
C++ Structures

In addition to naming places and processes, an identifier can name a collection of places.

When a collection of places is given a name, it is called a composite data type and is

characterized by how the individual places within variables of the data type can be

accessed. In this section we briefly look at the struct and then we will spend more time

on classes. A struct is normally used as a simple version of a class.

The struct is a very versatile data type. It is a collection of components of any data type

in which the components are given names. The components of a record are called fields

or members. Each field has its own field identifier and data type.

C++ has its own vocabulary in relation to the general concept of a record. Structs are

called records. We will also see the terms member and instance.

To define a struct, use the keyword struct followed by the name of the structure. Then

use curly braces followed by variable types and names:

 struct StructName

 {

 type1 var1;

 type2 var 2;

 …

 type3 var N;

 };

Note the need for a semicolon at the end of the right curly brace!

The above defines a structure named “StructName”. You can use StructName like it is a

new data type. For example, the following will declare a variable to be of type

“StructName”:

 StructName myVar;

Some older compilers will require you to use struct StructName as the type instead of

just StructName.

To access the members (variables) within the structure, use the variable name followed

by a dot and then the variable within the struct. This is called the member selector:

 myVar.var1;

Here is an example structure:

struct Recording

{

 string title;

 string artist;

 float cost;

 int quantity;

};

Recording song;

Recording is a pattern for a group of four variables. song is a struct variable with four

members: title, artist, cost, and quantity are the member names. The accessing

expression for members of a struct variable is the struct variable identifier followed by

the member name with a period in between.

song.title is a string variable.

song.artist is a string variable.

song.cost is a float variable.

song.quantity is an int variable.

The only aggregate operation defined on structures is assignment, but structures may be

passed as parameters and they may be the return value type of a function. For example,

the following is valid:

 Recording song1, song2;

 song1.title = “Lady Java”;

 song1.artist = “Jenny Skavlan”;

 song1.cost = 3.50;

 song1.quantity = 500;

 song2 = song1;

 cout << song2.title << endl;

This will print out “Lady Java” as the contents of song1 get copied to song2. C++ makes

a copy of the variables, so the behavior is likely what you would expect from assignment

(it is the same as if we copied an int or a string).

Rather than spending more time on structs, let’s transition to discussing Classes. A class

can do everything a struct can, and more, so it is pretty common in object oriented

programming to skip structs and go straight to classes (in the C language there are no

classes, only structs.)

C++ Class Data Type

The class data type is a C++ language feature that encourages good programming style

by allowing the programmer to encapsulate both data and actions into a single object,

making the class the ideal structure for representing an abstract data type. To define a

class, use the keyword “class” much like you would define a structure. An example is

below with the reserved words in bold:

class CreditCardTransaction

{

public:

 void initialize(string name, string number, double amount);

 string getName();

 string getNumber();

 double getAmount();

private:

 string name;

 string number;

 double amount;

};

CreditCardTransaction t1;

CreditCardTransaction is a class data type. Like any type, it is a pattern for a structure.

It is like a function prototype – it defines the structure, but not how it is actually

implemented. This pattern has three data items (member variables): name, number and

amount; and four actions (member functions): Initialize, getName, getNumber, and

getAmount (if this were real you would want expiration date and other info). The word

public means that the members defined in this section are accessible to anyone using the

class (defining a variable of the class). The members defined following the word private

are accessible only to the class's member functions. Member variables and functions

defined between public and private form the interface between the class and its clients. A

client is any software that declares variables of the class. Notice that member function

prototypes, not definitions, are used in the class definition. This interface provides no

information on how the member functions are implemented. This definition would

normally go into the .h file of your project although you could implement them in the

interface (this is sometimes done for very short one-line implementations).

t1 is an instance of the class data type CreditCardTransaction; it is called a class instance

or a class object. t1 has three member variables and four member functions. To apply a

class instance's member functions, you append the function name to the instance of the

data type separated by a period. For example, the following code segment instructs t1 to

apply its member functions initialize, and getAmout.

