
Boolean Conditions, If-Then

The physical order of a program is the order in which the statements are listed. The

logical order of a program is the order in which the statements are executed. With

conditional statements and control structures that can change the order in which

statements are executed.

Boolean Data Type

A Boolean expression asserts (states) that something is true or false. It is named after the

mathematician George Boole.

In Java, the data type boolean is used to represent Boolean data. Each boolean constant

or variable can contain one of two values: true or false.

Examples:

 boolean b;

 b = true;

 b = false;

 b = 10 < 12; // true

 b = 5 >= 2; // false

Relational Operators

We generally use relational operators to create boolean expressions. < and >= from the

previous sample are examples of relational operators. Relational operators take two

operands and test for a relationship between them. The following table shows the

relational operators and the Java symbols that stand for them.

Java Symbol Relationship

== Equal to (not =)

!= Not equal to (since no key for ≠)

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

More examples:

 boolean b;

 b = 10 == 12; // false

 b = 5 != 2; // true

We must be careful when applying the relational operators to floating point operands,

particularly equal (==) and not equal (!=). Integer values can be represented exactly;

floating point values with fractional parts often are not exact in the low-order decimal

places. Therefore, you should compare floating point values for near equality. For now,

do not compare floating point numbers for equality. == and != also does not

(always) work with Strings.

For example:

 double d = 0.05 * 3;

 boolean b = (d == 0.15);

 System.out.println("Value of d: " + d);

 System.out.println("Value of b: " + b);

This program outputs:

 Value of d: 0.15000000000002

 Value of b: false

Next we will see how to test for a range of values to handle this case.

Boolean Operators

A simple Boolean expression is either a Boolean variable or constant or an expression

involving the relational operators that evaluates to either true or false. These simple

Boolean expressions can be combined using the logical operations defined on Boolean

values. There are three Boolean operators: AND, OR, and NOT. Here is a table

showing the meaning of these operators and the symbols that are used to represent them

in Java.

Java Symbol Meaning

&& AND is a binary Boolean operator. If both

operands are true, the result is true.

Otherwise, the result is false.

 True False

True True False

False False False

|| OR is a binary Boolean operator. If at least

one of the operands is true, the result is true.

Otherwise, the result is false.

 True False

True True True

False True False

! NOT is a unary Boolean operator. NOT

changes the value of its operand: If the

operand is true, the result is false; if the

operand is false, the result is true.

 Not_Value

True False

False True

Some simple examples:

boolean b;

b = (x <= 10) || (x > 20); // True if x <= 10 or x > 20

b = (x < 10) && (y == x); // True if x <10 and y is x

b = (d > 0.1499) && (d < 0.1501); // True if d is about 0.150

b = (x < 10) && (x > 20); // Always false

Java uses short-circuit evaluation. The evaluation is done in left-to-right order and halts

as soon as the result is known. For example, in the expression:

b = (x != 0) && ((y / x) > 2);

If x is 0 then (x != 0) is false. It doesn’t matter whether ((y/x)>2) is true or false

because we will && the result with false, getting false. So Java doesn’t bother to

continue evaluating ((y/x)>2). This is quite desirable in this case, because if x was 0

we could end up with a division by 0 error. We can also use short-circuit evaluation if

there is an || and we find an expression to be true.

If relational operators and Boolean operators are combined in the same expression in

Java, the Boolean operator NOT (!) has the highest precedence, the relational operators

have next higher precedence, and the Boolean operators AND (&&) and OR (||) come

last (in that order). Expressions in parentheses are always evaluated first.

For example, given the following expression (stop is a bool variable)

count <= 10 && sum >= limit || !stop

!stop is evaluated first, the expressions involving the relational operators are evaluated

next, the && is applied, and finally the || is applied.

It is a good idea to use parenthesis to make your expressions more readable, e.g:

 (((count <= 10) && (sum >= limit)) || (!stop))

This also helps avoid difficult-to-find errors if the programmer forgets the precedence

rules.

The following table summarizes the precedence of some of the common Java operators:.

Operator Type Order of Evaluation

()

[]

 .

Parentheses

Array subscript

Member access

left to right

++ -- Prefix increment, decrement right to left

++ --

-

Postfix increment, decrement

Unary minus

right to left

* / % Multiplicative left to right

+ - Additive left to right

< > <= >= Relational left to right

== != Equality left to right

&& And left to right

|| Or left to right

? : Conditional right to left

= += -= *= /= %= Assignment right to left

If-Then and If-Then-Else Statements

The If statement allows the programmer to change the logical order of a program; that is,

make the order in which the statements are executed differ from the order in which they

are listed in the program. The If-Then statement uses a Boolean expression to determine

whether to execute a statement or to skip it. The format is as follows:

 if (boolean_expression)

 statement;

The statement will be executed if the Boolean expression is true.

If you wish to execute multiple statements, which is called a block, use curly braces:

if (boolean_expression)

{

 statement1;

 statement2;

 …

 statement99;

 }

Although the curly braces are not needed when only a single statement is executed, some

programmers always use curly braces to help avoid errors such as:

 if (boolean_expression)

 statement1;

 statement2;

This is really the same as:

 if (boolean_expression)

statement1;

 statement2;

Such a condition commonly arises when initially only a single statement is desired, and

then a programmer goes back and adds additional statements, forgetting to add curly

braces.

