntNode(theData, afterMe->getLink()));
 }

M17_SAVT071X_01_SE_C17.indd 742M17_SAVT071X_01_SE_C17.indd 742 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 743

 Inserting and Removing Nodes Inside a List

 We next design a function to insert a node at a specified place in a linked list. If you
want the nodes in some particular order, such as numerical or alphabetical, you cannot
simply insert the node at the beginning or end of the list. We will therefore design a
function to insert a node after a specified node in the linked list.

 We assume that some other function or program part has correctly placed a pointer
called afterMe pointing to some node in the linked list. We want the new node to be
placed after the node pointed to by afterMe , as illustrated in Display 17.6 . The same
technique works for nodes with any kind of data, but to be concrete, we are using

 PITFALL: Losing Nodes

 You might be tempted to write the function definition for headInsert (Display 17.4)
using the zero-argument constructor to set the member variables of the new node. If
you were to try, you might start the function as follows:

 head = new IntNode;
 head->setData(theData);

 At this point, the new node is constructed, contains the correct data, and is
pointed to by the pointer head —all as it is supposed to be. All that is left to do is
attach the rest of the list to this node by setting the pointer member in this new
node so that it points to what was formerly the first node of the list. You could do
it with the following, if only you could figure out what pointer to put in place of
the question mark:

 head->setLink(?);

 Display 17.5 shows the situation when the new data value is 12 and illustrates the
problem. If you were to proceed in this way, there would be nothing pointing to the
node containing 15 . Since there is no named pointer pointing to it (or to a chain
of pointers extending to that node), there is no way the program can reference this
node. The node and all nodes below this node are lost. A program cannot make a
pointer point to any of these nodes, nor can it access the data in these nodes or do
anything else to them. It simply has no way to refer to the nodes. Such a situation
ties up memory for the duration of the program. A program that loses nodes is
sometimes said to have a memory leak . A significant memory leak can result in the
program running out of memory and terminating abnormally. Worse, a memory
leak (lost nodes) in an ordinary users program can, in rare situations, cause the
operating system to crash. To avoid such lost nodes, the program must always keep
some pointer pointing to the head of the list, usually the pointer in a pointer variable
like head . ■

 memory leak

 inserting in
the middle

of a list

M17_SAVT071X_01_SE_C17.indd 743M17_SAVT071X_01_SE_C17.indd 743 2/8/12 3:53 PM2/8/12 3:53 PM

744 CHAPTER 17 Linked Data Structures

the same type of nodes as in previous subsections. The type definitions are given in
 Display 17.4 . The function declaration for the function we want to define is given in
the following:

 void insert(IntNodePtr afterMe, int theData);
 //Precondition: afterMe points to a node in a linked list .
 //Postcondition: A new node containing theData
 //has been added after the node pointed to by afterMe .

 The new node is inserted inside the list in basically the same way a node is added to
the head (start) of a list, which we have already discussed. The only difference is that
we use the pointer afterMe->link instead of the pointer head . The insertion is done
as follows:

 afterMe->setLink(new IntNode(theData, afterMe->getLink()));

 The details with theData equal to 5 are pictured in Display 17.6 , and the final
function definition is given in Display 17.4 .

 If you go through the code for the function insert , you will see that it works
correctly even if the node pointed to by afterMe is the last node in the list. However,
 insert will not work for inserting a node at the beginning of a linked list. The
function headInsert given in Display 17.4 can be used to insert a node at the
beginning of a list.

 By using the function insert , you can maintain a linked list in numerical or
alphabetical order or in some other ordering. You can squeeze a new node into the
correct position by simply adjusting two pointers. This is true no matter how long the
linked list is or where in the list you want the new data to go. If you instead use an
array, much—and in extreme cases, all—of the array would have to be copied in order

head

3

NULL

15

Linked list before insertion

head
12

?

3

NULL

15

Lost nodes

Situation after executing

head = new IntNode;
head->setData(theData);

 Display 17.5 Lost Nodes

 insertion
 at the ends

 comparison
 to arrays

M17_SAVT071X_01_SE_C17.indd 744M17_SAVT071X_01_SE_C17.indd 744 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 745

to make room for a new value in the correct spot. Despite the overhead involved in
positioning the pointer afterMe , inserting into a linked list is frequently more efficient
than inserting into an array.

 Removing a node from a linked list is also quite easy. Display 17.7 illustrates the
method. Once the pointers before and discard have been positioned, all that is
required to remove the node is the following statement:

 before->setLink(discard->getLink());

afterMe

head
2

9

3

18

NULL

5

afterMe

head
2

9

3

18

NULL

5

Node created by

 new IntNode(5, afterMe->getLink());

afterMe->getLink()

is highlighted.

Final result of
afterMe->setLink(
 new IntNode(theData, afterMe->getLink()));

 Display 17.6 Inserting in the Middle of a Linked List

 removing
 a node

M17_SAVT071X_01_SE_C17.indd 745M17_SAVT071X_01_SE_C17.indd 745 2/8/12 3:53 PM2/8/12 3:53 PM

746 CHAPTER 17 Linked Data Structures

 This is sufficient to remove the node from the linked list. However, if you are not using
this node for something else, you should destroy the node and return the memory it
uses for recycling; you can do this with a call to delete as follows:

 delete discard;

head

discard

before

2

6

1

5
NULL

head

discard

before

2

6

1

3

5
NULL

recycled

before->setLink(discard->getLink());

delete discard;

 Display 17.7 Removing a Node

M17_SAVT071X_01_SE_C17.indd 746M17_SAVT071X_01_SE_C17.indd 746 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 747

 As we noted in Chapter 10 , the memory for dynamic variables is kept in an area of
memory known as the freestore . Because the freestore is not unlimited, when a dynamic
variable (node) is no longer needed by your program, you should return this memory
for recycling using the delete operator. We include a review of the delete operator in
the accompanying box.

 The delete Operator
 The delete operator eliminates a dynamic variable and returns the memory that the
dynamic variable occupied to the freestore. The memory can then be reused to create new
dynamic variables. For example, the following eliminates the dynamic variable pointed to by
the pointer variable p :

 delete p;

 After a call to delete , the value of the pointer variable, like p just shown, is undefined.

 PITFALL: Using the Assignment Operator with Dynamic Data Structures

 If head1 and head2 are pointer variables and head1 points to the head node of a
linked list, the following will make head2 point to the same head node and hence the
same linked list:

 head2 = head1;

 However, you must remember that there is only one linked list, not two. If you
change the linked list pointed to by head1 , then you will also change the linked list
pointed to by head2 , because they are the same linked lists.

 If head1 points to a linked list and you want head2 to point to a second, identical
copy of this linked list, the preceding assignment statement will not work. Instead, you
must copy the entire linked list node by node. ■

 Searching a Linked List

 Next we will design a function to search a linked list in order to locate a particular
node. We will use the same node type, called IntNode , that we used in the previous
subsections. (The definitions of the node and pointer types are given in Display 17.4 .)
The function we design will have two arguments: the linked list and the integer we
want to locate. The function will return a pointer that points to the first node that
contains that integer. If no node contains the integer, the function will return NULL .

M17_SAVT071X_01_SE_C17.indd 747M17_SAVT071X_01_SE_C17.indd 747 2/8/12 3:53 PM2/8/12 3:53 PM

748 CHAPTER 17 Linked Data Structures

This way our program can test whether the int is in the list by checking to see if the
function returns a pointer value that is not equal to NULL . The function declaration
and header comment for our function are as follows:

 IntNodePtr search(IntNodePtr head, int target);
 //Precondition: The pointer head points to the head of a
 //linked list. The pointer variable in the last node is NULL .
 //If the list is empty, then head is NULL.
 //Returns a pointer that points to the first node that contains the
 //target. If no node contains the target, the function returns NULL .

 We will use a local pointer variable, called here , to move through the list looking
for the target . The only way to move around a linked list, or any other data structure
made up of nodes and pointers, is to follow the pointers. Thus, we will start with here
pointing to the first node and move the pointer from node to node, following the
pointer out of each node. This technique is diagrammed in Display 17.8 .

 Since empty lists present some minor problems that would clutter our discussion,
we will at first assume that the linked list contains at least one node. Later we will
come back and make sure the algorithm works for the empty list as well. This search
technique yields the following algorithm:

 Pseudocode for search Function
 Make the pointer variable here point to the head node (that is, first node) of the linked list.

 while (here is not pointing to a node containing target

 and here is not pointing to the last node)
 {
 Make here point to the next node in the list.

 }
 if (the node pointed to by here contains target)
 return here;
 else
 return NULL;

 To move the pointer here to the next node, we must think in terms of the named
pointers we have available. The next node is the one pointed to by the pointer member
of the node currently pointed to by here . The pointer member of the node currently
pointed to by here is given by the expression

 here->getLink()

 To move here to the next node, we want to change here so that it points to the node
that is pointed to by the above-named pointer. Hence, the following will move the
pointer here to the next node in the list:

 here = here->getLink();

 search

 algorithm

M17_SAVT071X_01_SE_C17.indd 748M17_SAVT071X_01_SE_C17.indd 748 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 749

here

?

head
2

6

1

3

NULL

head
2

6

1

3

NULL

here

head
2

6

1

3

NULL

head
2

6

1

3

NULL

here

here

target is 6

Not here

Found

Not here

1

4

2

3

 Display 17.8 Searching a Linked List

M17_SAVT071X_01_SE_C17.indd 749M17_SAVT071X_01_SE_C17.indd 749 2/8/12 3:53 PM2/8/12 3:53 PM

750 CHAPTER 17 Linked Data Structures

 Putting these pieces together yields the following refinement of the algorithm
pseudocode for the search function:

 here = head;

 while (here->getData() != target && here->getLink() != NULL)
 here = here->getLink();

 if (here->getData() == target)
 return here;
 else
 return NULL;

 Notice the Boolean expression in the while statement. We test to see if here is
pointing to the last node by testing to see if the member variable here->getLink()
is equal to NULL .

 We still must go back and take care of the empty list. If we check the previous code,
we find that there is a problem with the empty list. If the list is empty, then here is
equal to NULL and hence the following expressions are undefined:

 here->getData()
 here->getLink()

 When here is NULL , it is not pointing to any node, so there is no data member or
link member. Hence, we make a special case of the empty list. The complete function
definition is given in Display 17.9 .

 Doubly Linked Lists

 An ordinary linked list allows you to move down the list in only one direction
(following the links). A doubly linked list has one link that is a pointer to the next
node and an additional link that is a pointer to the previous node. In some cases the
link to the previous node can simplify our code. For example, if removing a node from
the list, we will no longer need to have a before variable to remember the node that
links to the node we wish to discard. Diagrammatically, a doubly linked list looks like
the sample list in Display 17.10 .

 algorithm
 refinement

 empty list

 doubly linked
 list

 Display 17.9 Function to Locate a Node in a Linked List (part 1 of 2)

 FUNCTION DECLARATION

 IntNodePtr search(IntNodePtr head, int target);
 //Precondition: The pointer head points to the head of a
 //linked list. The pointer variable in the last node is NULL .
 //If the list is empty, then head is NULL .
 //Returns a pointer that points to the first node that contains the
 //target. If no node contains the target, the function returns NULL .

 FUNCTION DEFINITION

 //Uses cstddef:

M17_SAVT071X_01_SE_C17.indd 750M17_SAVT071X_01_SE_C17.indd 750 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 751

The definitions of IntNode

and IntNodePtr are given in

Display 17.4.

head

2
NULL

1 6
NULL

 Display 17.10 A Doubly Linked List

 The node class for a doubly linked list of integers can be defined as follows:

 class DoublyLinkedIntNode
 {
 public :
 DoublyLinkedIntNode () {}
 DoublyLinkedIntNode (int theData, DoublyLinkedIntNode* previous,
 DoublyLinkedIntNode* next)
 : data(theData), nextLink(next), previousLink(previous) {}
 DoublyLinkedIntNode* getNextLink() const { return nextLink; }
 DoublyLinkedIntNode* getPreviousLink() const
 { return previousLink; }
 int getData() const { return data; }
 void setData(int theData) { data = theData; }
 void setNextLink(DoublyLinkedIntNode* pointer)
 { nextLink = pointer; }

 IntNodePtr search(IntNodePtr head, int target)
 {
 IntNodePtr here = head;

 if (here == NULL) //if empty list
 {
 return NULL;
 }
 else
 {
 while (here->getData() != target && here->getLink() != NULL)
 here = here->getLink();

 if (here->getData() == target)
 return here;
 else
 return NULL;
 }
 }

Display 17.9 Function to Locate a Node in a Linked List (part 2 of 2)

M17_SAVT071X_01_SE_C17.indd 751M17_SAVT071X_01_SE_C17.indd 751 2/8/12 3:53 PM2/8/12 3:53 PM

Proof_08
Highlight
<Au/ed: Please confirm new alignment of code.>

752 CHAPTER 17 Linked Data Structures

 void setPreviousLink(DoublyLinkedIntNode* pointer)
 { previousLink = pointer; }
 private :
 int data;
 DoublyLinkedIntNode *nextLink;
 DoublyLinkedIntNode *previousLink;
 };
 typedef DoublyLinkedIntNode* DoublyLinkedIntNodePtr;

 The code is almost identical to the version for the singly linked list except that we
have added a private member variable, previousLink , to store a link to the previous
node in the list. The functions setPreviousLink and getPreviousLink have been
added to get and set the link, along with an additional parameter to the constructor
to initialize previousLink . What used to be called link has also been renamed
 nextLink to differentiate between linking to the previous node or to the next node.

 Adding a Node to a Doubly Linked List

 To add a new DoublyLinkedIntNode to the front of the list, we must set links on two
nodes instead of one. The general process is shown in Display 17.11 . The declaration
for the insertion function is basically the same as in the singly linked case:

 void headInsert(DoublyLinkedIntNodePtr& head, int theData);

 First, we create a new node whose nextLink points to the old head and whose
 previousLink is NULL , because it will become the new head:

 DoublyLinkedIntNode* newHead = new DoublyLinkedIntNode

 (theData, NULL, head);

 The old head has to link its previous pointer to the new head:

 head->setPreviousLink(newHead);

 Finally, we set head to the new head:

 head = newHead;

 The complete function definition is given in Display 17.13 .

 Deleting a Node from a Doubly Linked List

 To remove a node from the doubly linked list also requires updating the references on
both sides of the node we wish to delete. Thanks to the backward link we do not need
a separate variable to keep track of the previous node in the list as we did for the singly
linked list. The general process of deleting a node referenced by position is shown
in Display 17.12 . Note that some special cases must be handled separately, such as
deleting a node from the beginning or the end of the list.

 adding a node
 to a doubly

 linked list

 deleting a
node from

a doubly
 linked list

M17_SAVT071X_01_SE_C17.indd 752M17_SAVT071X_01_SE_C17.indd 752 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 753

head

2

NULL

1 6

NULL

Existing list before adding new node

newHead = new DoublyLinkedIntNode(5, NULL, head);

Node created by

head

2

NULL

1 6

NULL

5

NULL

head->setPreviousNode(newHead);

Set the previous link of the original head node

newHead

head

2 1 6

NULL

5

NULLnewHead

head = newHead;

Set head to newHead

head

2 1 6

NULL

5

NULLnewHead NULL

 Display 17.11 Adding a Node to the Front of a Doubly Linked List

M17_SAVT071X_01_SE_C17.indd 753M17_SAVT071X_01_SE_C17.indd 753 2/8/12 3:53 PM2/8/12 3:53 PM

Proof_08
Highlight
<Au/Ed: Please advise if okay as set or if this should be code.>

754 CHAPTER 17 Linked Data Structures

head

2

NULL

1 6

NULL

Existing list before deleting discard

discard

head

2

NULL

1 6

NULL

Set pointers to the previous and next nodes

discard

DoublyLinkedIntNodePtr prev = discard->getPreviousLink();
DoublyLinkedIntNodePtr next = discard->getNextLink();

prev

next

head

2

NULL

1

6

NULL

Bypass discard

discard

prev->setNextLink(next);
next->setPreviousLink(prev);

prev

next

head

2

NULL
6

NULL

Delete discard

delete discard;

prev

next

 Display 17.12 Deleting a Node from a Doubly Linked List

M17_SAVT071X_01_SE_C17.indd 754M17_SAVT071X_01_SE_C17.indd 754 2/8/12 3:53 PM2/8/12 3:53 PM

Proof_08
Highlight
<Au/Ed: Please advise if "discard" is okay as set in these 2 instances or if they should be code.>

Proof_08
Highlight

 Nodes and Linked Lists 755

 The function declaration for our delete function is now

 void delete(DoublyLinkedIntNodePtr& head,
 DoublyLinkedIntNodePtr discard);

 The parameter discard is a pointer to the node we wish to remove. We must also
input the head of the list to handle the case where discard is the same as head :

 if (head == discard)
 {
 head = head->getNextLink();
 head->setPreviousLink(NULL);
 }

 In this case we have to advance head to the next node in the list. We then set the
previous link to NULL because there is no prior node. In the more general case, the
variable discard points to any other node that is not the head. We handle this case by
redirecting the links to bypass discard, as shown in Display 17.12 :

 else
 {
 DoublyLinkedIntNodePtr prev = discard->getPreviousLink();
 DoublyLinkedIntNodePtr next = discard->getNextLink();
 prev->setNextLink(next);
 if (next != NULL)
 {
 next->setPreviousLink(prev);
 }

 The previous node now links to discard ’s next node, and the next node now links to
 discard ’s previous node. Since discard might be the last node in the list, we have
to check and make sure that next != NULL so we do not try to dereference a NULL
pointer in the function setPreviousLink .

