
1

Introduction to JavaFX

JavaFX is a set of packages that allow Java programmers to

create rich graphics and media applications. Potential applications

include GUI interfaces, 2D and 3D games, animations, visual effects,

touch-enabled applications, and multimedia applications. JavaFX 8 is

the latest version. JavaFX has several advantages over other graphical

libraries, including hardware-accelerated graphics and a high-

performance media engine. The platform includes built-in UI controls

and supports XML-based markup for the design and layout of UI

components and Cascading Style Sheets for presentation. This

separates the controlling code from the UI while simplifying the UI

design. Most IDEs assist with many of these details in the

construction of a JavaFX application. At some point JavaFX will

replace Swing as the standard library for creating graphical

interfaces. However, both JavaFX and Swing are expected to be

included in Java distributions for the foreseeable future.

A JavaFX application uses the metaphor of a stage and

scenes, just like the stage and scene of a theater. The Stage class is a

top-level JavaFX container and in our examples will correspond to an

OS window. Every Stage has an associated Scene object. The Scene

object contains a set of nodes called a scene graph. These nodes

describe a scene of the application, just like the script, actors, and

props describe a scene in a play or movie. In JavaFX the scene graph

is a hierarchical set of nodes where the root node is at the top of the

tree. Underneath the root node we can create sub-trees consisting of

layout components (e.g. panels), UI controls (e.g. buttons or

textfields), shapes, or charts. Nodes have properties that includes

items such as the text, size, position, or color, can be styled with CSS,

generate events, and be associated with visual effects.

The class structure and scene graph for a simple “Hello

world” JavaFX application is shown below. In this example the

Stage contains a Scene that is composed of an HBox layout pane

which simply arranges nodes in a horizontal row. Inside the HBox are

two labels. One label displays “Hello” and the second label displays

“World.”

Stage (window): javafx.stage

Scene: javafx.scene

root: javafx.scene.layout.HBox

label1:
javafx.scene.

control.Label

label1:
javafx.scene.

control.Label

Class Structure and Scene Graph for a Simple JavaFX

Application

Code that implements the JavaFX structure is below. The

JavaFX program must extend Application. The entry point is the

start method which is invoked through the launch method. The

JavaFX panes are similar in principle to the Swing layout classes.

Other JavaFX layout panes include the BorderPane which is like

Swing’s BorderLayout, HBox for horizontal layout of nodes, VBox

for vertical layout of nodes, StackPane to place nodes within a

single stack on top of previous nodes, FlowPane which is like

Swing’s FlowLayout, TilePane which is like a tiled FlowPane,

GridPane which is like Swing’s GridLayout, and AnchorPane

which allows nodes to be anchored to edges of the pane.

 3

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Label;

import javafx.scene.layout.HBox;

import javafx.stage.Stage;

public class JavaFXHelloWorld extends Application

{

 public void start(Stage primaryStage)

 {

 Label label1 = new Label();

 Label label2 = new Label();

 label1.setText("Hello");

 label2.setText(" World");

 HBox root = new HBox();

 root.getChildren().add(label1);

 root.getChildren().add(label2);

 Scene scene = new Scene(root, 300, 50);

 primaryStage.setTitle("JavaFX Example");

 primaryStage.setScene(scene);

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

The next two programs demonstrate how JavaFX allows us to

achieve impressive visual effects with a minimal amount of code

through a declarative rather than procedural programming model. In a

declarative program we specify what the program should do rather

than the individual steps needed to achieve the end result. The

program below draws a green circle on a black background. The

program uses the AnchorPane layout with no anchors; we

demonstrate anchoring a bit later.

import javafx.application.Application;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.paint.Color;

import javafx.scene.shape.Circle;

import javafx.stage.Stage;

import javafx.scene.layout.AnchorPane;

public class JavaFXCircle extends Application

{

 public void start(Stage stage)

 {

 Circle c = new Circle(250,50,50);

 c.setFill(Color.GREEN);

 AnchorPane root = new AnchorPane();

 root.getChildren().add(c);

 Scene scene = new Scene(root, 500, 300,

 Color.BLACK);

 stage.setTitle("JavaFX Circle Demo");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[] args)

 {

 launch(args);

 }

}

 5

What if you wanted to animate the circle up and down while

changing colors? As seen previously this is not too hard, but it’s also

not trivial. Ideally we need to set up a thread and redraw the circle

inside the timer. JavaFX lets us do this easily by attaching transitions

to the circle node. In the modified program below we have attached a

fill transition from green to blue and a translation transition in the

vertical dimension to y coordinate 200 starting from coordinate

(250,50). JavaFX includes many other transitions, such as changing

the scale, fade effect, or rotation. The parallel transition tells JavaFX

to apply all of the transitions in parallel rather than sequentially. This

is an example of declarative programming; we are telling JavaFX the

desired end result and the library handles the sequential details to

implement the instructions.