t1.initialize("Ash Williams", "4299 1299 1293 3939",99.95);

cout << t1.getAmount() << endl; // Outputs 99.95

Member Function Definitions

A member function is defined like any function with one exception: The name of the

class type within which the member is declared precedes the member function name with

a double colon in between (::). The double colon operator is called the scope resolution

operator.

void CreditCardTransaction::initialize(string newName,

 string newNumber, double newAmount)

{

 name = newName;

 number = newNumber;

 amount = newAmount;

}

string CreditCardTransaction::getName()

{

 return name;

}

string CreditCardTransaction::getNumber()

{

 return number;

}

double CreditCardTransaction::getAmount()

{

 return amount;

}

When the statement

t1.initialize("Ash Williams", "4299 1299 1293 3939",99.95);

is executed, “Ash Williams” is stored in t1.name and “4299 1299 1293 3939” is stored in

t1.number. Because initialize is an action defined within class CreditCardTransaction

any invocation of initialize is applied to a specific instance of CreditCardTransaction, in

this case the variable t1. The variable identifiers used in the body of the definition of

function initialize refer to those of the instance to which it is applied.

The following statement prints some of the data fields of two instances of

CreditCardTransaction. One is made on the stack and the other is a dynamic variable,

allocated off the heap. We have to dereference the pointer before accessing the member

fields, i.e. (*pt2).getName() rather than *pt2.getName(). It is kind of unwieldy to type

the parenthesis all the time, so there is a shortcut notation with the arrow operator.

pt2->getName() is the same as (*pt2).getName().

 CreditCardTransaction t1;

 t1.initialize("Ash Williams","1234 5678 1234 4121", 99.95);

 cout << t1.getName() << " " << t1.getAmount() << endl;

 CreditCardTransaction *pt2;

 pt2 = new CreditCardTransaction;

 (*pt2).initialize("Henrietta Knowby","3234 5678 1234 9999", 19.00);

 cout << (*pt2).getName() << " " << pt2->getAmount() << endl;

 delete pt2;

Outputs:

 Ash Williams 99.95

 Henrietta Knowby 19

These are called instances because they are separate instantiations of

CreditCardTransaction.

Binary Operations on Another Class

When a binary operation is defined within a class type, one of the operands is passed as a

parameter and the other is the class instance to which the member function is applied.

For example, let's assume that a binary operation, Add, has been included as a member

function in CreditCardTransaction. Here is its definition.

CreditCardTransaction CreditCardTransaction::transfer(

 CreditCardTransaction other)

{

 CreditCardTransaction result;

 result.name = name;

 result.number = number;

 result.amount = amount + other.amount;

 return result;

}

Given the following statement:

 CreditCardTransaction t3;

 t3 = t1.transfer(*pt2);

 cout << t3.getName() << " " << t3.getAmount() << endl;

Output:

 Ash Williams 118.95

Name, number and amount in the code of member function “transfer” refer those

members in the class object to which “transfer” has been applied; that is, to t1. The class

object to which a member function is applied is often called self.

Class Constructors

Because we use classes to encapsulate abstract data types, it is essential that class objects

be initialized properly. We defined a member function, Initialize, to initialize the values

of the member variables. What if the client forgets to apply member function Initialize?

How can we make it easy to initialize objects? This can be such a serious problem that

C++ provides a mechanism to guarantee that all class instances are properly initialized,

called the class constructor. A class constructor is a member function with the same

name as the class data type. You can make as many constructors as you like as long as

the parameters are different (this is called overloading).

class CreditCardTransaction

{

public:

 // Two constructors

 CreditCardTransaction();

 CreditCardTransaction(string name, string number,

 double amount);

 string getName();

 string getNumber();

 double getAmount();

private:

 string name;

 string number;

 double amount;

};

These constructors are defined as follows.