 The complete function definition is given in Display 17.13 .

 Display 17.13 Functions to Add and Remove a Node from a Doubly Linked List (part 1 of 3)

 NODE AND POINTER TYPE DEFINITIONS

 class DoublyLinkedIntNode
 {
 public :
 DoublyLinkedIntNode () {}
 DoublyLinkedIntNode (int theData, DoublyLinkedIntNode* previous,
 DoublyLinkedIntNode* next)
 : data(theData), nextLink(next), previousLink(previous) {}
 DoublyLinkedIntNode* getNextLink() const
 { return nextLink; }

(continued)

M17_SAVT071X_01_SE_C17.indd 755M17_SAVT071X_01_SE_C17.indd 755 2/8/12 3:53 PM2/8/12 3:53 PM

Proof_08
Highlight
<Au/ed: Please confirm new alignment of code.>

756 CHAPTER 17 Linked Data Structures

 DoublyLinkedIntNode* getPreviousLink() const
 { return previousLink; }
 int getData() const
 { return data; }
 void setData(int theData)
 { data = theData; }
 void setNextLink(DoublyLinkedIntNode* pointer)
 { nextLink = pointer; }
 void setPreviousLink(DoublyLinkedIntNode* pointer)
 { previousLink = pointer; }
 private :
 int data;
 DoublyLinkedIntNode *nextLink;
 DoublyLinkedIntNode *previousLink;
 }
 typedef DoublyLinkedIntNode* DoublyLinkedIntNodePtr;

 FUNCTION TO ADD A NODE AT THE HEAD OF A LINKED LIST

 FUNCTION DECLARATION

 void headInsert(DoublyLinkedIntNode& head, int theData);
 //Precondition: The pointer variable head points to
 //the head of a linked list .
 //Postcondition: A new node containing theData
 //has been added at the head of the linked list .

 FUNCTION DEFINITION

 void headInsert(DoublyLinkedIntNodePtr& head, int theData)
 {
 DoublyLinkedIntNode* newHead = new DoublyLinkedIntNode (

theData, NULL, head);
 head->setPreviousLink(newHead);
 head = newHead;
 }

 FUNCTION TO REMOVE A NODE

 FUNCTION DECLARATION

 void deleteNode(DoublyLinkedIntNodePtr& head,
 DoublyLinkedIntNodePtr discard);
 //Precondition: The pointer variable head points to
 //the head of a linked list and discard points to the node to remove .
 //Postcondition: The node pointed to by discard is removed from the list .

Display 17.13 Functions to Add and Remove a Node from a Doubly Linked List (part 2 of 3)

M17_SAVT071X_01_SE_C17.indd 756M17_SAVT071X_01_SE_C17.indd 756 2/8/12 3:53 PM2/8/12 3:53 PM

Proof02
Highlight
<Au/ed: Please confirm new alignment of code.>

Proof02
Highlight

 Nodes and Linked Lists 757

 FUNCTION DEFINITION

 void deleteNode(DoublyLinkedIntNodePtr& head,
 DoublyLinkedIntNodePtr discard);
 {
 if (head == discard)
 {
 head = head->getNextLink();
 head->setPreviousLink(NULL);
 }
 else
 {
 DoublyLinkedIntNodePtr prev = discard->getPreviousLink();
 DoublyLinkedIntNodePtr next = discard->getNextLink();
 prev->setNextLink(next);
 if (next != NULL)
 {
 next->setPreviousLink(prev);
 }
 }
 delete discard;
 }

Display 17.13 Functions to Add and Remove a Node from a Doubly Linked List (part 3 of 3)

 Self-Test Exercises

 4. Write type defi nitions for the nodes and pointers in a linked list. Call the node
type NodeType and call the pointer type PointerType . The linked lists will be
lists of letters.

 5. A linked list is normally referred to via a pointer that points to the fi rst node in
the list, but an empty list has no fi rst node. What pointer value is normally used
to represent an empty list?

 6. Suppose your program contains the following type defi nitions and pointer
variable declarations:

 struct Node
 {
 double data;
 Node *next;
 }

 typedef Node* Pointer;
 Pointer p1, p2;

(continued)

M17_SAVT071X_01_SE_C17.indd 757M17_SAVT071X_01_SE_C17.indd 757 2/8/12 3:53 PM2/8/12 3:53 PM

758 CHAPTER 17 Linked Data Structures

 Suppose p1 points to a node of the above type that is in a linked list. Write
code that will make p1 point to the next node in this linked list. (The pointer
 p2 is for the next exercise and has nothing to do with this exercise.)

 7. Suppose your program contains type defi nitions and pointer variable
declarations as in Self-Test Exercise 6 . Suppose further that p2 points to a node
of the above type that is in a linked list and that is not the last node on the list.
Write code that will delete the node after the node pointed to by p2 . After this
code is executed, the linked list should be the same, except that there will be
one less node in the linked list. (Hint: You may want to declare another pointer
variable to use.)

 8. Suppose your program contains the following type defi nitions and pointer
variable declarations:

 class Node
 {
 public :
 Node(double theData, Node* theLink)
 : data(theData), next(theLink) {}
 Node* getLink() const { return next; }
 double getData() const { return data; }
 void setData(double theData) { data = theData; }
 void setLink(Node* pointer) { next = pointer; }
 private :
 double data;
 Node *next;

 }
 typedef Node* Pointer;
 Pointer p1, p2;

 Suppose p1 points to a node of the above type that is in a linked list. Write
code that will make p1 point to the next node in this linked list. (The pointer
 p2 is for the next exercise and has nothing to do with this exercise.)

 9. Suppose your program contains type defi nitions and pointer variable
declarations as in Self-Test Exercise 8 . Suppose further that p2 points to a node
of the previous type that is in a linked list and that is not the last node on the
list. Write code that will delete the node after the node pointed to by p2 . After
this code is executed, the linked list should be the same, except that there will
be one less node in the linked list. (Hint: You may want to declare another
pointer variable to use.)

Self-Test Exercises (continued)

M17_SAVT071X_01_SE_C17.indd 758M17_SAVT071X_01_SE_C17.indd 758 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 759

 10. Choose an ending to the following statement, and explain:

 For a large array and a large list holding the same type objects, inserting a new
object at a known location into the middle of a linked list compared to insertion
in an array is

 a. more effi cient.

 b. less effi cient.

 c. about the same.

 11. Complete the body of the following function:

 void insert(DoublyLinkedIntNodePtr afterMe, int theData);

 The function should insert a new node with the value in theData after the
node afterMe in a doubly linked list.

 12. What operations are easier to implement with a doubly linked list than with
a singly linked list? What operations are more diffi cult?

Self-Test Exercises (continued)

 EXAMPLE: A Generic Sorting Template Version of Linked List Tools

 It is a routine matter to convert our type definitions and function definitions to
templates so that they will work for linked lists with data of any type T in the nodes.
However, there are some details to worry about. The heart of what you need to do is
replace the data type of the data in a node (the type int in Display 17.4) by a type
parameter T and insert the following at the appropriate locations:

 template < class T>

 However, you should also do a few more things to account for the fact that the
type T might be a class type. Since the type T might be a class type, a value parameter
of type T should be changed to a constant reference parameter and a returned type
of type T should have a const added so that it is returned by constant value. (The
reason for returning by const value is explained in Chapter 8 .)

 The final templates with the changes we described are shown in Displays 17.14
and 17.15 . It was necessary to do one more change from the simple case of a linked
list of integers. Since template typedef s are not implemented in most compilers, we
have not been able to use them. This means that on occasion we needed to use the
following hard-to-read parameter type specification:

 Node<T>*&

(continued)

M17_SAVT071X_01_SE_C17.indd 759M17_SAVT071X_01_SE_C17.indd 759 2/8/12 3:53 PM2/8/12 3:53 PM

760 CHAPTER 17 Linked Data Structures

 This is a call-by-reference parameter for a pointer to a node of type Node<T> . Next,
we have reproduced a function declaration from Display 17.15 so you can see this
parameter type specification in context:

 template < class T>
 void headInsert(Node<T>*& head, const T& theData);

EXAMPLE: (continued)

 Display 17.14 Interface File for a Linked List Library (part 1 of 2)

 1 //This is the header file listtools.h. This contains type definitions
 2 //and function declarations for manipulating a linked list to store
 3 //data of any type T. The linked list is given as a pointer of type
 4 //Node<T>* that points to the head (first) node of the list. The
 5 //implementation of the functions is given in the file listtools.cpp
 6 #ifndef LISTTOOLS_H
 7 #define LISTTOOLS_H

 8 namespace LinkedListSavitch
 9 {
 10 template < class T>
 11 class Node
 12 {
 13 public :
 14 Node(const T& theData, Node<T>* theLink) : data(theData),

 link(theLink){}
 15 Node<T>* getLink() const { return link; }
 16 const T getData() const { return data; }
 17 void setData(const T& theData) { data = theData; }
 18 void setLink(Node<T>* pointer) { link = pointer; }
 19 private :
 20 T data;
 21 Node<T> *link;
 22 };
 23 template < class T>
 24 void headInsert(Node<T>*& head, const T& theData);
 25 //Precondition: The pointer variable head points to
 26 //the head of a linked list .
 27 //Postcondition: A new node containing theData
 28 //has been added at the head of the linked list .

 29 template < class T>
 30 void insert(Node<T>* afterMe, const T& theData);
 31 //Precondition: afterMe points to a node in a linked list .
 32 //Postcondition: A new node containing theData
 33 //has been added after the node pointed to by afterMe .

It would be acceptable to use T as a parameter

type where we have used const T&. We used a

constant reference parameter because we

anticipate that T will frequently be a class type.

M17_SAVT071X_01_SE_C17.indd 760M17_SAVT071X_01_SE_C17.indd 760 2/8/12 3:53 PM2/8/12 3:53 PM

 Nodes and Linked Lists 761

 Display 17.14 Interface File for a Linked List Library (part 2 of 2)

 34 template < class T>
 35 void deleteNode(Node<T>* before);
 36 //Precondition: The pointer before points to a node that has
 37 //at least one node after it in the linked list .
 38 //Postcondition: The node after the node pointed to by before
 39 //has been removed from the linked list and its storage
 40 //returned to the freestore .

 41 template < class T>
 42 void deleteFirstNode(Node<T>*& head);
 43 //Precondition: The pointer head points to the first
 44 //node in a linked list with at least one node .
 45 //Postcondition: The node pointed to by head has been removed
 46 //from the linked list and its storage returned to the freestore .

 47 template < class T>
 48 Node<T>* search(Node<T>* head, const T& target);
 49 //Precondition: The pointer head points to the head of a linked list .
 50 //The pointer variable in the last node is NULL .
 51 //== is defined for type T .
 52 //(== is used as the criterion for being equal.)
 53 //If the list is empty, then head is NULL .
 54 //Returns a pointer that points to the first node that
 55 //is equal to the target. If no node equals the target,
 56 //then the function returns NULL .
 57 } //LinkedListSavitch

 58 #endif //LISTTOOLS_H

 Display 17.15 Implementation File for a Linked List Library (part 1 of 2)

 1 //This is the implementation file listtools.cpp. This file contains
 2 //function definitions for the functions declared in listtools.h.
 3 #include <cstddef>
 4 #include "listtools.h"

 5 namespace LinkedListSavitch
 6 {
 7 template<class T>
 8 void headInsert(Node<T>*& head, const T& theData)
 9 {
 10 head = new Node<T>(theData, head);
 11 }

(continued)

M17_SAVT071X_01_SE_C17.indd 761M17_SAVT071X_01_SE_C17.indd 761 2/8/12 3:53 PM2/8/12 3:53 PM

762 CHAPTER 17 Linked Data Structures

Display 17.15 Implementation File for a Linked List Library (part 2 of 2)

 12 template < class T>
 13 void insert(Node<T>* afterMe, const T& theData)
 14 {
 15 afterMe->setLink(new Node<T>(theData, afterMe->getLink()));
 16 }

 17 template < class T>
 18 void deleteNode(Node<T>* before)
 19 {
 20 Node<T> *discard;
 21 discard = before->getLink();
 22 before->setLink(discard->getLink());
 23 delete discard;
 24 }

 25 template < class T>
 26 void deleteFirstNode(Node<T>*& head)
 27 {
 28 Node<T> *discard;
 29 discard = head;
 30 head = head->getLink();
 31 delete discard;
 32 }

 33 //Uses cstddef:
 34 template < class T>
 35 Node<T>* search(Node<T>* head, const T& target)
 36 {
 37 Node<T>* here = head;
 38 if (here == NULL) //if empty list
 39 {
 40 return NULL;
 41 }
 42 else
 43 {
 44 while (here->getData() != target && here->getLink() != NULL)
 45 here = here->getLink();

 46 if (here->getData() == target)
 47 return here;
 48 else
 49 return NULL;
 50 }
 51 }
 52 } //LinkedListSavitch

M17_SAVT071X_01_SE_C17.indd 762M17_SAVT071X_01_SE_C17.indd 762 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 763

 17.2 Linked List Applications

 But many who are first now will be last, and many who are last now will
be first.

 Matthew 19:30

 First come first served

 A common (and more secular) saying

 Linked lists have many applications. This section presents only a few small examples of
their use—namely, common data structures that all use a linked list as the heart of their
implementation.

A

B
A

C

A

B

C
B
A

A

B
A

C

A

B

pushing

popping

 Display 17.16 A Stack

 EXAMPLE: A Stack Template Class

 A stack is a data structure that retrieves data in the reverse of the order in which the
data is stored. Suppose you place the letters 'A' , 'B' , and then 'C' in a stack. When
you take these letters out of the stack, they will be removed in the order 'C' , then
 'B' , and then 'A' . This use of a stack is diagrammed in Display 17.16 . As shown
there, you can think of a stack as a hole in the ground. In order to get something out
of the stack, you must first remove the items on top of the one you want. For this
reason a stack is often called a last-in/first-out data structure.

(continued)

M17_SAVT071X_01_SE_C17.indd 763M17_SAVT071X_01_SE_C17.indd 763 2/8/12 3:53 PM2/8/12 3:53 PM

764 CHAPTER 17 Linked Data Structures

 EXAMPLE: (continued)

Stacks are used for many language processing tasks. Chapter 13 discussed how the
computer system uses a stack to keep track of C++ function calls. However, here we
will only be concerned with one very simple application. Our goal in this example
is to show how you can use the linked list techniques to implement specific data
structures, such as a stack.

 The interface for our stack class is given in Display 17.17 . This is a template
class with a type parameter T for the type of data stored in the stack. One item
stored in the stack is a value of type T . In the example we present, T is replaced by
the type char . However, in most applications, an item stored in the stack is likely to
be a struct or class object. Each record (item of type T) that is stored in the stack
is called a stack frame , which will explain why we occasionally use stackFrame as
an identifier name in the definition of the stack template class. There are two basic
operations you can perform on a stack: adding an item to the stack and removing an
item from the stack. Adding an item is called pushing the item onto the stack, and so
we called the member function that does this push . Removing an item from a stack
is called popping the item off the stack, and so we called the member function that
does this pop .

 The names push and pop derive from a particular way of visualizing a stack.
A stack is analogous to a mechanism that is sometimes used to hold plates in a
cafeteria. The mechanism stores plates in a hole in the countertop. There is a spring
underneath the plates with its tension adjusted so that only the top plate protrudes
above the countertop. If this sort of mechanism were used as a stack data structure,
the data would be written on plates (which might violate some health laws, but still
makes a good analogy). To add a plate to the stack, put it on top of the other plates,
and the weight of this new plate pushes down the spring. When you remove a plate,
the plate below it pops into view.

 Display 17.18 shows a simple program that illustrates how the Stack class is used.
This program reads a line of text one character at a time and places the characters in
a stack. The program then removes the characters one by one and writes them to the
screen. Because data is removed from a stack in the reverse of the order in which it
enters the stack, the output shows the line written backward. We have #included
the implementation of the Stack class in our application program, as we normally
do with template classes. That means we cannot run or even compile our application
program until we do the implementation of our Stack class template.