import javafx.application.Application;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.paint.Color;

import javafx.scene.shape.Circle;

import javafx.stage.Stage;

import javafx.scene.layout.AnchorPane;

import javafx.animation.FillTransition;

import javafx.animation.Timeline;

import javafx.animation.ParallelTransition;

import javafx.animation.TranslateTransition;

import javafx.util.Duration;

public class JavaFXCircleAnimate extends Application

{

 public void start(Stage stage)

 {

 Circle c = new Circle(250,50,50);

 c.setFill(Color.GREEN);

 AnchorPane root = new AnchorPane();

 root.getChildren().add(c);

 FillTransition fill = new

 FillTransition(Duration.millis(500));

 fill.setToValue(Color.BLUE); // Transition Blue

 TranslateTransition translate =

 new TranslateTransition(Duration.millis(500));

 translate.setToY(200); // Move circle to Y=200

 // Run fill and translate transitions

 ParallelTransition transition = new

 ParallelTransition(c,

 fill, translate);

 transition.setCycleCount(Timeline.INDEFINITE);

 transition.setAutoReverse(true);

 transition.play();

 Scene scene = new Scene(root, 500, 300,

 Color.BLACK);

 stage.setTitle("JavaFX Circle Demo");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[] args)

 {

 launch(args);

 }

}

*** Show in class – individual transitions first, then parallel

(constructor takes Shape as second argument after transition time)

 7

Upon running the program above you will see the circle move

vertically from the top to bottom while changing colors from green to

blue. Note that the program is responsive! JavaFX handles threading

so the application does not lock-up. If you add other UI controls like

buttons or textboxes to the scene then they will be active while the

circle is animated.

JavaFX allows the programmer to attach event handlers to UI

controls in a manner similar to Swing. The code below shows how to

attach an event handler to a button. When the button is clicked the

value entered in the textfield is read into an integer, incremented by

one, and output into the label. The program uses a VBox pane which

vertically stacks each node that is added to the scene.

import javafx.application.Application;

import javafx.event.ActionEvent;

import javafx.event.EventHandler;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.control.Label;

import javafx.scene.control.TextField;

import javafx.scene.layout.VBox;

import javafx.scene.text.Font;

import javafx.stage.Stage;

public class JavaFXEvent extends Application

{

 public void start(Stage primaryStage)

 {

 TextField txt = new TextField();

 txt.setText("0");

 txt.setFont(new Font(20));

 Label lbl = new Label();

 lbl.setFont(new Font(25));

 Button btn = new Button();

 btn.setFont(new Font(20));

 btn.setText("Click to add one");

 btn.setOnAction(new EventHandler<ActionEvent>()

 {

 public void handle(ActionEvent event)

 {

 int val =

 Integer.parseInt(txt.getText());

 val++;

 lbl.setText(Integer.toString(val));

 }

 });

 VBox root = new VBox(); // Vertical layout

 root.getChildren().add(txt);

 root.getChildren().add(btn);

 root.getChildren().add(lbl);

 Scene scene = new Scene(root, 350, 200);

 primaryStage.setTitle("JavaFX Event Handler Demo");

 primaryStage.setScene(scene);

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

 When we cover the section on functional programming then

you can simplify the event handling code by using the following

lambda expression:

 btn.setOnAction(e ->

 {

 int val = Integer.parseInt

 (txt.getText());

 val++;

 lbl.setText

 (Integer.toString(val));;

 });

 9

Building complex interfaces can be tedious and difficult to

visualize when directly coding the layout panes. To assist with UI

development Oracle has released the JavaFX Scene Builder. If you

are using an IDE then the Scene Builder may already installed on

your system. The Scene Builder can be freely downloaded from

http://www.oracle.com/technetwork/java/javase/downloads/sb2downl

oad-2177776.html. The last binary version of the Scene Builder is

2.0 or you can build it from source via OpenJFX.

The Scene Builder allows the programmer or UI designer to

graphically construct the interface and quickly test the layout of UI

controls. When using the Scene Builder a JavaFX application will

typically be split up into at least three separate files, each handling a

different aspect of the program:

 FXML file. This is an XML file created by the Scene

Builder that describes the layout of nodes in the scene. A

sample FXML file similar to the previous program

follows. While you could manually create the file, it is

normally generated by the Scene Builder.

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.text.*?>

<?import javafx.scene.control.*?>

<?import java.lang.*?>

<?import javafx.scene.layout.*?>

<VBox maxHeight="-Infinity" maxWidth="-

Infinity" minHeight="-Infinity" minWidth="-

Infinity" prefHeight="200.0" prefWidth="350.0"

xmlns="http://javafx.com/javafx/8"

xmlns:fx="http://javafx.com/fxml/1">

 <children>

 <TextField fx:id="txt" text="0">

 </TextField>

 <Button fx:id="btn"

 mnemonicParsing="false"

 text="Click to add one">

http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html

 </Button>

 <Label fx:id="lbl" text="23">

 </Label>

 </children>

</VBox>

 Application file. This is the JavaFX Java source code that

contains the start method. When used with an FXML

file, the start method merely loads the FXML file using

the FXMLLoader class.

