Friend Functions and Friend Classes

C++ allows you to declare another class to be a “friend” of the current class to make it easier to access
variables. OOP purists have criticized this feature as weakening the principles of encapsulation and
information hiding. You can do everything you might want to do without using the “friend” feature. For
example, Java is not friendly. There is no friend feature. However, this feature can make some code
easier to write (at least in the short term; arguably not in the long term). You may also see other code
that uses friends, so it is good to know what it means.

Consider the following Employee class:

class Employee
{
private:
string name;
double salary;
public:
Employee () ;
Employee (string n, double s);
string getName () ;
double getSalary();
}i

Employee: :Employee () : name(""), salary(0) {}
Employee: :Employee (string n, double s): name(n), salary(s) {}
string Employee::getName () { return name; }

double Employee::getSalary () { return salary; }

We could add more functions but that will suffice to keep it simple. In this case we are doing our
standard encapsulation with private variables.

Now let’s say we’d like to write a “Boss” class where the boss is the supervisor of some employee:

class Boss

{

public:

Boss () ;

void giveRaise (double amount) ;
private:

Employee e;

b

Boss::Boss () {}
void Boss::giveRaise (double amount)

{
e.salary = e.salary + amount;
cout << e.salary << endl;

}
This code won’t work because the Boss class is not allowed to access the salary variable in the Employee

class. The standard fix is to write an accessor and mutator method/function for the Employee class so
we can get and set the variable.

However, one can argue that a boss should intrinsically have access to private variables in the Employee
class. If you agree, then the friend modifier allows this to happen. Inside the Employee class we
designate that Boss is Employee’s friend. It doesn’t matter if we put it in the private or public areas:

class Employee
{
private:
friend class Boss;
string name;
double salary;
public:
Employee () ;
Employee (string n, double s);
string getName () ;
double getSalary();
}i

It's that simple, now the code will compile and the Boss class is allowed to access private variables and
functions inside the Employee class.

If you prefer you can also specify only single functions as a friend that can access any private variables in
the class. To do this use the “friend” keyword in front of the function declaration. This makes the
function technically not a member of the class, so we have to pass any object that we want to work on
as a parameter instead of invoking it with the dot operator. The following gives access to the
“raiseSalary” function only:

class Employee
{
private:
string name;
double salary;
friend void raiseSalary(double a, Employee &e);
public:
Employee () ;
Employee (string n, double s);
string getName () ;
double getSalary();
}i

// Note: No Employee:: because raiseSalary is NOT a member of the

// Employee class! It is a “friend” as a global function

// Because of this, we have to pass the object as a parameter

// (e.g. raiseSalary(amt, empOb7j)

// instead of using it to invoke the function (e.g. empObj.raiseSalary)
void raiseSalary(double a, Employee &e)

{

e.salary += a; // Normally not allowed to access e.salary

Now our code to give a raise looks like this:

Boss::Boss () {}
voilid Boss::giveRaise (double amount)

{
raiseSalary (amount,e) ;
cout << e.getSalary() << endl;

This looks a little funky because raiseSalary is really defined in the global namespace, not in the scope of
the Employee object.

Operator Overloading

One place where friend functions are useful is when we overload operators. This is a handy feature that
is not yet possible in Java although it has been discussed for future versions.

III

In “normal” overload we can write multiple functions and C++ invokes the one that matches the
parameter list. We have been doing this for constructors.

You can also overload operators, like == or * or +. This can be really useful when you want to run your
own code to determine with equality means or what + should do when you “add” two classes together.

Let’s return to our simple version of the Employee class:

class Employee
{
private:
string name;
double salary;
public:
Employee () ;
Employee (string n, double s);
string getName () ;
double getSalary():;
bi

Employee: :Employee () : name(""), salary(0) {}
Employee: :Employee (string n, double s): name(n), salary(s) {}
string Employee::getName () { return name; }

double Employee::getSalary () { return salary; }

What if we would like to compare two Employee objects? C++ will give an error message because we
haven’t defined how to compare to Employee objects:

Employee el ("Bob",50);
Employee e2 ("Bob",50) ;
cout << (el == e2) << endl;

To do this we need to define the == operator. We can do it like this:

class Employee
{
private:
string name;
double salary;
public:
friend bool operator==(Employee& el, Employee& e2);
Employee () ;
Employee (string n, double s);
string getName () ;
double getSalary():;
}i

bool operator==(Employee& el, Employee& e2)
{

// Since this is a friend we can access the private variables
return (el.name == e2.name);

Our code will now run, and will print out a non-zero value since the two names are the same (it should
output 1). In this case, el is the Employee object on the left side of the equality, and e2 is the Employee
object on the right side of the equality.