 The definitions of the member functions for the template class Stack are given in
the implementation file shown in Display 17.19 . Our stack class is implemented as
a linked list in which the head of the list serves as the top of the stack. The member

 push

 pop

(continued on page 769)

M17_SAVT071X_01_SE_C17.indd 764M17_SAVT071X_01_SE_C17.indd 764 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 765

 Display 17.17 Interface File for a Stack Template Class

 1 //This is the header file stack.h. This is the interface for the class
 2 //Stack, which is a template class for a stack of items of type T .
 3 #ifndef STACK_H
 4 #define STACK_H

 5 namespace StackSavitch
 6 {
 7 template < class T>
 8 class Node
 9 {
 10 public :
 11 Node(T theData, Node<T>* theLink) : data(theData), link(theLink){}
 12 Node<T>* getLink() const { return link; }
 13 const T getData() const { return data; }
 14 void setData(const T& theData) { data = theData; }
 15 void setLink(Node<T>* pointer) { link = pointer; }
 16 private :
 17 T data;
 18 Node<T> *link;
 19 };
 20 template < class T>
 21 class Stack
 22 {
 23 public :
 24 Stack();
 25 //Initializes the object to an empty stack .

 26 Stack(const Stack<T>& aStack);

 27 Stack<T>& operator =(const Stack<T>& rightSide);

 28 virtual ˜Stack();

 29 void push(T stackFrame);
 30 //Postcondition: stackFrame has been added to the stack .

 31 T pop();
 32 //Precondition: The stack is not empty .
 33 //Returns the top stack frame and removes that top
 34 //stack frame from the stack .
 35 bool isEmpty() const ;
 36 //Returns true if the stack is empty. Returns false otherwise .
 37 private :
 38 Node<T> *top;
 39 };

 40 } //StackSavitch
 41 #endif //STACK_H

You might prefer to replace the

parameter type T with const T&.

Copy Constructor.

The destructor destroys the stack

and returns all the memory to the

freestore.

M17_SAVT071X_01_SE_C17.indd 765M17_SAVT071X_01_SE_C17.indd 765 2/8/12 3:53 PM2/8/12 3:53 PM

766 CHAPTER 17 Linked Data Structures

 Display 17.18 Program Using the Stack Template Class (part 1 of 2)

 1 //Program to demonstrate use of the Stack template class .
 2 #include <iostream>
 3 #include "stack.h"
 4 #include "stack.cpp"
 5 using std::cin;
 6 using std::cout;
 7 using std::endl;
 8 using StackSavitch::Stack;
 9 int main()
 10 {
 11 char next, ans;

 12 do
 13 {
 14 Stack<char > s;
 15 cout << "Enter a line of text:\n";
 16 cin.get(next);
 17 while (next != '\n')
 18 {
 19 s.push(next);
 20 cin.get(next);
 21 }

 22 cout << "Written backward that is:\n";
 23 while (! s.isEmpty())
 24 cout << s.pop();
 25 cout << endl;

 26 cout << "Again?(y/n): ";
 27 cin >> ans;
 28 cin.ignore(10000, '\n');
 29 } while (ans != 'n' && ans != 'N');

 30 return 0;
 31 }

 Sample Dialogue

 Enter a line of text:

 straw

 Written backward that is:

 warts

 Again?(y/n): y

The ignore member of cin is

discussed in Chapter 9. It

discards input remaining on

the line.

M17_SAVT071X_01_SE_C17.indd 766M17_SAVT071X_01_SE_C17.indd 766 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 767

 Enter a line of text:

 I love C++

 Written backward that is:

 ++C evol I

 Again?(y/n): n

 Display 17.19 Implementation of the Stack Template Class (part 1 of 2)

 1 //This is the implementation file stack.cpp .
 2 //This is the implementation of the template class Stack .
 3 //The interface for the template class Stack is in the header file

//stack.h .

 4 #include <iostream>
 5 #include <cstdlib>
 6 #include <cstddef>
 7 #include "stack.h"
 8 using std::cout;

 9 namespace StackSavitch
 10 {

 11 //Uses cstddef:
 12 template < class T>
 13 Stack<T>::Stack() : top(NULL)
 14 {
 15 //Intentionally empty
 16 }

 17 template < class T>
 18 Stack<T>::Stack(const Stack<T>& aStack)
 19 < The definition of the copy constructor is Self-Test Exercise 14 .>

 20 template < class T>
 21 Stack<T>& Stack<T>::operator =(const Stack<T>& rightSide)
 22 < The definition of the overloaded assignment operator is Self-Test Exercise 15 .>

 23 template < class T>
 24 Stack<T>::˜Stack()
 25 {
 26 T next;

Display 17.18 Program Using the Stack Template Class (part 2 of 2)

(continued)

M17_SAVT071X_01_SE_C17.indd 767M17_SAVT071X_01_SE_C17.indd 767 2/8/12 3:53 PM2/8/12 3:53 PM

768 CHAPTER 17 Linked Data Structures

 Display 17.19 Implementation of the Stack Template Class (part 2 of 2)

 27 while (! isEmpty())
 28 next = pop();//pop calls delete.
 29 }
 30
 31 //Uses cstddef:
 32 template < class T>
 33 bool Stack<T>::isEmpty() const
 34 {
 35 return (top == NULL);
 36 }
 37 template < class T>
 38 void Stack<T>::push(T stackFrame)
 39 < The rest of the definition is Self-Test Exercise 13 .>

 40 //Uses cstdlib and iostream:
 41 template < class T>
 42 T Stack<T>::pop()
 43 {
 44 if (isEmpty())
 45 {
 46 cout << "Error: popping an empty stack.\n";
 47 exit(1);
 48 }

 49 T result = top->getData();

 50 Node<T> *discard;
 51 discard = top;
 52 top = top->getLink();

 53 delete discard;
 54 return result;
 55 }
 56 } //StackSavitch

M17_SAVT071X_01_SE_C17.indd 768M17_SAVT071X_01_SE_C17.indd 768 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 769

EXAMPLE: (continued)

variable top is a pointer that points to the head of the linked list. The pointer top
serves the same purpose as the pointer head did in our previous discussions of
linked lists.

 Self-Test Exercise 13 is to write the definition of the member function push .
However, we have already given the algorithm for this task. The code for the push
member function is essentially the same as the function headInsert shown in
 Display 17.15 , except that in the member function push we use a pointer named
 top in place of a pointer named head .

 An empty stack is just an empty linked list, so an empty stack is implemented
by setting the pointer top equal to NULL. Once you realize that NULL represents the
empty stack, the implementations of the default constructor and of the member
function empty are obvious.

 The definition of the copy constructor is a bit more complicated but does not
use any techniques we have not already discussed. The details are left to Self-Test
 Exercise 14 .

 The pop member function first checks to see if the stack is empty. If it is not
empty, it proceeds to remove the top character in the stack. It sets the local variable
result equal to the top symbol on the stack as follows:

 T result = top->getData();

 After the data in the top node is saved in the variable result , the pointer top is
moved to the next node in the linked list, effectively removing the top node from the
list. The pointer top is moved with the statement

 top = top->getLink();

 However, before the pointer top is moved, a temporary pointer, called discard , is
positioned so that it points to the node that is about to be removed from the list.
The storage for the removed node can then be recycled with the following call
to delete :

 delete discard;

 Each node that is removed from the linked list by the member function pop has
its memory recycled with a call to delete , so all that the destructor needs to do is
remove each item from the stack with a call to pop . Each node will then have its
memory returned to the freestore for recycling.

M17_SAVT071X_01_SE_C17.indd 769M17_SAVT071X_01_SE_C17.indd 769 2/8/12 3:53 PM2/8/12 3:53 PM

770 CHAPTER 17 Linked Data Structures

 Push and Pop
 Adding a data item to a stack data structure is referred to as pushing the data item onto the
stack. Removing a data item from a stack is referred to as popping the item off the stack.

 Stacks
 A stack is a last-in/first-out data structure; that is, data items are retrieved in the opposite
order to which they were placed in the stack.

 Self-Test Exercises

13 . Give the defi nition of the member function push of the template class Stack
described in Displays 17.17 and 17.19 .

14 . Give the defi nition of the copy constructor for the template class Stack
described in Displays 17.17 and 17.19 .

15 . Give the defi nition of the overloaded assignment operator for the template class
 Stack described in Displays 17.17 and 17.19 .

 EXAMPLE: A Queue Template Class

 A stack is a last-in/first-out data structure. Another common data structure is a
 queue , which handles data in a first-in/first-out fashion. A queue can be implemented
with a linked list in a manner similar to our implementation of the Stack template
class. However, a queue needs a pointer at both the head of the list and at the end of
the linked list, since action takes place in both locations. It is easier to remove a node
from the head of a linked list than from the other end of the linked list. Therefore,
our implementation will remove nodes from the head of the list (which we will now
call the front of the list) and will add nodes to the other end of the list, which we will
now call the back of the list (or the back of the queue).

 The definition of the Queue template class is given in Display 17.20 . A sample
application that uses the class Queue is shown in Display 17.21 . The definitions
of the member functions are left as Self-Test Exercises (but remember that the
answers are given at the end of the chapter should you have any problems filling in
the details).

M17_SAVT071X_01_SE_C17.indd 770M17_SAVT071X_01_SE_C17.indd 770 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 771

 Display 17.20 Interface File for a Queue Template Class (part 1 of 2)

 1
 2 //This is the header file queue.h. This is the interface for the class
 3 //Queue, which is a template class for a queue of items of type T .
 4 #ifndef QUEUE_H
 5 #define QUEUE_H

 6 namespace QueueSavitch
 7 {
 8 template < class T>
 9 class Node
 10 {
 11 public :
 12 Node(T theData, Node<T>* theLink) : data(theData),

link(theLink){}
 13 Node<T>* getLink() const { return link; }
 14 const T getData() const { return data; }
 15 void setData(const T& theData) { data = theData; }
 16 void setLink(Node<T>* pointer) { link = pointer; }
 17 private :
 18 T data;
 19 Node<T> *link;
 20 };

 21 template < class T>
 22 class Queue
 23 {
 24 public :
 25 Queue();
 26 //Initializes the object to an empty queue .

 27 Queue(const Queue<T>& aQueue);

 28 Queue<T>& operator =(const Queue<T>& rightSide);

 29 virtual ~Queue();

 30
 31 void add(T item);
 32 //Postcondition: item has been added to the back of the queue .

 33 T remove();
 34 //Precondition: The queue is not empty .
 35 //Returns the item at the front of the queue
 36 //and removes that item from the queue .

(continued)

This is the same definition of the template

class Node that we gave for the stack interface in

Display 17.17. See the “Tip: A Comment on Namespaces”

for a discussion of this duplication.

You might prefer to replace the

parameter type T with const T&.

Copy constructor.

The destructor destroys the

queue and returns all the

memory to the freestore.

M17_SAVT071X_01_SE_C17.indd 771M17_SAVT071X_01_SE_C17.indd 771 2/8/12 3:53 PM2/8/12 3:53 PM

772 CHAPTER 17 Linked Data Structures

 37 bool isEmpty() const ;
 38 //Returns true if the queue is empty. Returns false otherwise .
 39 private :
 40 Node<T> *front; //Points to the head of a linked list .
 41 //Items are removed at the head
 42 Node<T> *back; //Points to the node at the other end of the
 //linked list .
 43 //Items are added at this end .
 44 };

 45 } //QueueSavitch

 46 #endif //QUEUE_H

Display 17.20 Interface File for a Queue Template Class (part 2 of 2)

 Display 17.21 Program Using the Queue Template Class (part 1 of 2)

 1 //Program to demonstrate use of the Queue template class .
 2 #include <iostream>
 3 #include "queue.h"
 4 #include "queue.cpp"
 5 using std::cin;
 6 using std::cout;
 7 using std::endl;
 8 using QueueSavitch::Queue;

 9 int main()
 10 {
 11 char next, ans;

 12 do
 13 {
 14 Queue< char > q;
 15 cout << "Enter a line of text:\n";
 16 cin.get(next);
 17 while (next != '\n')
 18 {
 19 q.add(next);
 20 cin.get(next);
 21 }

 22 cout << "You entered:\n";
 23 while (! q.isEmpty())
 24 cout << q.remove();
 25 cout << endl;

Contrast this with the similar program using a

stack instead of a queue that we gave in

Display 17.18.

M17_SAVT071X_01_SE_C17.indd 772M17_SAVT071X_01_SE_C17.indd 772 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 773

 26 cout << "Again?(y/n): ";
 27 cin >> ans;
 28 cin.ignore(10000, '\n');
 29 } while (ans != 'n' && ans != 'N');

 30 return 0;
 31 }

 Sample Dialogue

 Enter a line of text:
 straw
 You entered:
 straw
 Again?(y/n): y
 Enter a line of text:
 I love C++
 You entered:
 I love C++
 Again?(y/n): n

Display 17.21 Program Using the Queue Template Class (part 2 of 2)

 Queue
 A queue is a first-in/first-out d ata structure; that is, the data items are removed from the
queue in the same order that they were added to the queue.

 TIP: A Comment on Namespaces

 Notice that both of the namespaces StackSavitch (Display 17.17) and
 QueueSavitch (Display 17.20) define a template class called Node . As it turns out,
the two definitions of Node are the same, but the point discussed here is the same
whether the two definitions are the same or different. C++ does not allow you to
define the same identifier twice, even if the two definitions are the same, unless the
two names are somehow distinguished. In this case, the two definitions are allowed
because they are in two different namespaces. It is even legal to use both the Stack
template class and the Queue template class in the same program. However, you
should use

 using StackSavitch::Stack;
 using QueueSavitch::Queue;

(continued)

M17_SAVT071X_01_SE_C17.indd 773M17_SAVT071X_01_SE_C17.indd 773 2/8/12 3:53 PM2/8/12 3:53 PM

774 CHAPTER 17 Linked Data Structures

 rather than

 using namespace StackSavitch;
 using namespace QueueSavitch;

 Most compilers will allow either set of using directives if you do not use the identifier
 Node , but the second set of using directives provides two definitions of the identifier
 Node and therefore should be avoided.

 It would be fine to use either, but not both, of the following:

 using StackSavitch::Node;

 or

 using QueueSavitch::Node; ■

TIP: (continued)

 Self-Test Exercises

16 . Give the defi nitions for the default (zero-argument) constructor and the
member functions Queue<T>::isEmpty for the template class Queue
(Display 17.20).

17 . Give the defi nitions for the member functions Queue<T>::add and
 Queue<T>::remove for the template class Queue (Display 17.20).

18 . Give the defi nition for the destructor for the template class Queue
(Display 17.20).

19 . Give the defi nition for the copy constructor for the template class Queue
(Display 17.20).

20 . Give the defi nition for the overloaded assignment operator for the template
class Queue (Display 17.20).

 Friend Classes and Similar Alternatives

 You may have found it a nuisance to use the accessor and mutator functions getLink
and setLink in the template class Node (see Display 17.17 or Display 17.20). You
might be tempted to avoid the invocations of getLink and setLink by simply making
the member variable link of the class Node public instead of private. Before you
abandon the principle of making all member variables private, note two things. First,
using getLink and setLink is not really any harder for you, the programmer, than
directly accessing the links in the nodes. (However, getLink and setLink do introduce
some overhead and so may slightly reduce efficiency.) Second, there is a way to avoid
using getLink and setLink and instead directly access the links of nodes without
making the link member variable public. Let us explore this second possibility.

 Chapter 8 discussed friend functions. As you will recall, if f is a friend function of
a class C , then f is not a member function of C ; however, when you write the definition

M17_SAVT071X_01_SE_C17.indd 774M17_SAVT071X_01_SE_C17.indd 774 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 775

of the function f , you can access private members of C just as you can in the definitions
of member functions of C . A class can be a friend of another class in the same way
that a function can be a friend of a class. If the class F is a friend of the class C , then
every member function of the class F is a friend of the class C . Thus, if, for example,
the Queue template class were a friend of the Node template class, then the private
link member variables would be directly available in the definitions of the member
functions of Queue . The details are outlined in Display 17.22 .

 friend class

 Display 17.22 A Queue Template Class as a Friend of the Node Class (part 1 of 2)

 1 // This is the header file queue.h. This is the interface for the class
 2 // Queue, which is a template class for a queue of items of type T .
 3 #ifndef QUEUE_H
 4 #define QUEUE_H

 5 namespace QueueSavitch
 6 {
 7 template <class T>
 8 class Queue;

 9 template <class T>
 10 class Node
 11 {
 12 public:
 13 Node(T theData, Node<T>* theLink) : data(theData),

 link(theLink){}
 14 friend class Queue<T>;
 15 private:
 16 T data;
 17 Node<T> *link;
 18 };

 19 template <class T>
 20 class Queue
 21 {
 22 < The definition of the template class Queue is identical to the one given in Display 17.20 .
 However, the definitions of the member functions will be different from the ones we gave

 23 (in the Self-Test Exercises) for the nonfriend version of Queue .>

 24 }
 25 } //QueueSavitch

 26 #endif //QUEUE_H
 27 #include <iostream>
 28 #include <cstdlib>
 29 #include <cstddef>
 30 #include "queue.h"
 31 using std::cout;
 32 namespace QueueSavitch

 A forward declaration. Do not forget

the semicolon.

