Introduction to Usability and User Interface Design

What is usability?

Usability is a measure of the **effectiveness**, **efficiency** and **satisfaction** with which specified users can achieve specified goals in a particular environment.

• ISO 9241

Why is usability important?

- · poor usability results in
 - anger and frustration
 - decreased productivity in the workplace
 - higher error rates
 - physical and emotional injury
 - equipment damage
 - loss of customer loyalty
 - costs money

Human Computer Interaction

• A discipline concerned with interactive computing systems for human use

User and Task Descriptions

- First Goal: Articulate who the users are and what their tasks are
- This is the problem of collecting requirements
- Some Methods
 - Participatory Design
 - User-Centered Design
- Poor design can make an otherwise working system unusable

Used to be called **driver's error** *but* accidents now infrequent as designs now have low center of gravity, wider wheel bases

Lessons Learned

- Lesson 1
 - Most failures of human-machine system are due to poor designs that don't recognize peoples' capabilities and fallibilities
 - This leads to apparent machine misuse and "human error"
- Lesson 2
 - Good design always accounts for human capabilities.

Pathological Design Example – What's the Altitude?

- Early days (< 1000'):
 - only one needle needed
- As ceilings increased over 1000'
 - small needle added
- As they increased beyond 10,000'
 - box indicated 10,000' increment through color change

Airspeed Indicator

Figure 5: 1930's Airspeed Indicator, reproduced from Chorley, 1976

Visual Affordance

- the perceived and actual fundamental properties of the object that determine how it could be used
 - Appearance indicates how the object should be used
 - chair for sitting
 - · knobs for turning
 - · slots for inserting things into
 - buttons for pushing
 - Just by looking the user should know
 - · State of the system
 - · Possible actions
 - · Don't violate these principles to make something "look cool"!
 - Complex things may need explaining but simple things should not
 - when simple things need labels & instructions, then design has failed

Many ideas in this deck are adapted from Don Norman's book: The Design of Everyday things

Poor Visual Affordance

- Trapped between doors!
- Handles afford
 pulling
- Using a flat plate would constrain the user to push

The well-trodden path

Fedex Dropbox

The unusual urinal

Visual affordance

· needs familiar idiom and metaphor to work

Visual affordance problems

Visible constraints

limitations of the actions possible perceived from object's appearance

- provides people with a range of usage possibilities

Which Way?

Visible constraints: Entering a Date

🖷, Form1 📃 🗵	Appointment
Date: Month Day Year May 22 1997 Month Day Year May 22 1997 V	General Attendees Notes Planner When

Controls constructed in Visual Basic

Mapping

- Controls and displays should exploit natural mapping
- Natural mapping takes advantage of physical analogies and cultural standards
 - Physical: Steering wheel
 - Cultural: red means stop, green means go

Mouse or Keyboard?

What Knob Goes Where?

Exploiting Natural Mapping

Good or bad mapping?

Causality

- the thing that happens right after an action is assumed by people to be caused by that action
 - interpretation of "feedback"
 - false causality
 - incorrect effect
 - invoking unfamiliar function just as computer hangs
 - causes "superstitious" behaviors
 - · invisible effect
 - command with no apparent result often re-entered repeatedly
 - e.g., mouse click to raise menu on unresponsive system
 - Can be responsive (show causality) but still take time to process

Feedback Examples

- Telephone button press tones
 Telephone clicks
- Buzz typing virtual keys on a slate/tablet
- Clicker on your turn signal
- Animated icon while waiting for a web page to load
- Lack of feedback
 - Compiler did it work? Entering password?

Poor Feedback in LViewPro

Effects visible only after Exec button is pressed

- •Ok does nothing!
- •awkward to find appropriate color level

LViewPro

Transfer effects

- people transfer their learning/expectations of similar objects to the current objects
 - positive transfer: previous learning's also apply to new situation
 - negative transfer: previous learning's conflict with the new situation

Conceptual model

- People have "mental models" of how things work, built from
 - affordances
 - causality
 - constraints
 - mapping
 - positive transfer
 - population stereotypes/cultural standards
 - instructions
 - interactions
- models allow people to mentally simulate operation of device
- models may be wrong
 - particularly if above attributes are misleading
- We can design interfaces to more closely match the mental models people are most likely to have
- · Usability testing can reveal many design deficiencies