
C++ Reading a Line of Text

Because there are times when you do not want to skip whitespace before inputting a character,

there is a function to input the next character in the stream regardless of what it is. The function

is named get and is applied as shown.

cin.get(character);

The next character in the input stream is returned in char variable character. If the previous input

was a numeric value, character contains whatever character ended the inputting of the value.

There are also times when you want to skip the rest of the values on a line and go to the beginning

of the next line. A function named ignore defined in file <iostream> allows you to do this. It has

two parameters. The first is an int expression and the second is a character. This function skips

the number of characters specified in the first parameter or all the characters up to and including

the character specified in the second parameter, whichever comes first. For example,

cin.ignore(80, '\n');

skips 80 characters or skips to the beginning of the next line depending on whether a newline

character is encountered before 80 characters are skipped (read and discarded).

As another example, consider:

 cin.ignore(4,’g’);

 cin.get(c);

 cout << c << endl;

If the input to this program is “agdfg” then the input is ignored up to and including the ‘g’ so the

next character read is ‘d’. The letter “d” is then output.

If the input to this program is “abcdef” then the input is ignored for the first four characters, so the

next character read is ‘e’. The letter “e” is then output.

A more common usage is cin.ignore() with nothing in parentheses. This ignores all input until

the next newline is encountered.

We said that initial whitespace is skipped when reading data into a variable of type string and that

the next whitespace character encountered stops the reading. How, then, can we get blanks or

other whitespace characters into a string? We can use the function getline, which takes two

parameters. The first is the name of the input stream, and the second is the name of the string

variable into which the string is to be read. For example,

getline(cin, newString);

begins immediately reading and collecting characters into newString and continues until a newline

character is encountered. The newline character is read but not stored in newString.

To illustrate the difference, consider the following snippet of code:

 string s1;

 cout << "Enter your name " << endl;

 cin >> s1;

 cout << s1;

If we run this program and enter “Bill Gates” then as output we will have:

 Enter your name

 Bill Gates

 Bill

That is, string s1 only contains “Bill” because the space between Bill and Gates is whitespace and

is used to denote the end of the input string. If we want to include everything up to the newline

then we would use getline:

 string s1;

 cout << "Enter your name " << endl;

 getline(cin, s1);

 cout << s1;

If we run this program and enter “Bill Gates” then as output we will have:

 Enter your name

 Bill Gates

 Bill Gates

We now get the entire string up to the newline character.

Mixing getline with cin

It is worthwhile to point out problems that can arise if we have code that mixes both cin and getline.

getline removes the newline from the input stream while cin does not. This does not cause

any problems if our program uses all cin’s, because cin will ignore leading whitespace. But since

getline does not ignore the leading whitespace, it can lead to undesirable results, namely empty

strings. Consider the following example:

 string s;

 char c;

 getline(cin, s);

 cout << s << endl;

 cin >> c;

 cout << c << endl;

 getline(cin, s);

 cout << s << endl;

If our input to such a program is:

 Bill Gates

 Z

 Foobar

Then we would expect the output to be

 Bill Gates

 Z

 Foobar

Instead, our output is:

 Bill Gates

 Z

 (blank, an empty string)

What is the reason for the empty string? In the line “cin >> c” we input the letter ‘Z’ into variable

c. However, the newline when we hit the carriage return is left in the input stream. If we use

another cin, this newline is considered whitespace and is ignored. However, if we use getline, this

is not ignored. Instead we read a newline into the second getline, and exit. A blank string has

been read into s in the second getline.

This is illustrated in the following code:

 string s;

 char c;

 getline(cin, s);

 cout << s << endl;

 cin >> c;

 cout << c << endl;

 cin.get(c);

 cout << int(c) << endl;

 getline(cin, s);

 cout << s << endl;

If our input is the same, the output is now:

 Bill Gates

 Z

 10

 Foobar

Here we explicitly read the newline with an extra cin.get() function call, and printed it’s ASCII

value out (which is 10).

In general, if we want to immediately throw away the newline that follows using cin to not

mess things up when we later use getline, then use cin.ignore() immediately after a “cin >>”

to discard the next value.

 string s;

 char c;

 cin >> c;

 cin.ignore(); // Ignore NEWLINE
 getline(cin, s);

 // Use c and s here as intended