This is an alternate approach to that given in

Display 17.20. In this version, the Queue template

class is a friend of the Node template class.

The implementation file would contain these

definitions and the definitions of the other member

functions similarly modified to allow access by name

to the link and data member variables of the nodes.

(continued)

If Node<T> is only used in the definition

of the friend class Queue<T>, there is no

need for mutator or accessor functions.

M17_SAVT071X_01_SE_C17.indd 775M17_SAVT071X_01_SE_C17.indd 775 2/8/12 3:53 PM2/8/12 3:53 PM

776 CHAPTER 17 Linked Data Structures

 33 {
 34 template < class T> //Uses cstddef:
 35 void Queue<T>::add(T item)
 36 {
 37 if (isEmpty())
 38 front = back = new Node<T>(item, NULL);
 39 else
 40 {
 41 back->link = new Node<T>(item, NULL);
 42 back = back->link;
 43 }
 44 }

 45 template < class T> //Uses cstdlib and iostream:
 46 T Queue<T>::remove()
 47 {
 48 if (isEmpty())
 49 {
 50 cout << "Error: Removing an item from an empty queue.\n";
 51 exit(1);
 52 }

 53 T result = front->data;

 54 Node<T> *discard;
 55 discard = front;
 56 front = front->link;
 57 if (front == NULL) //if you removed the last node
 58 back = NULL;

 59 delete discard;
 60 return result;
 61 }
 62 } //QueueSavitch

Display 17.22 A Queue Template Class as a Friend of the Node Class (part 2 of 2)

If efficiency is a major issue, you might want to use

(front == NULL) instead of (isEmpty()).

Contrast these implementations with the ones given

as the answer to Self-Test Exercise 17.

 When one class is a friend of another class, it is typical for the classes to reference each
other in their class definitions. This requires that you include a forward declaration to
the class or class template defined second, as illustrated in Display 17.22 . Note that the
forward declaration is just the heading of the class or class template definition followed
by a semicolon. A complete example using a friend class is given in Section 17.4 (see
the programming example “A Tree Template Class”).

 Two approaches that serve pretty much the same purpose as friend classes and
that can be used in pretty much the same way with classes and template classes such
as Node and Queue are (1) using protected or private inheritance to derive Queue

 forward
 declaration

M17_SAVT071X_01_SE_C17.indd 776M17_SAVT071X_01_SE_C17.indd 776 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 777

from Node , and (2) giving the definition of Node within the definition of Queue , so
that Node is a local class (template) definition. (Protected inheritance is discussed in
 Chapter 14 , and classes defined locally within a class are discussed in Chapter 7 .)

 EXAMPLE: Hash Tables with Chaining

 A hash table or hash map is a data structure that efficiently stores and retrieves data
from memory. There are many ways to construct a hash table; in this section we will
use an array in combination with singly linked lists. In Section 17.1 , we searched a
linked list by iterating through every node in the list looking for a target. This process
might require the examination of every node in the list, a potentially time-consuming
process if the list is very long. In contrast, a hash table has the potential to find
the target very quickly, although in a worst-case (but highly unlikely) scenario our
implementation would run as slowly as using a singly linked list.

 An object is stored in a hash table by associating it with a key. Given the key, we
can retrieve the object. Ideally, the key is unique to each object. If the object has no
intrinsically unique key, then we can use a hash function to compute one. In most
cases the hash function computes a number.

 For example, let us use a hash table to store a dictionary of words. Such a hash table
might be useful to make a spell-checker—words missing from the hash table might
not be spelled correctly. We will construct the hash table with a fixed array, where
each array element references a linked list. The key computed by the hash function
will map to the index of the array. The actual data will be stored in a linked list at the
hash value’s index. Display 17.23 illustrates the idea with a fixed array of ten entries.
Initially each entry of the array hasharray contains a reference to an empty singly
linked list. First, we add the word “cat,” which has been assigned the key or hash value
of 2 (we will show how this was computed shortly). Next, we add “dog” and “bird,”
which are assigned hash values of 4 and 7, respectively. Each of these strings is inserted
as the head of the linked list using the hash value as the index in the array. Finally,
we add “turtle,” which also has a hash of 2. Since “cat” is already stored at index 2,
we now have a collision . Both “turtle” and “cat” map to the same index in the array.
When this occurs in a hash table with chaining , we simply insert the new node onto
the existing linked list. In our example, there are now two nodes at index 2: “turtle”
and “cat.”

 To retrieve a value from the hash table, we first compute the hash value of the target.
Next we sequentially search the linked list that is stored at hasharray[hashvalue]
for the target. If the target is not found in this linked list, then the target is not stored
in the hash table. If the size of the linked list is small, then the retrieval process will
be quick.

 hash table

 hash map

 hash function

 collision

 chaining

(continued)

M17_SAVT071X_01_SE_C17.indd 777M17_SAVT071X_01_SE_C17.indd 777 2/8/12 3:53 PM2/8/12 3:53 PM

778 CHAPTER 17 Linked Data Structures

A HASH FUNCTION FOR STRINGS

 A simple way to compute a numeric hash value for a string is to sum the ASCII value
of every character in the string and then compute the modulus of the sum using
the size of the fixed array. A subset of ASCII codes is given in Appendix 3 . Code to
compute the hash value is shown in the function computeHash .

 int computeHash(string s)
 {
 int hash = 0;
 for (int i = 0; i < s.length(); i++)
 {
 hash = hash + s[i];
 }
 return hash % SIZE; //SIZE = 10 in example
 }

 For example, the ASCII codes for the string “dog” are

 d -> 100
 o -> 111
 g -> 103

 The hash function is computed as

 Sum = 100 + 111 + 103 = 314
 Hash = Sum % 10 = 314 % 10 = 4

 In this example, we first compute an unbounded value, the sum of the ASCII values
in the string. However, the array was defined to hold a finite number of elements.
To scale the sum to the size of the array, we compute the modulus of the sum with
respect to the size of the array, which is 10 in the example. In practice, the size of
the array is generally a prime number larger than the number of items that will be
put into the hash table 1 . The computed hash value of 4 serves as a fingerprint for the
string “dog.” However, other strings may also map to the same value. For example,
we can verify that “cat” maps to (99 + 97 + 116) , 10 = 2 and “turtle” maps to
(116 + 117 + 114 + 116 + 108 + 101) , 10 = 2.

 A complete code listing for a hash table class is given in Displays 17.24 and 17.25 .
A demo is shown in Display 17.26 . The hash table definition uses an array where
each element is a Node class defined in Display 17.14 . The linked list is implemented
using the generic linked list library defined in Displays 17.14 and 17.15 .

EXAMPLE: (continued)

 1A prime number avoids common divisors after modulus that can lead to collisions.

M17_SAVT071X_01_SE_C17.indd 778M17_SAVT071X_01_SE_C17.indd 778 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 779

 Display 17.23 Constructing a Hash Table

Existing hash table with 10 empty linked lists

Node<string> *hashArray[10];
for (int i=0; i<10; i++) hashArray[i] = NULL;

hashArray NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

After adding ”cat” with a hash of 2

hashArray NULL NULL NULL NULL NULL NULL NULL NULL NULL

cat

After adding ”dog” with a hash of 4 and ”bird” with a hash of 7

hashArray NULL NULL NULL NULL NULL NULL NULL

cat dog bird

After adding ”turtle” with a hash of 2 - collision and chained to linked list with ”cat”

hashArray NULL NULL NULL NULL NULL NULL NULL

turtle dog bird

cat

M17_SAVT071X_01_SE_C17.indd 779M17_SAVT071X_01_SE_C17.indd 779 2/8/12 3:53 PM2/8/12 3:53 PM

780 CHAPTER 17 Linked Data Structures

 Display 17.24 Interface File for a HashTable Class

 1 //This is the header file hashtable.h. This is the interface
 2 //for the class HashTable, which is a class for a hash table
 3 //of strings .
 4 #ifndef HASHTABLE_H
 5 #define HASHTABLE_H

 6 #include <string>
 7 #include "listtools.h"

 8 using LinkedListSavitch::Node;
 9 using std::string;

 10 namespace HashTableSavitch
 11 {
 12 const int SIZE = 10; //Maximum size of the hash table array

 13 class HashTable
 14 {
 15 public :
 16 HashTable(); //Initialize empty hash table .

 17 //Normally a copy constructor and overloaded assignment
 18 //operator would be included. They have been omitted
 19 //to save space .

 20 virtual ~HashTable(); //Destructor destroys hash table .

 21 bool containsString(string target) const ;
 22 //Returns true if target is in the hash table,
 23 //false otherwise .

 24 void put(string s);
 25 //Adds a new string to the hash table .

 26 private :
 27 Node<string> *hashArray[SIZE]; //The actual hash table
 28 static int computeHash(string s); //Compute a hash value
 29 }; //HashTable
 30 } //HashTableSavitch
 31 #endif //HASHTABLE_H

The library “listtools.h” is the linked list

library interface from Display 17.14.

M17_SAVT071X_01_SE_C17.indd 780M17_SAVT071X_01_SE_C17.indd 780 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 781

 Display 17.25 Implementation of the HashTable Class (part 1 of 2)

 1 //This is the implementation file hashtable.cpp .
 2 //This is the implementation of the class HashTable .

 3 #include <string>
 4 #include "listtools.h"
 5 #include "hashtable.h"

 6 using LinkedListSavitch::Node;
 7 using LinkedListSavitch::search;
 8 using LinkedListSavitch::headInsert;
 9 using std::string;

 10 namespace HashTableSavitch
 11 {
 12 HashTable::HashTable()
 13 {
 14 for (int i = 0; i < SIZE; i++)
 15 {
 16 hashArray[i] = NULL;
 17 }
 18 }

 19 HashTable::~HashTable()
 20 {
 21 for (int i=0; i<SIZE; i++)
 22 {
 23 Node<string> *next = hashArray[i];
 24 while (next != NULL)
 25 {
 26 Node<string> *discard = next;
 27 next = next->getLink();
 28 delete discard;
 29 }
 30 }
 31 }

 32 int HashTable::computeHash(string s)
 33 {
 34 int hash = 0;
 35 for (int i = 0; i < s.length(); i++)
 36 {
 37 hash = hash + s[i];
 38 }
 39 return hash % SIZE;
 40 }

(continued)

M17_SAVT071X_01_SE_C17.indd 781M17_SAVT071X_01_SE_C17.indd 781 2/8/12 3:53 PM2/8/12 3:53 PM

782 CHAPTER 17 Linked Data Structures

 Display 17.26 Hash Table Demonstration (part 1 of 2)

 1 //Program to demonstrate use of the HashTable class

 2 #include <string>
 3 #include <iostream>
 4 #include "hashtable.h"
 5 #include "listtools.cpp"
 6 #include "hashtable.cpp"
 7 using std::string;
 8 using std::cout;
 9 using std::endl;
 10 using HashTableSavitch::HashTable;

 11 int main()
 12 {
 13 HashTable h;

 14 cout << "Adding dog, cat, turtle, bird" << endl;
 15 h.put("dog");
 16 h.put("cat");
 17 h.put("turtle");
 18 h.put("bird");
 19 cout << "Contains dog? " << h.containsString("dog") << endl;
 20 cout << "Contains cat? " << h.containsString("cat") << endl;
 21 cout << "Contains turtle? " << h.containsString("turtle") << endl;
 22 cout << "Contains bird? " << h.containsString("bird") << endl;

 23 cout << "Contains fish? " << h.containsString("fish") << endl;
 24 cout << "Contains cow? " << h.containsString("cow") << endl;

 25 return 0;
 26 }

 41 void HashTable::put(string s)
 42 {
 43 int hash = computeHash(s);
 44 if (search(hashArray[hash], s)==NULL)
 45 {
 46 //Only add the target if it's not in the list
 47 headInsert(hashArray[hash], s);
 48 }
 49 }
 50 //HashTableSavitch

Display 17.25 Implementation of the HashTable Class (part 2 of 2)

M17_SAVT071X_01_SE_C17.indd 782M17_SAVT071X_01_SE_C17.indd 782 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 783

 Efficiency of Hash Tables

 The efficiency of our hash table depends on several factors. First, let us examine some
extreme cases. The worst-case run-time performance occurs if every item inserted
into the table has the same hash key. Everything will then be stored in a single linked
list, and the find operation may require searching through each item in the list.
Fortunately, if the items that we insert are somewhat random, the possibility that all
of them hash to the same key is highly unlikely. In contrast, the best-case run-time
performance occurs if every item inserted into the table has a different hash key. This
means that there will be no collisions, so the find operation will only need to search
through a one-item list because the target will always be the first node in the linked list.

 We can decrease the chance of collisions by using a better hash function. For
example, the simple hash function that sums each letter of a string ignores the ordering
of the letters. The words “rat” and “tar” would hash to the same value. A better hash
function for a string s is to multiply each letter by an increasing weight depending on
the position in the word:

 int hash = 0;
 for (int i = 0; i < s.length(); i++)
 {
 hash = 31 * hash + s[i];
 }

 Another way to decrease the chance of collisions is by making the hash table bigger.
For example, if the hash table array had a 10,000-entry capacity but we were only
inserting 1000 items, then the probability of a collision would be much smaller than if
the hash table array could store only 1000 entries. However, inserting only 1000 items

 Sample Dialogue

 Adding dog, cat, turtle, bird

 Contains dog? 1

 Contains cat? 1

 Contains turtle? 1

 Contains bird? 1

 Contains fish? 0

 Contains cow? 0

Display 17.26 Hash Table Demonstration (part 2 of 2)

 Hash Table
 A hash table is a data structure that associates a data item with a key. The key is computed
by a hash function.

M17_SAVT071X_01_SE_C17.indd 783M17_SAVT071X_01_SE_C17.indd 783 2/8/12 3:53 PM2/8/12 3:53 PM

784 CHAPTER 17 Linked Data Structures

in a 10,000-entry hash table would mean 9000 memory locations will go unused, which
is a waste of memory. This illustrates the time-space tradeoff . It is usually possible to
increase run-time performance at the expense of memory space, and vice versa.

 time-space
 tradeoff

 Self-Test Exercises

21 . Suppose that every student in your university is assigned a unique nine-digit ID
number. You would like to create a hash table that indexes ID numbers to an
object representing a student. The hash table has a size of N where N has fewer
than nine digits. Describe a simple hash function that you can use to map from
ID number to a hash index.

22 . Write an outputHashTable() function for the HashTable class that outputs
every item stored in the hash table.

 EXAMPLE: A Set Template Class

 A set is a collection of elements in which no element occurs more than once. Many
problems in computer science can be solved with the aid of a set data structure.
A variation on linked lists is a straightforward way to implement a set. In this
implementation, the items in each set are stored using a singly linked list. The data
variable for each node simply contains an item in the set.

 Display 17.27 illustrates two sample sets stored using this data structure. The set
 round contains “peas,” “ball,” and “pie” while the set green contains “peas” and
“grass.” The string “peas” is in both sets because it is both round and green. Note that
if the data type used to fill the Node template is a pointer to an object, then multiple
lists might reference a common object instead of creating multiple copies of the same
object in each list.

FUNDAMENTAL SET OPERATIONS

 Some fundamental operations that our set class should support are

 add element. Add a new item into a set.
 contains. Determine if a target item is a member of the set.
 union. Return a set that is the union of two sets.
 intersection. Return a set that is the intersection of two sets.

 We should also include a way to iterate through each element in the set. Other useful
set operations include functions to retrieve the cardinality of the set and to remove
items from the set. The implementation of these operations is given as an exercise in
 Programming Project 17.7 .

M17_SAVT071X_01_SE_C17.indd 784M17_SAVT071X_01_SE_C17.indd 784 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 785

 The code for implementing a generic set of elements appears in Displays 17.28 and
 17.29 . The Set class uses the linked list tools from Display 17.14 . The add function
simply adds a node to the front of the linked list, but only if the item is not already in
the set. The contains function uses the search function from the linked list library.
We simply loop through every item in the list looking for the target.