CreditCardTransaction::CreditCardTransaction()

{

 name = "Unknown";

 number = "0000 0000 0000 0000";

 amount = 0;

}

CreditCardTransaction::CreditCardTransaction(string newName,

 string newNumber, double newAmount)

{

 name = newName;

 number = newNumber;

 amount = newAmount;

}

Now in our code when we define an instance of CreditCardTransaction we can do it two

ways:

CreditCardTransaction t1;

CreditCardTransaction t2("Ruby Knowby", "3234 5677 1234 9999", 19.00);

There are two constructors: one with no parameters, called the default constructor, and

one with two parameters. They look a little strange because there is no type identifier or

void before them. They are invoked differently as well. A class constructor is invoked

when a class instance is declared. In this example, t1 is initialized by the default class

constructor (the one with no parameters), and t2 is initialized with the name of Chuck

Finley and other values.

If we execute:

 cout << t1.getName() << " " << t1.getAmount() << endl;

 cout << t2.getName() << " " << t2.getAmount() << endl;

We get:

Unknown 0

Ruby Knowby 19

Notice that the class constructors do not make member function Initialize unnecessary.

We could have kept it if we wanted to reinitialize the class object during run time. Class

constructors are invoked once when a class object is declared.

There is an alternate way to initialize member variables in the constructor. The alternate

formulation looks like this:

CreditCardTransaction::CreditCardTransaction() :

 name("Unknown"), number("0000 0000 0000 0000"), amount(0)

{

}

CreditCardTransaction::CreditCardTransaction(string newName,

 string newNumber, double newAmount) :

 name(newName), number(newNumber), amount(newAmount)

{

}

Use whichever method you prefer but be prepared to see both formats.

Packaging

Because classes are used to encapsulate abstract data types and because the separation of

the logical properties of an ADT from the implementation details is so important, you

should package the class declaration and the implementation of the member functions in

different files. The class declaration should be in a file with a ".h" extension (called the

specification or header file), and the implementation should be in a file with the same

name but with a ".cpp" extension (called the implementation file). The implementation

file must use the #include directive to access the specification file. Any client program

must use the #include directive for the specification file (.h extension) to include your

files in their source code. We will say more about separate compilation later.

If you are using Visual Studio, the “Insert Class” option from the menu will

automatically create a .h and a .cpp file for you.

Class Scope

Previously we said there were four kinds of scope: local scope, namespace scope, global

scope, and class scope. We defined the first three, but left the definition of class scope

until later. Class scope means that a member name is bound to the class or struct in

which it is defined. That is, member names are not known outside of the struct or class in

which they are defined.

Good Programming Practice : Private Member Variables

Note that when we declared the CreditCardTransaction class, we made the variables

private. This means that we can’t directly access them via t1.name or t1.amount. If we

made them public, we would basically have the same thing as a struct with additional

functions defined.

class CreditCardTransaction

{

public:

 // Two constructors

 CreditCardTransaction();

 CreditCardTransaction(string name, string number,

 double amount);

 string getName();

 string getNumber();

 double getAmount();

 string name;

 string number;

 double amount;

};

An instance of CreditCardTransaction can now directly access dollars and cents:

 CreditCardTransaction t1;

 t1.name = "Jose";

 t1.amount =100;

This is considered to be a poor software implementation. Why? The outside world

now has direct access to the underlying data representation used in the class. It is much

better to hide the underlying data representation and force the outside world to only

access data through the published interface (i.e. the functions).

For example, let’s say that we wrote a bunch of code that directly accesses the name. So

splattered throughout the program we have:

 n = t1.name;

 t1.name = n;

 if (t2.name == "Bob")

 …

This is in several ways more convenient than having to go through a function to access

the member variable (this function is called an accessor. If we have a function that

changes a variable it is called a mutator). But maybe later we decide that we need to

store the first and last name separately instead of in one variable. To do this we could

make two variables, one called first and the other called last, and delete the old variable

called name. But this will break all the existing code that directly accesses the variables

by name!

But if all code went through accessor and mutator functions, then we only need to update

code in the functions to map back and forth between the old and new variables, and all

the old code would still work:

void CreditCardTransaction::setName(string fullName)

{

 int indexOfSpace = fullName.find(" ");

 first = fullName.substr(0, indexOfSpace);

 last = fullName.substr(indexOfSpace+1);

}

string CreditCardTransaction::getName()

{

 return first + " " + last;

}

By making the data members of the class private, this architecture forces us to hide the

implementation of a class from its clients, which reduces bugs and improves program

modifiability.