 Controller file. This file contains a class that implements

javaFX.fxml.Initializable and contains event

handlers that respond to UI controls.

If you are using an IDE that includes the Scene Builder, then

consult your IDE’s documentation on how to create a new JavaFX

FXML Application project. Otherwise, you can directly launch the

Scene Builder application after downloading and installing it. The

figure below shows the Scene Builder after dragging an AnchorPane

from the “Containers” section to the middle of the window, followed

by dragging a TextField, Button, and Label from the “Controls”

section. You can select a control by either clicking it on the form or

by selecting it by name under “Hierarchy” within the “Document”

section on the bottom left. The latter is useful for “invisible” controls

such as a label with no text. Once a control is selected you can edit

properties, such as the text or font size, in the “Properties” section in

the “Inspector” window on the right.

 11

 Since we are using an AnchorPane, we can anchor sides of a

control to edges of the pane. This is useful if the window is resized.

For example, if we want the button to fit the entire width of the

window when it is resized then we would anchor the left and right

edges. This is illustrated below. The button has been selected and

under the “Layout” section of the “Inspector,” anchors have been set

on the left and right sides. You can see test the result using the

“Preview” command from the main menu.

Anchoring a Button using Scene Builder 2.0

 To load a saved FXML file created by the Scene Builder we

use the FXMLLoader class. The code below shows how to load a

FXML file named JavaFXApp.FXML. Since the layout details are in

the FXML file, very little coding is needed in the application class.

// Loader JavaFX App
import javafx.application.Application;

import javafx.fxml.FXMLLoader;

import javafx.scene.Parent;

import javafx.scene.Scene;

import javafx.stage.Stage;

 13

public class JavaFXApplication3 extends Application {

 @Override

 public void start(Stage stage) throws Exception {

 Parent root = FXMLLoader.load(getClass().

getResource("JavaFXApp.fxml"));

 Scene scene = new Scene(root);

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

Next we need a Controller class to respond to events. A

class named JavaFXAppController.java is shown below that

implements the button handler. This class implements

Initializable and must have an initialize method that can be

used to initialize the controller.

To link variables defined in the JavaFXAppController

class to UI controls created in the Scene Builder, place the @FXML

annotation before the variable definition. This injects the necessary

values from the FXML loader.

// JavaFX Controller Class for JavaFXApp.fxml
import java.net.URL;

import java.util.ResourceBundle;

import javafx.event.ActionEvent;

import javafx.fxml.FXML;

import javafx.fxml.Initializable;

import javafx.scene.control.TextField;

import javafx.scene.control.Label;

import javafx.scene.control.Button;

public class JavaFXAppController implements

Initializable

{

 // The @FXML annotation looks up the

 // corresponding ID in the FXML file so

 // these variables map to the controls in

 // the UI

 @FXML

 private Label lblNumber;

 @FXML

 private Button btnClick;

 @FXML

 private TextField txtNumber;

 @FXML

 private void handleButtonAction(ActionEvent event)

 {

 int val = Integer.parseInt

 (txtNumber.getText());

 val++;

 lblNumber.setText

 (Integer.toString(val));

 }

 public void initialize(URL url, ResourceBundle rb)

 {

 // Required by Initializable interface

 // Called to initialize a controller after the

 // root element has been processed

 }

}

Finally, we need to link the controller to the FXML file. Back

in the Scene Builder, select the Java file containing the controller in

the “Controller” section located at the bottom left side of the Scene

Builder. In our example, the controller is named

JavaFXController.java.

Next, select each UI control that has a corresponding variable

defined in the controller. To link the controls, select the variable

name from the “Code” section of the “Inspector” on the right. You

can also select a method for an event handler. For example, in the

code above we named the label variable lblNumber. In the Scene

Builder the same name should be entered in the fx:id field for the

label on the form.

The process to link the controller to the FXML file

constructed by the Scene Builder is shown below. Once the linkages

are made the Java programs can be compiled and the main

application run.

 15

1. Set controller class from

the menu on bottom left

2. Select each UI control

and then from the

Inspector/Code section on

the right, set fx:id to the

corresponding name in

the controller, and set the

method to handle an

event

After compiling and running JavaFXApp

In this section we have presented only a small sip of what

JavaFX can do. JavaFX provides a structure and APIs for visual

effects, animation, graphics, media, and the construction of graphical

user interfaces. In addition, JavaFX supports declarative

programming, separates controlling code from display code through

FXML, and offers a Scene Builder application to assist with the

construction of complex user interfaces. For additional reading about

JavaFX visit the Oracle JavaFX overview page at

http://www.oracle.com/technetwork/java/javase/overview/javafx-

overview-2158620.html and the JavaFX documentation website at

http://docs.oracle.com/javase/8/javase-clienttechnologies.htm.

http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