 The union function combines the elements in the calling objects set with the
elements from the set of the input argument, otherSet . To union these sets we first
create a new empty Set object. Next, we iterate through both the calling object’s set
and otherSet ’s set. All elements are added to the new set. The add function enforces
uniqueness so we do not have to check for duplicate elements in the union function.

 The intersection function is similar to the union function in that it also creates a
new, empty Set object. In this case, we populate the set with items that are common
to both the calling object’s set and otherSet ’s set. This is accomplished by iterating
through every item in the calling object’s set. For each item, we invoke the contains
function for otherSet . If contains returns true , then the item is in both sets and
can be added to the new set.

 A short demonstration program is in Display 17.30 .

EXAMPLE: (continued)

 Display 17.27 Set Implementation Using Linked Lists

round

green

peas ball pie null

peas grass null

 Set
 A set is an unordered collection of data elements.

M17_SAVT071X_01_SE_C17.indd 785M17_SAVT071X_01_SE_C17.indd 785 2/8/12 3:53 PM2/8/12 3:53 PM

786 CHAPTER 17 Linked Data Structures

 Display 17.28 Interface File for a Set Template Class

 1 //This is the header file set.h. This is the interface
 2 //for the class Set, which is a class for a generic set .
 3 #ifndef SET_H
 4 #define SET_H

 5 #include "listtools.h"
 6 using LinkedListSavitch::Node;

 7 namespace SetSavitch
 8 {
 9 template <class T>
 10 class Set
 11 {
 12 public :
 13 Set() { head = NULL; } //Initialize empty set .

 14 //Normally a copy constructor and overloaded assignment
 15 //operator would be included. They have been omitted
 16 //to save space .

 17 virtual ~Set(); //Destructor destroys set .
 18 bool contains(T target) const ;
 19 //Returns true if target is in the set, false otherwise .

 20 void add(T item);
 21 //Adds a new element to the set .

 22 void output();
 23 //Outputs the set to the console .

 24 Set<T>* setUnion(const Set<T>& otherSet);
 25 //Union calling object's set with otherSet
 26 //and return a pointer to the new set .

 27 Set<T>* setIntersection(const Set<T>& otherSet);
 28 //Intersect calling object's set with otherSet
 29 //and return a pointer to the new set .
 30 private :
 31 Node<T> *head;
 32 }; //Set
 33 } //SetSavitch
 34 #endif //SET_H

The library “listtools.h” is the linked list

library interface from Display 17.14.

M17_SAVT071X_01_SE_C17.indd 786M17_SAVT071X_01_SE_C17.indd 786 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 787

 Display 17.29 Implementation File for a Set Template Class (part 1 of 2)

 1 //This is the implementation file set.cpp .
 2 //This is the implementation of the class Set .

 3 #include <iostream>
 4 #include "listtools.h"
 5 #include "set.h"
 6 using std::cout;
 7 using std::endl;
 8 using LinkedListSavitch::Node;
 9 using LinkedListSavitch::search;
 10 using LinkedListSavitch::headInsert;

 11 namespace SetSavitch
 12 {

 13 template < class T>
 14 Set<T>::~Set()
 15 {
 16 Node<T> *toDelete = head;
 17 while (head != NULL)
 18 {
 19 head = head->getLink();
 20 delete toDelete;
 21 toDelete = head;
 22 }
 23 }

 24 template < class T>
 25 bool Set<T>::contains(T target) const
 26 {
 27 Node<T>* result = search(head, target);
 28 if (result == NULL)
 29 return false ;
 30 else
 31 return true ;
 32 }

 33 void Set<T>::output()
 34 {
 35 Node<T> *iterator = head;
 36 while (iterator != NULL)
 37 {
 38 cout << iterator->getData() << " ";
 39 iterator = iterator->getLink();
 40 }

(continued)

M17_SAVT071X_01_SE_C17.indd 787M17_SAVT071X_01_SE_C17.indd 787 2/8/12 3:53 PM2/8/12 3:53 PM

788 CHAPTER 17 Linked Data Structures

 41 cout << endl;
 42 }

 43 template < class T>
 44 void Set<T>::add(T item)
 45 {
 46 if (search(head, item)==NULL)
 47 {
 48 //Only add the target if it's not in the list
 49 headInsert(head, item);
 50 }
 51 }

 52 template < class T>
 53 Set<T>* Set<T>::setUnion(const Set<T>& otherSet)
 54 {
 55 Set<T> *unionSet = new Set<T>();
 56 Node<T>* iterator = head;
 57 while (iterator != NULL)
 58 {
 59 unionSet->add(iterator->getData());
 60 iterator = iterator->getLink();
 61 }
 62 iterator = otherSet.head;
 63 while (iterator != NULL)
 64 {
 65 unionSet->add(iterator->getData());
 66 iterator = iterator->getLink();
 67 }
 68 return unionSet;
 69 }

 70 template < class T>
 71 Set<T>* Set<T>::setIntersection(const Set<T>& otherSet)
 72 {
 73 Set<T> *interSet = new Set<T>();
 74 Node<T>* iterator = head;
 75 while (iterator != NULL)
 76 {
 77 if (otherSet.contains(iterator->getData()))
 78 {
 79 interSet->add(iterator->getData());
 80 }
 81 iterator = iterator->getLink();
 82 }
 83 return interSet;
 84 }
 85 } //SetSavitch

Display 17.29 Implementation File for a Set Template Class (part 2 of 2)

M17_SAVT071X_01_SE_C17.indd 788M17_SAVT071X_01_SE_C17.indd 788 2/8/12 3:53 PM2/8/12 3:53 PM

 Linked List Applications 789

 Display 17.30 Program Using the Set Template Class (part 1 of 2)

 1 //Program to demonstrate use of the Set class

 2 #include <iostream>
 3 #include <string>
 4 #include "set.h"
 5 #include "listtools.cpp"
 6 #include "set.cpp"
 7 using std::cout;
 8 using std::endl;
 9 using std::string;
 10 using namespace SetSavitch;

 11 int main()
 12 {
 13 Set<string> round; //Round things
 14 Set<string> green; //Green things

 15 round.add("peas"); //Sample data for both sets
 16 round.add("ball");
 17 round.add("pie");
 18 round.add("grapes");
 19 green.add("peas");
 20 green.add("grapes");
 21 green.add("garden hose");
 22 green.add("grass");

 23 cout << "Contents of set round: ";
 24 round.output();
 25 cout << "Contents of set green: ";
 26 green.output();

 27 cout << "ball in set round? " <<
 28 round.contains("ball") << endl;
 29 cout << "ball in set green? " <<
 30 green.contains("ball") << endl;

 31 cout << "ball and peas in same set? ";
 32 if ((round.contains("ball") && round.contains("peas")) ||
 33 (green.contains("ball") && green.contains("peas")))
 34 cout << " true" << endl;
 35 else
 36 cout << " false" << endl;

 37 cout << "pie and grass in same set? ";
 38 if ((round.contains("pie") && round.contains("grass")) ||
 39 (green.contains("pie") && green.contains("grass")))
 40 cout << " true" << endl;

(continued)

M17_SAVT071X_01_SE_C17.indd 789M17_SAVT071X_01_SE_C17.indd 789 2/8/12 3:53 PM2/8/12 3:53 PM

790 CHAPTER 17 Linked Data Structures

 Efficiency of Sets Using Linked Lists

 We can analyze the run-time efficiency of our set data structure in terms of the
fundamental set operations. Adding an item to the set always inserts a new node
on the front of the list. This requires setting only one link on the linked list. The
 contains function iterates through the entire set looking for the target, which may
require examining every node in the list. When we invoke the setUnion function for
sets A and B, it iterates through both sets and adds each item into a new set. If there
are n items in set A and m items in set B, then this requires examining n + m items.
However, there is a hidden cost because the add function searches through its entire
list for any duplicates before a new item is added. This cost becomes significant as
the number of items added to the new set increases. Finally, the setIntersection
function applied to sets A and B invokes the contains function of set B for each item
in set A. Since the contains function requires examining up to m nodes for each item in
set A, then setIntersection requires examining at most m * n nodes. These are
inefficient functions in our implementation of sets. A different approach to represent
the set—for example, one that used hash tables instead of a linked list—could result

 41 else
 42 cout << " false" << endl;

 43 cout << "Union of green and round: " << endl;
 44 Set<string> *unionset = round.setUnion(green);
 45 unionset->output();
 46 delete unionset;

 47 cout << "Intersection of green and round: " << endl;
 48 Set<string> *interset = round.setIntersection(green);
 49 interset->output();
 50 delete interset;

 51 return 0;
 52 }

 Sample Dialogue

 Contents of set round: grapes pie ball peas
 Contents of set green: grass garden hose grapes peas
 ball in set round? 1
 ball in set green? 0
 ball and peas in same set? true
 pie and grass in same set? false
 Union of green and round:
 garden hose grass peas ball pie grapes
 Intersection of green and round:
 peas grapes

Display 17.30 Program Using the Set Template Class (part 2 of 2)

Some compilers may

output true and false

instead of 1 and 0.

 set

M17_SAVT071X_01_SE_C17.indd 790M17_SAVT071X_01_SE_C17.indd 790 2/8/12 3:53 PM2/8/12 3:53 PM

 Iterators 791

in a setIntersection function that examines at most n + m nodes. Nevertheless,
our linked list implementation would probably be fine for an application that uses
small sets or for an application that does not frequently invoke the setIntersection
function, and we have the benefit of relatively simple code that is easy to understand.

 If we really needed the efficiency, we could maintain the same interface to the
 Set<T> class but replace our linked list implementation with something else. If we
used the hash table implementation from Display 17.25 , the contains function
would run much more quickly. However, switching to a hash table makes it more
difficult to iterate through the set of items. Instead of traversing a single linked list to
retrieve every item in the set, the hash table version must now iterate through the hash
table array and then, for each index in the array, iterate through the linked list at that
index. Examination of each entry in the hash table array takes extra time that was not
necessary in the singly linked list implementation of a set. So while we have decreased
the number of steps it takes to look up an item, we have increased the number of steps
it takes to iterate over every item. If this were troublesome, you could overcome this
problem with an implementation of Set<T> that used both a linked list (to facilitate
iteration) and a hash table (for fast lookup). However, the complexity of the code is
significantly increased using such an approach. You are asked to explore the hash table
implementation in Programming Project 17.10 .

 Self-Test Exercises

23 . Write a function named difference for the Set class that returns the
difference between two sets. The function should return a pointer to a new
set that has items from the fi rst set that are not in the second set.
For example, if setA contains {1, 2, 3, 4} and setB contains {2, 4, 5}, then
 setA.difference(setB) should return the set {1, 3}.

 17.3 Iterators

 The white rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked.
 “Begin at the beginning,” the King said, very gravely, “And go on till you
 come to the end: then stop.”

LEWIS CARROLL, Alice in Wonderland

 An important notion in data structures is that of an iterator. An iterator is a construct
(typically an object of some iterator class) that allows you to cycle through the data
items stored in a data structure so that you can perform whatever action you want on
each data item.

 iterator

M17_SAVT071X_01_SE_C17.indd 791M17_SAVT071X_01_SE_C17.indd 791 2/8/12 3:53 PM2/8/12 3:53 PM

792 CHAPTER 17 Linked Data Structures

 Pointers as Iterators

 The basic idea, and in fact the prototypical model, for iterators can easily be seen in
the context of linked lists. A linked list is one of the prototypical data structures, and a
pointer is a prototypical example of an iterator. You can use a pointer as an iterator by
moving through the linked list one node at a time starting at the head of the list and
cycling through all the nodes in the list. The general outline is as follows:

 Node_Type *iterator;
 for (iterator = Head ; iterator != NULL;
 iterator = iterator-> Link)
 Do whatever you want with the node pointed to by iterator;

 where Head is a pointer to the head node of the linked list and Link is the name of the
member variable of a node that points to the next node in the list.

 For example, to output the data in all the nodes in a linked list of the kind we
discussed in Section 17.1 , you could use the following:

 IntNode *iterator;
 for (iterator = head; iterator != NULL;
 iterator = iterator->getLink())
 cout << (iterator->getData());

 The definition of IntNode is given in Display 17.4 .
 Note that you test to see if two pointers are pointing to the same node by comparing

them with the equal operator, == . A pointer is a memory address. If two pointer
variables contain the same memory address, then they compare as equal and point to
the same node. Similarly, you can use != to compare two pointers to see if they do not
point to the same node.

 Iterator Classes

 An iterator class is a more versatile and more general notion than a pointer. It very
often does have a pointer member variable as the heart of its data, as in the next
programming example, but that is not required. For example, the heart of the iterator
might be an array index. An iterator class has functions and overloaded operators that
allow you to use pointer syntax with objects of the iterator class no matter what you use
for the underlying data structure, node type, or basic location marker (pointer or array
index or whatever). Moreover, it provides a general framework that can be used across
a wide range of data structures.

 Iterator
 An iterator is a construct (typically an object of some iterator class) that allows you to cycle
through the data items stored in a data structure so that you can perform whatever action
you want on each data item in the data structure.

 iterator
class

M17_SAVT071X_01_SE_C17.indd 792M17_SAVT071X_01_SE_C17.indd 792 2/8/12 3:53 PM2/8/12 3:53 PM

Proof_08
Highlight
<Au/ed: Please confirm new alignment of code.>

 An iterator class typically has the following overloaded operators:

 ++ Overloaded increment operator, which advances the iterator to the next item.

 -- Overloaded decrement operator, which moves the iterator to the previous item.

 == Overloaded equality operator to compare two iterators and return true if they
both point to the same item.

 != Overloaded not-equal operator to compare two iterators and return true if
they do not point to the same item.

 * Overloaded dereferencing operator that gives access to one item. (Often it
returns a reference to allow both read and write access.)

 When thinking of this list of operators, you can use a linked list as a concrete
example. In that case, remember that the items in the list are the data in the list, not the
entire nodes and not the pointer members of the nodes. Everything but the data items
is implementation detail that is meant to be hidden from the programmer who uses the
iterator and data structure classes.

 An iterator is used in conjunction with some particular structure class that stores
data items of some type. The data structure class normally has the following member
functions that provide iterators for objects of that class:

 begin() : A member function that takes no argument and returns an iterator that
is located at (“points to”) the first item in the data structure.

 end() : A member function that takes no argument and returns an iterator that can
be used to test for having cycled through all items in the data structure. If i is an
iterator and it has been advanced beyond the last item in the data structure, then i
should equal end() .

 Using an iterator, you can cycle through the items in a data structure ds as follows:

 for (i = ds.begin(); i != ds.end(); i++)
 process *i //*i is the current data item .

 Iterator Class
 An iterator class typically has the following overloaded operators: ++ , move to next item; -,
move to previous item; == , overloaded equality; != , overloaded not-equal operator; and *,
overloaded dereferencing operator that gives access to one data item.

 The data structure corresponding to an iterator class typically has the following two member
functions: begin() , which returns an iterator that is located at (“points to”) the first item in
the data structure; and end() , which returns an iterator that can be used to test for having
cycled through all items in the data structure. If i is an iterator and it has been advanced
 beyond the last item in the data structure, then i should equal end() .

 Using an iterator, you can cycle through the items in a data structure ds as follows:

 for (i = ds.begin(); i != ds.end(); i++)
 process *i //*i is the current data item .

 Iterators 793

M17_SAVT071X_01_SE_C17.indd 793M17_SAVT071X_01_SE_C17.indd 793 2/8/12 3:53 PM2/8/12 3:53 PM

794 CHAPTER 17 Linked Data Structures

 where i is an iterator. Chapter 19 discusses iterators with a few more items and
refinements than these, but these will do for an introduction.

 This abstract discussion will not come alive until we give an example. So, let us walk
through one.

 EXAMPLE: An Iterator Class

 Display 17.31 contains the definition of an iterator class that can be used for data
structures (such as a stack or queue) that are based on a linked list. We have placed
the node class and the iterator class into a namespace of their own. This makes
sense, since the iterator is intimately related to the node class and since any class that
uses this node class can also use the iterator class. This iterator class does not have a
decrement operator, because a definition of a decrement operator depends on the
details of the linked list and does not depend solely on the type Node<T> . (There is
nothing wrong with having the definition of the iterator depend on the underlying
linked list. We have just decided to avoid this complication.)

 As you can see, the template class ListIterator is essentially a pointer wrapped
in a class so that it can have the needed member operators. The definitions of the
overload operators are straightforward and in fact so short that we have defined all of
them as inline functions. Note that the dereferencing operator, * , produces the data
member variable of the node pointed to. Only the data member variable is data. The
pointer member variable in a node is part of the implementation detail that the user
programmer should not need to be concerned with.