Assignment of Classes

The assignment operator can be used to assign a class to another class instance of the

same type. By default, these assignments are performed by memberwise copy – each

member of one object is copied (assigned) individually to the same member of the other

object. There is also a way to define your own assignment operator, called operator

overloading (and described later).

While assignment will do what you want most of the time, note that it won’t make copies

of any data that is allocated using new. Consider the following class which allocates an

integer:

class SampleClass

{

public:

 SampleClass(); // class constructor

 void SetNum(int num);

 int GetNum();

private:

 int *m_numPtr; // Some people like to preface

 // member vars with m_

};

// Constructor

SampleClass::SampleClass()

{

 m_numPtr = new int; // Allocate an int

 *m_numPtr = 0;

}

void SampleClass::SetNum(int num)

{

 *m_numPtr = num;

 return;

}

int SampleClass::GetNum()

{

 return (*m_numPtr);

}

What happens with the following main?

int main()

{

 SampleClass x,y;

 x.SetNum(55);

 y = x;

 cout << x.GetNum() << “ “ << y.GetNum() << endl;

 x.SetNum(23);

 cout << x.GetNum() << “ “ << y.GetNum() << endl;

 return 0;

}

The output from this program is:

 55 55

 23 23

There are two problems with this program. The first problem is that when we copied x to

y, we copied the x’s internal pointer, but didn’t copy the data. Graphically, we initially

have the following after executing x.SetNum(55):

When we copy x to y, we copy the pointer but don’t follow the pointer to copy the

values!

Y’s value is now pointing to the memory we allocated for x! What happened to the

memory that y used to point to? It is still there, allocated. However we’ve lost the

pointer to it. We have just experienced a memory leak. This memory will sit and the

computer will think it is used until someone (the Operating System, hopefully) comes

along and re-claims it.

Upon executing x.SetNum(23), we are now changing the picture to:

m_numPtr

x

55

m_numPtr

y

m_numPtr

x

55

m_numPtr

y

Consequently, when we print out y.GetVal(), we are getting the number 23.

This is probably not the desired result! So the bottom line is to be very careful about

copying objects if there are pointers involved.

Destructors

The other problem with the above program is that the memory we allocated to each

instance was never freed using the delete function call.

A logical place to free the memory is when the instance variable goes out of scope.

There is a special function we can define that is automatically invoked when the variable

goes out of scope. This is called the destructor because it is called when the object is

destroyed. Any type of “cleanup” can go into the destructor. To define a destructor, use

~ in front of the class name:

class SampleClass

{

public:

 SampleClass(); // class constructor

 ~SampleClass(); // class DESTRUCTOR

 void SetNum(int num);

 int GetNum();

private:

 int *m_numPtr;

};

 SampleClass::~SampleClass()

 {

 // Cleanup code here

 delete m_numPtr;

 cout << “Deleting allocated memory!” << endl;

 }

m_numPtr

x

23

m_numPtr

y

Here is some sample usage:

 void TestFunc()

 {

 SampleClass x;

 x.SetNum(10);

 cout << x.GetNum() << endl;

 return;

 }

 int main()

 {

 cout << “Entering TestFunc” << endl;

 TestFunc();

 cout << “Done” << endl;

 return 0;

 }

When this code invokes TestFunc, we create a new instance of SampleClass and call the

constructor, allocating memory. Then we set the number to 10. When the function

returns, the variable x goes out of scope. This means that the variable is being destroyed,

and consequently the destructor is invoked.

Upon exiting TestFunc, the destructor is invoked which delete’s the memory and prints

out the message “Deleting allocated memory”.

The output will be:

 Entering TestFunc

 10

 Deleting allocated memory!

 Done

In summary the destructor is a good place to put any cleanup/exit code you want to

execute before your object goes away for good. The constructor is where you put code

you want to run once, when the object is initially declared.