Here is another example where we override the += operator so it adds together the salaries and stores
the sum into the Employee on the left hand side:

class Employee
{
private:
string name;
double salary;
public:
friend bool operator==(Employee& el, Employeeé& e2);
friend void operator+=(Employee& el, Employeeé& e2);
Employee () ;
Employee (string n, double s);
string getName () ;
double getSalary();
bi

void operator+=(Employee& el, Employee& e2)
{

el.salary += e2.salary;

int main ()

{

Employee el ("Bob",50);

Employee e2 ("Bill",50);

el += e2;

cout << el.getSalary() << " " << e2.getSalary() << endl; // 100 and 50
return 0;

Sometimes you don’t want to change an object’s value. For example, you might want to add two items
together but not change el or e2. Here is one final example:

friend Employee operator+ (Employee& el, Employee& e2);

Employee operator+ (Employee& el, Employee& e2)
{
Employee temp;
temp.name = el.name + " and " + e2.name;
temp.salary = el.salary + e2.salary;
return temp;

int main ()

{

Employee el ("Bob",50);

Employee e2("Bill",50);

Employee e3 = el + e2;

cout << e3.getSalary() << " " << e3.getName () << endl;
// Outputs “100 Bob and Bill”

return 0;

}

There’s a bit going on under the hood. When we invoke +, the temp employee gets the concatenated
name and sum of the salaries. When it is returned, the temp Employee is copied (using C++’s semantics
for the assignment operator, i.e. it copies the name and salary) to the e3 variable. We then output e3.
el and e2 are unchanged.

Overloading an operator as a member function

It is also possible to overload an operator as a member function. Here is an example with the ==
operator:

class Employee
{
private:
string name;
double salary;
public:
bool operator==(Employee& e2); // No friend needed
Employee() ;
Employee (string n, double s);
string getName () ;
double getSalary();
}i

// Note that bool is a member function, not a global function
// We don’t need “friend” since it is a member function and has
// access to private variables
bool Employee::operator==(Employee& e€2)
{

// Use this-> to access the name of the calling object

return (this->name == e2.name);

We would invoke this the same way as before:

Employee el ("Bob",50);
Employee e2 ("Bob",50) ;
cout << (el == e2) << endl;

In this case, el becomes the calling object so access this->name inside the == operator is accessing
el.name and e2 becomes e2.name. In other words, the compiler translates (el == e2) into el.==(e2).

It seems like this is a much better solution than using friends! It can be, but has a shortcoming. The
shortcoming is that the variable on the left hand side of == has to be an Employee object. If it was
something else we are trying to typecast into Employee then it won’t work. For example, if we overload
the + operator and want to allow el + 10, then el + 10 would work but 10 + el would fail because 10 is
not a class. For this reason, the symmetric version of overloading operators using friends is the more
common approach.

Const Confusion

Often we might use the const keyword with an overloaded operator if we don’t want an operand to
change.

C++ lets us use the keyword const to make things constant and unchangeable, but it can be
used in many different ways that can be confusing.

const int x = 3; and
int const x = 3;

both make x a constant that is an integer set to 3. You can’t change x. In general, the thing to
the left is what the const applies to, unless there is nothing there, in which case the const
applies to the thing to the right.

Const can also be used for a return type. Consider this:

int& foo()
{

static int x = 0;
return x;

main:

cout << foo()++ << endl;
cout << foo () << endl;

This outputs 0 and then 1, because the ++ changes the return value which references the static
variable. If you want to return a reference for efficiency purposes but don’t want it changeable
then you can make it const:

const inté& foo()

Const can also be used with parameter passing. You might want to pass something by reference
to save memory, but really don’t want the parameter to be changed. In this case you can make
it const:

void foo(const big class é¶meter)

Finally, const can be used in OOP to specify that a function can’t change any instance (member)
variables in the object. To do this stick const at the end of the function in the header and

implementation file:
class Fraction {
public:
void print () const;

void Fraction::print () const

{

cout << m numerator << “/“ << m denominator << endl;

}

You can combine these to be extra confusing!

const inté& myfunction (const MyClass& parm) const