 You can use the ListIterator class as an iterator for any class based on a linked
list that uses the template class Node . As an example, we have rewritten the template
class Queue so that it has iterator facilities. The interface for the template class Queue
is given in Display 17.32 . This definition of the Queue template is the same as our
previous version (Display 17.20) except that we have added a type definition as well
as the following two member functions:

 Iterator begin() const { return Iterator(front); }
 Iterator end() const { return Iterator(); }
 //The end iterator has end().current == NULL .

 Let us discuss the member functions first.

 The member function begin() returns an iterator located at (“pointing to”) the
front node of the queue, which is the head node of the underlying linked list. Each
application of the increment operator, ++, moves the iterator to the next node. Thus,
you can move through the nodes, and hence the data, in a queue named q as follows:

 for (i = q.begin(); Stopping_Condition ; i++)
 process *i //*i is the current data item .

 where i is a variable of the iterator type.
(continued)

M17_SAVT071X_01_SE_C17.indd 794M17_SAVT071X_01_SE_C17.indd 794 2/8/12 3:53 PM2/8/12 3:53 PM

 Display 17.31 An Iterator Class for Linked Lists (part 1 of 2)

 1 //This is the header file iterator.h. This is the interface for the
 2 //class ListIterator, which is a template class for an iterator to use
 3 //with linked lists of items of type T. This file also contains the
 4 //node type for a linked list
 5 #ifndef ITERATOR_H
 6 #define ITERATOR_H

 7 namespace ListNodeSavitch
 8 {
 9 template < class T>
 10 class Node
 11 {
 12 public :
 13 Node(T theData, Node<T>* theLink) : data(theData),

 link(theLink){}
 14 Node<T>* getLink() const { return link; }
 15 const T& getData() const { return data; }
 16 void setData(const T& theData) { data = theData; }
 17 void setLink(Node<T>* pointer) { link = pointer; }
 18 private :
 19 T data;
 20 Node<T> *link;
 21 };

 22 template < class T>
 23 class ListIterator
 24 {
 25 public :
 26 ListIterator() : current(NULL) {}

 27 ListIterator(Node<T>* initial) : current(initial) {}
 28 const T& operator *() const { return current->getData(); }
 29 //Precondition: Not equal to the default constructor object ;
 30 //that is, current != NULL .
 31 ListIterator& operator ++() //Prefix form
 32 {
 33 current = current->getLink();
 34 return *this;
 35 }
 36 ListIterator operator ++(int) //Postfix form
 37 {
 38 ListIterator startVersion(current);
 39 current = current->getLink();
 40 return startVersion;

(continued)

Note that the dereferencing operator *

produces the data member of the node,

not the entire node. This version does not

allow you to change the data in the node.

 Iterators 795

M17_SAVT071X_01_SE_C17.indd 795M17_SAVT071X_01_SE_C17.indd 795 2/8/12 3:53 PM2/8/12 3:53 PM

796 CHAPTER 17 Linked Data Structures

 The member function end() returns an iterator whose current member variable is
 NULL . Thus, when the iterator i has passed the last node, the Boolean expression

 i != q.end()

 changes from true to false . This is the desired Stopping_Condition. This queue
class and iterator class allow you to cycle through the data in the queue in the way we
outlined for an iterator:

 for (i = q.begin(); i != q.end(); i++)
 process *i //*i is the current data item .

 Note that i is not equal to q.end() when i is at the last node. The iterator i is
not equal to q.end() until i has been advanced one position past the last node. To
remember this detail, think of q.end() as being an end marker like NULL ; in this
case, it is essentially a version of NULL . A sample program that uses such a for loop is
shown in Display 17.33 .

 Notice the type definition in our new queue template class:

 typedef ListIterator<T> Iterator;

EXAMPLE: (continued)

(continued on page 799)

 41 }
 42 bool operator ==(const ListIterator& rightSide) const
 43 { return (current == rightSide.current); }

 44 bool operator !=(const ListIterator& rightSide) const
 45 { return (current != rightSide.current); }

 46 //The default assignment operator and copy constructor
 47 //should work correctly for ListIterator .
 48 private:
 49 Node<T> *current;
 50 };

 51 } //ListNodeSavitch

 52 #endif //ITERATOR_H

Display 17.31 An Iterator Class for Linked Lists (part 2 of 2)

M17_SAVT071X_01_SE_C17.indd 796M17_SAVT071X_01_SE_C17.indd 796 2/8/12 3:53 PM2/8/12 3:53 PM

 Display 17.32 Interface File for a Queue with Iterators Template Class

 1 //This is the header file queue.h. This is the interface for the class
 2 //Queue, which is a template class for a queue of items of type T,
 3 //including iterators .
 4 #ifndef QUEUE_H
 5 #define QUEUE_H
 6 #include "iterator.h"
 7 using namespace ListNodeSavitch;

 8 namespace QueueSavitch
 9 {
 10 template < class T>
 11 class Queue
 12 {
 13 public :
 14 typedef ListIterator<T> Iterator;

 15 Queue();
 16 Queue(const Queue<T>& aQueue);
 17 Queue<T>& operator =(const Queue<T>& rightSide);
 18 virtual ~Queue();
 19 void add(T item);
 20 T remove();
 21 bool isEmpty() const ;

 22 Iterator begin() const { return Iterator(front);}
 23 Iterator end() const { return Iterator(); }
 24 //The end iterator has end().current == NULL .
 25 //Note that you cannot dereference the end iterator .
 26 private :
 27 Node<T> *front; //Points to the head of a linked list .
 28 //Items are removed at the head .
 29 Node<T> *back; //Points to the node at the other end of
 30 //the linked list .
 31 //Items are added at this end .
 32 };

 33 } //QueueSavitch

 34 #endif //QUEUE_H

The definitions of Node<T> and

ListIterator<T> are in the namespace

List NodeSavitch in the file iterator.h.

 Iterators 797

M17_SAVT071X_01_SE_C17.indd 797M17_SAVT071X_01_SE_C17.indd 797 2/8/12 3:53 PM2/8/12 3:53 PM

798 CHAPTER 17 Linked Data Structures

 Display 17.33 Program Using the Queue Template Class with Iterators

 1 //Program to demonstrate use of the Queue template class with iterators .
 2 #include <iostream>
 3 #include "queue.h" //not needed
 4 #include "queue.cpp"
 5 #include "iterator.h" //not needed
 6 using std::cin;
 7 using std::cout;
 8 using std::endl;
 9 using namespace QueueSavitch;
 10 int main()
 11 {
 12 char next, ans;
 13 do
 14 {
 15 Queue< char > q;
 16 cout << "Enter a line of text:\n";
 17 cin.get(next);
 18 while (next != '\n')
 19 {
 20 q.add(next);
 21 cin.get(next);
 22 }

 23 cout << "You entered:\n";
 24 Queue< char >::Iterator i;

 25 for (i = q.begin(); i != q.end(); i++)
 26 cout << *i;
 27 cout << endl;

 28 cout << "Again?(y/n): ";
 29 cin >> ans;
 30 cin.ignore(10000, '\n');
 31 } while (ans != 'n' && ans != 'N');

 32 return 0;
 33 }

 Sample Dialogue

 Enter a line of text:
 Where shall I begin?
 You entered:
 Where shall I begin?
 Again?(y/n): y
 Enter a line of text:
 Begin at the beginning
 You entered:
 Begin at the beginning
 Again?(y/n): n

Even though they are not needed,

many programmers prefer to include
these include directives for the

sake of documentation.

If your compiler is unhappy with

Queue<char>::Iterator i;

try using namespace ListNodeSavitch;
ListIterator<char> i;

M17_SAVT071X_01_SE_C17.indd 798M17_SAVT071X_01_SE_C17.indd 798 2/8/12 3:53 PM2/8/12 3:53 PM

 This typedef is not absolutely necessary. You can always use ListIterator <T>
instead of the type name Iterator . However, this type definition does make for
cleaner code. With this type definition, an iterator for the class Queue< char > is
written

 Queue< char >::Iterator i;

 This makes it clear with which class the iterator is meant to be used.

 The implementation of our new template class Queue is given in Display 17.34 . Since
the only member functions we added to this new Queue class are defined inline, the
implementation file contains nothing really new, but we include the implementation
file to show how it is laid out and to show which directives it would include.

EXAMPLE: (continued)

 Display 17.34 Implementation File for a Queue with Iterators Template Class (part 1 of 2)

 1 //This is the file queue.cpp. This is the implementation of the
 2 //template class Queue. The interface for the template class Queue is
 3 //in the header file queue.h .
 4 #include <iostream>
 5 #include <cstdlib>
 6 #include <cstddef>
 7 #include "queue.h"
 8 using std::cout;

 9 using namespace ListNodeSavitch;
 10 namespace QueueSavitch
 11 {
 12 template < class T>
 13 Queue<T>::Queue() : front(NULL), back(NULL)
 14 < The rest of the definition is given in the answer to Self-Test Exercise 16 .>

 15 template < class T>
 16 Queue<T>::Queue(const Queue<T>& aQueue)
 17 < The rest of the definition is given in the answer to Self-Test Exercise 19 .>

 18 template < class T>
 19 Queue<T>& Queue<T>::operator =(const Queue<T>& rightSide)
 20 < The rest of the definition is given in the answer to Self-Test Exercise 20 .>

 21 template < class T>
 22 Queue<T>::~Queue()

The member function definitions are the same as in

the previous version of the Queue template. This is

given to show the file layout and use of namespaces.

(continued)

 Iterators 799

M17_SAVT071X_01_SE_C17.indd 799M17_SAVT071X_01_SE_C17.indd 799 2/8/12 3:53 PM2/8/12 3:53 PM

800 CHAPTER 17 Linked Data Structures

 17.4 Trees

 I think that I shall never see a data structure as useful as a tree.

Anonymous

 A detailed treatment of trees is beyond the scope of this chapter. The goal of this
chapter is to teach you the basic techniques for constructing and manipulating data
structures based on nodes and pointers. The linked list served as a good example for
our discussion. However, there is one detail about the nodes in a singly linked list that
is quite restricted: They have only one pointer member variable to point to another
node. A tree node has two (and in some applications more than two) member variables
for pointers to other nodes. Moreover, trees are a very important and widely used
data structure. So, we will briefly outline the general techniques used to construct and
manipulate trees.

 This section uses recursion , which is covered in Chapter 13 .

Display 17.34 Implementation File for a Queue with Iterators Template Class (part 2 of 2)

 23 < The rest of the definition is given in the answer to Self-Test Exercise 18 .>

 24 template < class T>
 25 bool Queue<T>::isEmpty() const
 26 < The rest of the definition is given in the answer to Self-Test Exercise 16 .>

 27 template < class T>
 28 void Queue<T>::add(T item)
 29 < The rest of the definition is given in the answer to Self-Test Exercise 17 .>

 30 template < class T>
 31 T Queue<T>::remove()
 32 < The rest of the definition is given in the answer to Self-Test Exercise 17 .>

 33 } //QueueSavitch
 34 #endif //QUEUE_H

 Self-Test Exercises

24 . Write the defi nition of the template function inQ shown here. Use iterators.
Use the defi nition of Queue given in Display 17.32 .

 template < class T>
 bool inQ(Queue<T> q, T target);
 //Returns true if target is in the queue q ;
 //otherwise, returns false .

M17_SAVT071X_01_SE_C17.indd 800M17_SAVT071X_01_SE_C17.indd 800 2/8/12 3:53 PM2/8/12 3:53 PM

 Tree Properties

 A tree is a data structure that is structured as shown in Display 17.35 . Note that a
tree must have the sort of structure illustrated in Display 17.35 . In particular, in a
tree you can reach any node from the top (root) node by some path that follows the
links (pointers). Note that there are no cycles in a tree. If you follow the pointers, you
eventually get to an end. A definition for a node class for this sort of tree of int s is also
shown in Display 17.35 . Note that each node has two links (two pointers) coming
from it. This sort of tree is called a binary tree because it has exactly two link member

 Display 17.35 A Binary Tree

40

20

60NULL NULL30NULL NULL10NULL NULL

50NULL

root

 class IntTreeNode
 {
 public :
 IntTreeNode(int theData, IntTreeNode* left, IntTreeNode* right)
 : data(theData), leftLink(left), rightLink(right){}
 private :
 int data;
 IntTreeNode *leftLink;
 IntTreeNode *rightLink;
 };

 IntTreeNode *root;

Trees 801

M17_SAVT071X_01_SE_C17.indd 801M17_SAVT071X_01_SE_C17.indd 801 2/8/12 3:53 PM2/8/12 3:53 PM

802 CHAPTER 17 Linked Data Structures

variables. There are other kinds of trees with different numbers of link member
variables, but the binary tree is the most common case.

 The pointer named root serves a purpose similar to that of the pointer head
in a linked list (Display 17.1). The node pointed to by the root pointer is called
the root node . Note that the pointer root is not itself the root node, but rather
points to the root node. Any node in the tree can be reached from the root node by
following the links.

 The term tree may seem like a misnomer. The root is at the top of the tree and
the branching structure looks more like a root branching structure than a true tree
branching structure. The secret to the terminology is to turn the picture (Display 17.35)
upside down. The picture then does resemble the branching structure of a tree and the
root node is where the trees root would begin. The nodes at the ends of the branches
with both link member variables set to NULL are known as leaf nodes , a terminology
that may now make some sense.

 By analogy to an empty linked list, an empty tree is denoted by setting the pointer
variable root equal to NULL .

 Note that a tree has a recursive structure. Each tree has two subtrees whose root
nodes are the nodes pointed to by the leftLink and rightLink of the root node.
These two subtrees are circled in Display 17.35 . This natural recursive structure make
trees particularly amenable to recursive algorithms. For example, consider the task
of searching the tree in such a way that you visit each node and do something with
the data in the node (such as writing it to the screen). The general plan of attack is
as follows:

Preorder Processing

 1. Process the data in the root node.
 2. Process the left subtree.
 3. Process the right subtree.

 You can obtain a number of variants on this search process by varying the order of
these three steps. Two more versions are given next.

 In-order Processing

 1. Process the left subtree.
 2. Process the data in the root node.
 3. Process the right subtree.

 Postorder Processing

 1. Process the left subtree.
 2. Process the right subtree.
 3. Process the data in the root node.

 The tree in Display 17.35 has stored each number in the tree in a special way known
as the Binary Search Tree Storage Rule . The rule is given in the accompanying box.
A tree that satisfies the Binary Search Tree Storage Rule is referred to as a binary
 search tree .

 binary tree

 root node

 leaf node

 empty tree

 preorder

 in order

 postorder

 binary
search tree

M17_SAVT071X_01_SE_C17.indd 802M17_SAVT071X_01_SE_C17.indd 802 2/8/12 3:53 PM2/8/12 3:53 PM

 Note that if a tree satisfies the Binary Search Tree Storage Rule and you output the
values using the in-order processing method, the numbers will be output in order from
smallest to largest.

 For trees that follow the Binary Search Tree Storage Rule that are short and fat
rather than long and thin, values can be very quickly retrieved from the tree using a
binary search algorithm that is similar in spirit to the binary search algorithm presented
in Display 13.5 . The topic of searching and maintaining a binary storage tree to realize
this efficiency is a large topic that goes beyond what we have room for here.

 Binary Search Tree Storage Rule
 1. All the values in the left subtree are less than the value in the root node.
 2. All the values in the right subtree are greater than or equal to the value in the root node.
 3. This rule applies recursively to each of the two subtrees.

 (The base case for the recursion is an empty tree, which is always considered to satisfy
the rule.)

 Binary
Search Tree

Storage Rule

 EXAMPLE: A Tree Template Class

 Display 17.36 contains the definition of a template class for a binary search tree. In
this example, we have made the SearchTree class a friend class of the TreeNode
class. This allows us to access the node member variables by name in the definitions
of the tree class member variables. The implementation of this SearchTree class is
given in Display 17.37 , and a demonstration program is given in Display 17.38 .

 This template class is designed to give you the flavor of tree processing, but it is
not really a complete example. A real class would have more member functions.
In particular, a real tree class would have a copy constructor and an overloaded
assignment operator. We have omitted these to conserve space.

 There are some things to observe about the function definitions in the class
 SearchTree . The functions insert and inTree are overloaded. The single-argument
versions are the ones we need. However, the clearest algorithms are recursive, and
the recursive algorithms require one additional parameter for the root of a subtree.
Therefore, we defined private helping functions with two arguments for each of these
functions and implemented the recursive algorithms in the two-parameter function.
The single-parameter function then simply makes a call to the two-parameter version
with the subtree root parameter set equal to the root of the entire tree. A similar
situation holds for the overloaded member function name inorderShow . The
function deleteSubtree serves a similar purpose for the destructor function.

(continued on page 808)

Trees 803

M17_SAVT071X_01_SE_C17.indd 803M17_SAVT071X_01_SE_C17.indd 803 2/8/12 3:53 PM2/8/12 3:53 PM

804 CHAPTER 17 Linked Data Structures

 Display 17.36 Interface File for a Tree Template Class

 1 //Header file tree.h. The only way to insert data in a tree is with the
 2 // insert function. So, the tree satisfies the Binary Search Tree Storage
 3 //Rule. The function inTree depends on this. < must be defined and
 4 //give a well-behaved ordering to the type T .
 5 #ifndef TREE_H
 6 #define TREE_H
 7 namespace TreeSavitch
 8 {
 9 template < class T>
 10 class SearchTree;//forward declaration

 11 template < class T>
 12 class TreeNode
 13 {
 14 public :
 15 TreeNode() : root(NULL){}
 16 TreeNode(T theData, TreeNode<T>* left, TreeNode<T>* right)
 17 : data(theData), leftLink(left), rightLink(right){}
 18 friend class SearchTree<T>;
 19 private :
 20 T data;
 21 TreeNode<T> *leftLink;
 22 TreeNode<T> *rightLink;
 23 };

 24 template < class T>
 25 class SearchTree
 26 {
 27 public :
 28 SearchTree() : root(NULL){}
 29 virtual ~SearchTree();
 30 void insert(T item);//Adds item to the tree.
 31 bool inTree(T item) const ;
 32 void inorderShow() const ;
 33 private :
 34 void insert(T item, TreeNode<T>*& subTreeRoot);
 35 bool inTree(T item, TreeNode<T>* subTreeRoot) const ;
 36 void deleteSubtree(TreeNode<T>*& subTreeRoot);
 37 void inorderShow(TreeNode<T>* subTreeRoot) const ;
 38 TreeNode<T> *root;
 39 };

 40 } //TreeSavitch

 41 #endif

The SearchTree template class should have a copy

constructor, an overloading of the assignment operator,

and other member functions. However, we have omitted

these functions to keep this example short. A real template

class would contain more member functions and overloaded

operators.

M17_SAVT071X_01_SE_C17.indd 804M17_SAVT071X_01_SE_C17.indd 804 2/8/12 3:53 PM2/8/12 3:53 PM

 Display 17.37 Implementation File for a Tree Template Class (part 1 of 2)

 1 //This is the implementation file tree.cpp. This is the implementation
 2 //for the template class SearchTree. The interface is in the file tree.h .
 3 namespace TreeSavitch
 4 {
 5 template < class T>
 6 void SearchTree<T>::insert(T item, TreeNode<T>*& subTreeRoot)
 7 {
 8 if (subTreeRoot == NULL)
 9 subTreeRoot = new TreeNode<T>(item, NULL, NULL);
 10 else if (item < subTreeRoot->data)
 11 insert(item, subTreeRoot->leftLink);
 12 else //item >= subTreeRoot->data
 13 insert(item, subTreeRoot->rightLink);
 14 }

 15 template < class T>
 16 void SearchTree<T>::insert(T item)
 17 {
 18 insert(item, root);
 19 }

 20 template < class T>
 21 bool SearchTree<T>::inTree(T item, TreeNode<T>* subTreeRoot) const
 22 {
 23 if (subTreeRoot == NULL)
 24 return false ;
 25 else if (subTreeRoot->data == item)
 26 return true ;
 27 else if (item < subTreeRoot->data)
 28 return inTree(item, subTreeRoot->leftLink);
 29 else //item >= link->data
 30 return inTree(item, subTreeRoot->rightLink);
 31 }

 32 template < class T>
 33 bool SearchTree<T>::inTree(T item) const
 34 {
 35 return inTree(item, root);

(continued)

If all data is entered using the

function insert, the tree will

satisfy the Binary Search Tree

Storage Rule.

The function in Tree
uses a binary search

algorithm that is a

variant of the one given

in Display 13.5.

Trees 805

M17_SAVT071X_01_SE_C17.indd 805M17_SAVT071X_01_SE_C17.indd 805 2/8/12 3:53 PM2/8/12 3:53 PM

806 CHAPTER 17 Linked Data Structures

 36 }
 37 template < class T> //uses iostream:
 38 void SearchTree<T>::inorderShow(TreeNode<T>* subTreeRoot) const
 39 {
 40 if (subTreeRoot != NULL)
 41 {
 42 inorderShow(subTreeRoot->leftLink);
 43 cout << subTreeRoot->data << " ";
 44 inorderShow(subTreeRoot->rightLink);
 45 }
 46 }

 47 template < class T> //uses iostream:
 48 void SearchTree<T>::inorderShow() const
 49 {
 50 inorderShow(root);
 51 }

 52 template < class T>
 53 void SearchTree<T>::deleteSubtree(TreeNode<T>*& subTreeRoot)
 54 {
 55 if (subTreeRoot != NULL)
 56 {
 57 deleteSubtree(subTreeRoot->leftLink);

 58 deleteSubtree(subTreeRoot->rightLink);

 59 //subTreeRoot now points to a one node tree .
 60 delete subTreeRoot;
 61 subTreeRoot = NULL;
 62 }
 63 }

 64 template < class T>
 65 SearchTree<T>::~SearchTree()
 66 {
 67 deleteSubtree(root);
 68 }
 69 } //TreeSavitch

Display 17.37 Implementation File for a Tree Template Class (part 2 of 2)

Uses in-order traversal

of the tree.

Uses postorder

traversal of the tree.

M17_SAVT071X_01_SE_C17.indd 806M17_SAVT071X_01_SE_C17.indd 806 2/8/12 3:53 PM2/8/12 3:53 PM

 Display 17.38 Demonstration Program for the Tree Template Class

 1 //Demonstration program for the Tree template class .
 2 #include <iostream>
 3 #include "tree.h"
 4 #include "tree.cpp"
 5 using std::cout;
 6 using std::cin;
 7 using std::endl;
 8 using TreeSavitch::SearchTree;

 9 int main()
 10 {
 11 SearchTree< int > t;

 12 cout << "Enter a list of nonnegative integers.\n"
 13 << "Place a negative integer at the end.\n";
 14 int next;
 15 cin >> next;
 16 while (next >= 0)
 17 {
 18 t.insert(next);
 19 cin >> next;
 20 }

 21 cout << "In sorted order: \n";
 22 t.inorderShow();
 23 cout << endl;

 24 return 0;
 25 }

 Sample Dialogue

 Enter a list of nonnegative integers.
 Place a negative integer at the end.
40 30 20 10 11 22 33 44 -1
 In sorted order:
 10 11 20 22 30 33 40 44

Trees 807

M17_SAVT071X_01_SE_C17.indd 807M17_SAVT071X_01_SE_C17.indd 807 2/8/12 3:53 PM2/8/12 3:53 PM

808 CHAPTER 17 Linked Data Structures

 Finally, it is important to note that the insert function builds a tree that satisfies
the Binary Search Tree Storage Rule. Since insert is the only function available to
build trees for this template class, objects of this tree template class will always satisfy
the Binary Search Tree Storage Rule. The function inTree uses the fact that the tree
satisfies the Binary Search Tree Storage Rule in its algorithms. This makes searching
the tree very efficient. Of course this means that the < operator must be defined for
the type T of data stored in the tree. To make things work correctly, the operation <
should satisfy the following rules when applied to values of type T :

 ■ Transitivity: a < b and b < c implies a < c.

 ■ Antisymmetry: If a and b are not equal, then either a < b or b < a, but not both.

 ■ Irreflexive: You never have a < a.

 Most natural orders satisfy these rules. 2

EXAMPLE: (continued)

 Self-Test Exercises

25 . Defi ne the following member functions, which could be added to the class
 SearchTree in Display 17.36 . These functions display the data encountered in
a pre- and postorder traversal of the tree, respectively. Defi ne a private helping
function for each function, as we did for SearchTree<T>::inorderShow .

 void SearchTree<T>::preorderShow() const
 void SearchTree<T>::postorderShow() const

 Chapter Summary

 • A node is a struct or class object that has one or more member variables that
are pointer variables. These nodes can be connected by their member pointer
variables to produce data structures that can grow and shrink in size while your
 program is running.

 • A linked list is a list of nodes in which each node contains a pointer to the next node
in the list.

 • The end of a linked list (or other linked data structure) is indicated by setting the
pointer member variable equal to NULL .

 2 Note that you normally have both a “less-than-or-equal” relation and a “less-than” relation. These
rules apply only to the “less-than” relation. You can actually make do with an even weaker notion of
ordering known as a strict weak ordering , which is defined in Chapter 19 , but that is more detail than
you need for normally encountered orderings.

M17_SAVT071X_01_SE_C17.indd 808M17_SAVT071X_01_SE_C17.indd 808 2/8/12 3:53 PM2/8/12 3:53 PM

 • Nodes in a doubly linked list have two links—one to the previous node in the list and
one to the next node. This makes operations such as insertion and deletion slightly
easier.

 • A stack is a first-in/last-out data structure. A queue is a first-in/first-out data structure.
Both can be implemented using a linked list.

 • A hash table is a data structure that is used to store objects and retrieve them effi-
ciently. A hash function is used to map an object to a value that can then be used to
index the object.

 • Linked lists can be used to implement sets, including common operations such as
 union , intersection , and set membership.

 • An iterator is a construct (typically an object of some iterator class) that allows you to
cycle through data items stored in a data structure.

 • A tree is a data structure whose nodes have two (or more) member variables for
pointers to other nodes. If a tree satisfies the Binary Search Tree Storage Rule, then a
function can be designed to rapidly find data in the tree.

 Answers to Self-Test Exercises

 1. Sally
 Sally

 18

 18

 Note that (*head).name and head->name mean the same thing. Similarly,
 (*head).number and head->number mean the same thing.

 2. The best answer is

 head->next = NULL;

 However, the following is also correct:

 (*head).next = NULL;

 3. head->item = "Wilbur's brother Orville";

 4. class NodeType
 {
 public :
 NodeType(){}

 NodeType(char theData, NodeType* theLink)
 : data(theData), link(theLink){}

 NodeType* getLink() const { return link; }

Answers to Self-Test Exercises 809

M17_SAVT071X_01_SE_C17.indd 809M17_SAVT071X_01_SE_C17.indd 809 2/8/12 3:53 PM2/8/12 3:53 PM

810 CHAPTER 2 Console Input and Output810 CHAPTER 17 Linked Data Structures

 char getData() const { return data; }
 void setData(char theData) { data = theData; }
 void setLink(NodeType* pointer) { link = pointer; }
 private :
 char data;
 NodeType *link;

 };

 typedef NodeType* PointerType;

 5. The value NULL is used to indicate an empty list.

 6. p1 = p1-> next;

 7. Pointer discard;
 discard = p2->next; //discard points to the node to be deleted .

 p2->next = discard->next;

 This is sufficient to delete the node from the linked list. However, if you are not
using this node for something else, you should destroy the node with a call to
 delete as follows:

 delete discard;

 8. p1 = p1->getLink();

 9. Pointer discard;
 discard = p2->getLink(); //points to node to be deleted .

 p2->setLink(discard->getLink());

 This is sufficient to delete the node from the linked list. However, if you are not
using this node for something else, you should destroy the node with a call to
 delete as follows:

 delete discard;

 10. a. Inserting a new item at a known location into a large linked list is more efficient
than inserting into a large array. If you are inserting into a list, you have about five
operations, most of which are pointer assignments, regardless of the list size. If you
insert into an array, on the average you have to move about half the array entries
to insert a data item.

 For small lists, the answer is c, about the same.

 11. void insert(DoublyLinkedIntNodePtr afterMe, int theData)
 {

 DoublyLinkedIntNode* newNode = new

 DoublyLinkedIntNode(theData, afterMe,

afterMe->getNext

 Link());

 afterMe->setNextLink(newNode);

 if (newNode->getNextLink() != NULL)

M17_SAVT071X_01_SE_C17.indd 810M17_SAVT071X_01_SE_C17.indd 810 2/8/12 3:53 PM2/8/12 3:53 PM

 {

 newNode->getNextLink()->setPreviousLink(newNode);

 }

 }

 12. Insertion and deletion are slightly easier with the doubly linked list because we no
longer need a separate variable to keep track of the previous node. Instead, we can
access this node through the previous link. However, all operations require updat-
ing more links (e.g., both the next and previous instead of just the previous).

 13. Note that this function is essentially the same as headInsert in Display 17.15 .

 template < class T>
 void Stack<T>::push(T stackFrame)
 {

 top = new Node<T>(stackFrame, top);

 }

 14. //Uses cstddef:
 template < class T>
 Stack<T>::Stack(const Stack<T>& aStack)
 {
 if (aStack.isEmpty())
 top = NULL;

 else
 {

 Node<T> *temp = aStack.top; //temp moves through
 //the nodes from top to bottom of aStack .

 Node<T> *end; //Points to end of the new stack .

 end = new Node<T>(temp->getData(), NULL);
 top = end;

 //First node created and filled with data .

 //New nodes are now added AFTER this first node .

 temp = temp->getLink(); //move temp to second node
 //or NULL if there is no second node .

 while (temp != NULL)
 {

 end->setLink(

 new Node<T>(temp->getData(), NULL));

 temp = temp->getLink();

 end = end->getLink();

 }

 //end->link == NULL;

 }

 }

Answers to Self-Test Exercises 811

M17_SAVT071X_01_SE_C17.indd 811M17_SAVT071X_01_SE_C17.indd 811 2/8/12 3:53 PM2/8/12 3:53 PM

812 CHAPTER 17 Linked Data Structures

 15. template < class T>
 Stack<T>& Stack<T>:: operator =(const Stack<T>& rightSide)
 {

 if (top == rightSide.top) //if two stacks are the same
 return * this ;
 else //send left side back to freestore
 {

 T next;

 while (! isEmpty())
 next = pop(); //remove calls delete .

 }

 if (rightSide.isEmpty())
 {

 top = NULL;

 return * this ;
 }

 else
 {

 Node<T> *temp = rightSide.top; //temp moves through

 //the nodes from front top to bottom of rightSide .

 Node<T> *end; //Points to end of the left-side stack .

 end = new Node<T>(temp->getData(), NULL);
 top = end;;

 //First node created and filled with data .

 //New nodes are now added AFTER this first node .

 temp = temp->getLink(); //Move temp to second node
 //or set to NULL if there is no second node .

 while (temp != NULL)
 {

 end->setLink(

 new Node<T>(temp->getData(), NULL));
 temp = temp->getLink();

 end = end->getLink();

 }

 //end->link == NULL;

 return * this ;
 }

 }

 16. The following should be placed in the namespace QueueSavitch :

 //Uses cstddef:

 template < class T>

 Queue<T>::Queue() : front(NULL), back(NULL)

M17_SAVT071X_01_SE_C17.indd 812M17_SAVT071X_01_SE_C17.indd 812 2/8/12 3:53 PM2/8/12 3:53 PM

 {

 //Intentionally empty .

 }
 //Uses cstddef:

 template <class T>
 bool Queue<T>::isEmpty() const
 {
 return (back == NULL); //front == NULL would also work
 }

 17. The following should be placed in the namespace QueueSavitch :

 //Uses cstddef:

 template < class T>
 void Queue<T>::add(T item)

 {
 if (isEmpty())

 front = back = new Node<T>(item, NULL); //Sets both
 //front and back to point to the only node

 else
 {
 back->setLink(new Node<T>(item, NULL));
 back = back->getLink();

 }
 }

 //Uses cstdlib and iostream:

 template < class T>
 T Queue<T>::remove()

 {
 if (isEmpty())
 {
 cout << “Error: Removing an item from an empty queue.\n”;
 exit(1);
 }

 T result = front->getData();

 Node<T> *discard;
 discard = front;
 front = front->getLink();

 if (front == NULL) //if you removed the last node
 back = NULL;

 delete discard;

 return result;

 }

Answers to Self-Test Exercises 813

M17_SAVT071X_01_SE_C17.indd 813M17_SAVT071X_01_SE_C17.indd 813 2/8/12 3:53 PM2/8/12 3:53 PM

814 CHAPTER 17 Linked Data Structures

 18. The following should be placed in the namespace QueueSavitch :

 template < class T>
 Queue<T>::~Queue()

 {

 T next;

 while (! isEmpty())
 next = remove(); //remove calls delete .
 }

 19. The following should be placed in the namespace QueueSavitch :

 //Uses cstddef:

 template < class T>
 Queue<T>::Queue(const Queue<T>& aQueue)

 {

 if (aQueue.isEmpty())

 front = back = NULL;

 else
 {

 Node<T> *temp = aQueue.front; //temp moves

 //through the nodes from front to back of aQueue.

 back = new Node<T>(temp->getData(), NULL);

 front = back;

 //First node created and filled with data .

 //New nodes are now added AFTER this first node .

 temp = temp->getLink(); //temp now points to second
 //node or NULL if there is no second node .

 while (temp != NULL)
 {

 back->setLink(new Node<T>(temp->getData(), NULL));
 back = back->getLink();

 temp = temp->getLink();

 }

 //back->link == NULL

 }

 }

 20. The following should be placed in the namespace QueueSavitch :

 //Uses cstddef:

 template < class T>
 Queue<T>& Queue<T>:: operator =(const Queue<T>& rightSide)

M17_SAVT071X_01_SE_C17.indd 814M17_SAVT071X_01_SE_C17.indd 814 2/8/12 3:53 PM2/8/12 3:53 PM

 {

 if (front == rightSide.front) //if the queues are the same
 return * this ;
 else //send left side back to freestore
 {

 T next;

 while (! isEmpty())
 next = remove(); //remove calls delete .
 }

 if (rightSide.isEmpty())
 {
 front = back = NULL;

 return *this;

 }

 else
 {

 Node<T> *temp = rightSide.front; //temp moves
 //through the nodes from front to back of rightSide .

 back = new Node<T>(temp->getData(), NULL);
 front = back;

 //First node created and filled with data .

 //New nodes are now added AFTER this first node .

 temp = temp->getLink();//temp now points to second

 //node or NULL if there is no second node .

 while (temp != NULL)
 {

 back->setLink(

 new Node<T>(temp->getData(), NULL));

 back = back->getLink();

 temp = temp->getLink();

 }

 //back->link == NULL;

 return * this ;
 }

 }

 21. The simplest hash function is to map the ID number to the range of the hash table
using the modulus operator:

 hash = ID % N; //N is the hash table size .

Answers to Self-Test Exercises 815

M17_SAVT071X_01_SE_C17.indd 815M17_SAVT071X_01_SE_C17.indd 815 2/8/12 3:53 PM2/8/12 3:53 PM

816 CHAPTER 2 Console Input and Output816 CHAPTER 17 Linked Data Structures

 22. void HashTable::outputHashTable()
 {

 for (int i=0; i<SIZE; i++)
 {

 Node<string> *next = hashArray[i];

 cout << "In slot " << i << endl;

 cout << " ";

 while (next != NULL)
 {

 cout << next->getData() << " ";

 next = next->getLink();

 }

 }

 cout << endl;

 }

 23. This code is similar to intersection, but adds elements if they are not in
 otherSet:

 template < class T>
 Set<T>* Set<T>::setDifference(const Set<T>& otherSet)

 {

 Set<T> *diffSet = new Set<T>();

 Node<T>* iterator = head;

 while (iterator != NULL)
 {

 if (!otherSet.contains(iterator->getData()))
 {

 diffSet->add(iterator->getData());

 }

 iterator = iterator->getLink();

 }

 return diffSet;
 }

 24. using namespace ListNodeSavitch;
 using namespace QueueSavitch;
 template < class T>
 bool inQ(Queue<T> q, T target)
 {

 Queue<T>::Iterator i;

 i = q.begin();

 while ((i != q.end()) && (*i != target))
 i++;

 return (i != q.end());
 }

M17_SAVT071X_01_SE_C17.indd 816M17_SAVT071X_01_SE_C17.indd 816 2/8/12 3:53 PM2/8/12 3:53 PM

 Note that the following return statement does not work, since it can cause a
dereferencing of NULL , which is illegal. The error would be a run-time error, not a
compiler error.

 return (*i == target);

 25. The template class SearchTree needs function declarations added. These are just
the definitions.

 template< class T> //uses iostream:
 void SearchTree<T>::preorderShow() const
 {

 preorderShow(root);

 }

 template < class T> //uses iostream:
 void SearchTree<T>::preorderShow(
 TreeNode<T>* subTreeRoot) const

 {

 if (subTreeRoot != NULL)
 {

 cout << subTreeRoot->data << " ";

 preorderShow(subTreeRoot->leftLink);

 preorderShow(subTreeRoot->rightLink);

 }

 }

 template < class T> //uses iostream:
 void SearchTree<T>::postorderShow() const
 {

 postorderShow(root);

 }

 template < class T> //uses iostream:
 void SearchTree<T>::postorderShow(
 TreeNode<T>* subTreeRoot) const
 {

 if (subTreeRoot != NULL)
 {

 postorderShow(subTreeRoot->leftLink);

 postorderShow(subTreeRoot->rightLink);

 cout << subTreeRoot->data << " ";

 }

 }

Answers to Self-Test Exercises 817

M17_SAVT071X_01_SE_C17.indd 817M17_SAVT071X_01_SE_C17.indd 817 2/8/12 3:53 PM2/8/12 3:53 PM

818 CHAPTER 17 Linked Data Structures

 Programming Projects

 Visit www.myprogramminglab.com to complete select exercises online and get instant
feedback.

 1. Write a void function that takes a linked list of integers and reverses the order of its
nodes. The function will have one call-by-reference parameter that is a pointer to
the head of the list. After the function is called, this pointer will point to the head
of a linked list that has the same nodes as the original list but in the reverse of the
order they had in the original list. Note that your function will neither create nor
destroy any nodes. It will simply rearrange nodes. Place your function in a suitable
test program.

 2. Write a function called mergeLists that takes two call-by-reference arguments
that are pointer variables that point to the heads of linked lists of values of type
 int . The two linked lists are assumed to be sorted so that the number at the head is
the smallest number, the number in the next node is the next smallest, and so forth.
The function returns a pointer to the head of a new linked list that contains all the
nodes in the original two lists. The nodes in this longer list are also sorted from
smallest to largest values. Note that your function will neither create nor destroy
any nodes. When the function call ends, the two pointer variable arguments should
have the value NULL .

 3. Design and implement a class that is a class for polynomials. The polynomial

 a n x n + a n-1 x n-1 +...+a 0

 will be implemented as a linked list. Each node will contain an int value for the
power of x and an int value for the corresponding coefficient. The class operations
should include addition, subtraction, multiplication, and evaluation of a polyno-
mial. Overload the operators + , -, and * for addition, subtraction, and multiplica-
tion. Evaluation of a polynomial is implemented as a member function with one
argument of type int . The evaluation member function returns the value obtained
by plugging in its argument for x and performing the indicated operations.

 Include four constructors: a default constructor, a copy constructor, a constructor
with a single argument of type int that produces the polynomial that has only one
constant term that is equal to the constructor argument, and a constructor with two
arguments of type int that produces the one-term polynomial whose coefficient
and exponent are given by the two arguments. (In the previous notation, the poly-
nomial produced by the one-argument constructor is of the simple form consisting
of only a0. The polynomial produced by the two-argument constructor is of the
slightly more complicated form anx

n.) Include a suitable destructor. Include member
functions to input and output polynomials.

 When the user inputs a polynomial, the user types in the following:

 a n x ̂ n + a n-1 x ̂ n-1+...+a 0

M17_SAVT071X_01_SE_C17.indd 818M17_SAVT071X_01_SE_C17.indd 818 2/8/12 3:53 PM2/8/12 3:53 PM

 However, if a coefficient ai is 0, the user may omit the term ai x^ i. For example,
the polynomial

 3x 4 + 7x 2 + 5

 can be input as

 3x ̂ 4 + 7x ̂ 2 + 5

 It could also be input as

 3x ̂ 4 + 0x ̂ 3 + 7x ̂ 2 + 0x ̂ 1 + 5

 If a coefficient is negative, a minus sign is used in place of a plus sign, as in the
following examples:

 3x ̂ 5 - 7x ̂ 3 + 2x ̂ 1 - 8

 -7x ̂ 4 + 5x ̂ 2 + 9

 A minus sign at the front of the polynomial, as in the second of the previous
two examples, applies only to the first coefficient; it does not negate the entire
polynomial. Polynomials are output in the same format. In the case of output,
the terms with 0 coefficients are not output. To simplify input, you can assume
that polynomials are always entered one per line and that there will always be a
constant term a0. If there is no constant term, the user enters 0 for the constant
term, as in the following:

 12x ̂ 8 + 3x ̂ 2 + 0

 4. a. The annotation in Display 17.36 says that a real SearchTree template class should
have a copy constructor, an overloaded assignment operator, other overloaded
operators, and other member functions. Obtain the code for Display 17.36
and add declarations for the following functions and overloaded operators:
the default constructor, copy constructor, delete , overloaded operator, =,
 makeEmpty , height , size , preOrderTraversal , inOrderTraversal ,
and postOrderTraversal . The functions preOrderTraversal , inOrder-
Traversal , and postOrderTraversal each call a global function process to
process the nodes as they are encountered. The function process is a friend
of the SearchTree class. For this exercise, it is only a stub.

 Supply preconditions and postconditions for these functions describing what
each function should do.

 The function height has no parameters and returns the height of the tree. The
height of the tree is the maximum of the heights of all the nodes. The height
of a node is the number of links between it and the root node.

 The function size has no parameters and returns the number of nodes in
the tree.

 The function makeEmpty removes all the nodes from the tree and returns the
memory used by the nodes for reuse. The makeEmpty function leaves the root
pointer with the value NULL .

Programming Projects 819

M17_SAVT071X_01_SE_C17.indd 819M17_SAVT071X_01_SE_C17.indd 819 2/8/12 3:53 PM2/8/12 3:53 PM

820 CHAPTER 17 Linked Data Structures

 b. Implement the member and friend functions and overloaded operators. Note
that some of the functions listed here are already implemented in the text.
You should make full use of the text’s code. You should test your package
 thoroughly.

 c. Design and implement an iterator class for the tree class. You will need to
 decide what a begin and end element means for your searchTree , and what
will be the next element the ++ operator will point to.

 Hint 1: You might maintain a private size variable that is increased by insertion
and decreased by deletion, and whose value is returned by the size function.
An alternative (use this if you know calls to size will be quite infrequent) is
to calculate the size when you need it by traversing the tree. Similar tech-
niques, though with more sophisticated details, can be used to implement the
height function.

 Hint 2: Do these a few members at a time. Compile and test after doing each
group of a few members. You will be glad you did it this way.

 Hint 3: Before you write the operator, =, and copy constructor, note that their
jobs have a common task—duplicating another tree. Write a copyTree function
that abstracts out the common task of the copy constructor and operator, =.
Then write these two important functions using the common code.

 Hint 4: The function makeEmpty and the destructor have a common tree
 destruction task.

 5. In an ancient land, the beautiful princess Eve had many suitors. She decided on
the following procedure to determine which suitor she would marry. First, all of
the suitors would be lined up one after the other and assigned numbers. The first
suitor would be number 1, the second number 2, and so on up to the last suitor,
number n. Starting at the first suitor, she would then count three suitors down
the line (because of the three letters in her name) and the third suitor would be
eliminated from winning her hand and removed from the line. Eve would then
continue, counting three more suitors, and eliminating every third suitor. When
she reached the end of the line, she would continue counting from the beginning.

 For example, if there were six suitors, then the elimination process would proceed
as follows:

 123456 Initial list of suitors, start counting from 1

 12456 Suitor 3 eliminated, continue counting from 4

 1245 Suitor 6 eliminated, continue counting from 1

 125 Suitor 4 eliminated, continue counting from 5

 15 Suitor 2 eliminated, continue counting from 5

 1 Suitor 5 eliminated, 1 is the lucky winner

 Solution to
Programming
Project 17.5

VideoNote

M17_SAVT071X_01_SE_C17.indd 820M17_SAVT071X_01_SE_C17.indd 820 2/8/12 3:53 PM2/8/12 3:53 PM

 Write a program that creates a circular linked list of nodes to determine which
 position you should stand in to marry the princess if there are n suitors. Your
program should simulate the elimination process by deleting the node that corre-
sponds to the suitor that is eliminated for each step in the process. Be careful that
you do not leave any memory leaks.

 6. Modify the Queue Template class given in Section 17.2 so that it implements
a priority queue . A priority queue is similar to a regular queue except that each
item added to the queue also has an associated priority. For this problem, make the
priority an integer where 0 is the highest priority and larger values are increasingly
lower in priority.

 The remove function should return and remove the item that has the highest
 priority. For example,

 q.add('X', 10);

 q.add('Y', 1);

 q.add('Z', 3);

 cout << q.remove(); //Returns Y
 cout << q.remove(); //Returns Z
 cout << q.remove(); //Returns X

 Test your queue on data with priorities in various orders (e.g., ascending, descend-
ing, mixed). You can implement the priority queue by performing a linear search
in the remove() function. In future courses, you may study a data structure called
a heap that affords a more efficient way to implement a priority queue.

 7. Add a remove function, a cardinality function, and an iterator for the Set class
given in Displays 17.28 and 17.29 . Write a suitable test program.

 8. The hash table from Displays 17.24 and 17.25 hashed a string to an integer and
stored the same string in the hash table. Modify the program so that instead of stor-
ing strings it stores Employee objects. Define the Employee class so that it contains
private string member variables for the combined first and last name, job title, and
phone number. Include functions to get and set these member variables. Use the
employee name as the input to the hash function. The modification will require
changes to the linked list, since the LinkedList2 class created only linked lists of
strings. For the most generality, modify the hash table so that it uses generic types.
You will also need to add a get function to the HashTable class that returns the
 Employee object stored in the hash table that corresponds to the input name. The
 Employee class may require defining the == and ! = operators. Test your program
by adding and retrieving several names, including names that hash to the same slot
in the hash table.

 9. Displays 17.24 through 17.26 provide the beginnings of a spell-checker. Refine the
program to make it more useful. The modified program should read in a text file,
parse each word, and determine whether each word is in the hash table and if not

Programming Projects 821

M17_SAVT071X_01_SE_C17.indd 821M17_SAVT071X_01_SE_C17.indd 821 2/8/12 3:53 PM2/8/12 3:53 PM

Proof_08
Highlight
<Au/Ed: Please confirm highlighted text is okay as set (per manuscript).>

822 CHAPTER 2 Console Input and Output822 CHAPTER 17 Linked Data Structures

output the line number and word of the potentially misspelled word. Discard any
punctuation in the original text file. Use the words.txt file, which can be found
 on the website accompanying the textbook and on the book’s Web site, as the
basis for the hash table dictionary. The file contains 45,407 common words and
names in the English language. Note that some words are capitalized. Test your
spell-checker on a short text document.

 10. Change the Set<T> class of Displays 17.28 and 17.29 so that internally it uses
a hash table to store its data instead of a linked list. The headers of the public
functions should remain the same so that a program such as the demonstration in
 Display 17.30 will work without any changes. Add a constructor that allows the
user of the new Set<T> class to specify the size of the hash table array.

 The class for type T must override the << operator. To convert the return value of
 << to a string, do the following:

 # include <sstream>

 ...

 stringstream temp;

 temp << instance of Class;

 string s = temp.str();

 For an additional challenge, implement the set using both a hash table and a
linked list. Items added to the set should be stored using both data structures. Any
 operation requiring lookup of an item should use the hash table, and any operation
requiring iteration through the items should use the linked list.

 11. The following figure is called a graph. The circles are called nodes and the lines are
called edges. An edge connects two nodes. You can interpret the graph as a maze of
rooms and passages. The nodes can be thought of as rooms and an edge connects one
room to another. Note that each node has at most four edges in the following graph.

Start
North

Finish

D

F G H

I J K L

CBA

E

 Solution to
 Programming
 Project 17.11

VideoNote

M17_SAVT071X_01_SE_C17.indd 822M17_SAVT071X_01_SE_C17.indd 822 2/8/12 3:53 PM2/8/12 3:53 PM

 Write a program that implements the previous maze using references to instances
of a Node class. Each node in the graph will correspond to an instance of Node . The
edges correspond to links that connect one node to another and can be represented
in Node as instance variables that reference another Node class. Start the user in
node A. The user’s goal is to reach the finish in node L. The program should out-
put possible moves in the north, south, east, or west direction. Sample execution
is shown next.

 You are in room A of a maze of twisty little passages, all alike.

 You can go east or south.

 E

 You are in room B of a maze of twisty little passages, all alike.

 You can go west or south.

 S

 You are in room F of a maze of twisty little passages, all alike.

You can go north or east.

 E

 12. First, complete Programming Project 17.11 . Then, write a recursive algorithm that
finds a path from node A to node L. Your algorithm should work with any pair of
start and finish nodes, not just nodes A and L. Your algorithm should also work if
there are loops such as a connection between nodes E and F.

Programming Projects 823

M17_SAVT071X_01_SE_C17.indd 823M17_SAVT071X_01_SE_C17.indd 823 2/8/12 3:53 PM2/8/12 3:53 PM

M17_SAVT071X_01_SE_C17.indd 824M17_SAVT071X_01_SE_C17.indd 824 2/8/12 3:53 PM2/8/12 3:53 PM