We can also add an optional else or else if clause to an if statement. The else statement

will be executed if all above statements are false. Use else if to test for multiple

conditions:

 if (boolean_expression1)

 statement1; // Expr1 true

 else if (boolean_expression2)

 statement2; // Expr1 false, Expr2 true

 else if (boolean_expression3)

 statement3; // Expr1, Expr2 false, Expr3 true

 …
 else

 statement_all_above_failed; // Expr1, Expr2, Expr3 false

Here are some examples of if statements:

System.out.println("Today is a ");

if (temperature <= 32)

{

 System.out.println("Cold day.");

 System.out.println("Sitting by the fire is appropriate.");

}

else

{

 System.out.println ("nice day. How about taking a walk?");

}

There is a point of Java syntax that you should note: There is never a semicolon after the

right brace of a block (compound statement).

This example outputs if a number is even or odd:

 if (num % 0 == 0)

 {

 System.out.println(num + " is even");

 }

 else

 {

 System.out.println(num + " is odd");

 }

This example computes how much tax is owed based on the rule of nothing on the first

15000, 5% on income from $15000-$25000, and 10% on income over $25000.

 if (income <= 15000)

 {

 tax = 0;

 }

 else if (income <= 25000)

 {

 tax = 0.05 * (income – 15000);

 }

 else

 {

 tax = 0.05 * (income – (25000 - 15000));

 tax += 0.10 * (income – 25000);

 }

Finally here is an example using else-if, also referred to as a nested if statement:

 if (y==false)

 if (z < 50)

 {

 }

 else

 {

 ….

 }

There may be confusion as to what the final else statement goes to. Does it match up

with z<50? or with y==false? The rule is that the else is paired with the most recent if

statement that does not have an else. In this case, the final else statement is paired with (z

< 50). The above is equivalent to:

if (y==false)

{

if (z < 50)

{

 …

}

else

{

 ….

}

}

If we wanted the else to match up with y==false, we should change the braces

accordingly:

if (y==false)

{

 if (z<5)

{

…

}

}

else

{

 …

}

In nested If statements, there may be confusion as to which if an else belongs. In the

absence of braces, the compiler pairs an else with the most recent if that doesn't have an

else. You can override this pairing by enclosing the preceding if in braces to make the

then clause of the outer If statement complete.

Common Bug #1: Confusing = and ==

The assignment operator (=) and the equality test operator (==) can easily be miskeyed

one for the other. What happens if this occurs? Fortunately, the program will not

compile. Look at the following statements.

 int i=0;

 i == i + 1;

 System.out.println(i);

This code fragment generates an error during compilation. i==i+1 will be flagged as an

improper instruction.

Look at the next statement going the other direction:

 int i=0;

 if (i=1)

{

 System.out.println("Value is 1");

 }

 else

{

 System.out.println("Value is 0");

 }

This code will also be flagged as an error by the compiler. i=1 does not return a

Boolean, and we must make a Boolean comparison in the if-statement.

Fortunately, these common problems are discovered by the Java compiler. However, if

you start to program in C or C++, these statements will not be flagged as errors by the

compiler because they are valid statements. Unfortunately, they are probably not

statements you wish to make and will likely result in a program that does not function

correctly.

Common Bug #2: Using == with Strings and Objects

Fortunately, the compiler catches the previous bugs (unless the data types happen to be

Boolean). Not so for the next common bug, using == with Strings. Although ==

correctly tests two values for primitive data types like numbers and chars, it has a

different meaning when applied to objects.

First, let’s see how == works correctly on primitive data types. All variables are stored at

some memory address. For variables of primitive data types, the value is stored directly

in memory at that address. For example, say that we create two integers:

 int x=1,y=1;

Let’s say that the compiler decides to place variable x at address 1000 and variable y at

address 2000. A snapshot of memory looks something like this:

When Java executes x == y, the == operator checks to see if the contents of memory

corresponding to variables x and y are the same. In this case, we compare 1 from address

1000 with 1 from address 2000, they are identical, and Java correctly returns the boolean

value true.

Objects such as strings are stored differently, resulting in a different behavior when we

use ==. An object really occupies a number of bytes of memory. These bytes store data

associated with the object (e.g., a string of characters). The variable that represents the

object is really storing the memory address where the data is stored.

For example, say that we create a String object s1:

 String s1 = "hi", s2 = "hi";

The variable s1 is also stored somewhere in memory, let’s say at address 1000. The

variable s2 is also stored somewhere, let’s say at address 2000. The contents of the two

object variables contains the memory address of the place where we are putting the

object. Let’s say we have “hi” for s1 stored at address 3000, and “hi” for s2 stored at

address 4000:

Memory Address Contents

0000: …

…

1000: 1

…

2000: 1

…

x

y

What happens now if we execute: s1 == s2 ? Java will do the same thing it did before:

it compares the contents of s1 with the contents of s2. In this case, it is comparing 3000

with 4000. These are actually memory addresses, and they are different, so Java will

return back the value false. In this case, the == operator isn’t smart enough to know that

we actually want to go look at the data stored at the memory addresses and compare them

instead.

Whenever we create variables for objects that actually store memory addresses, these

variables are called references or pointers. Graphically, we can depict them a bit more

conveniently using arrows and boxes:

Memory Address Contents

0000: …

…

1000: 3000

…

2000: 4000

…

3000: h

3002: i

…

4000: h

4002: i

…

s1

s2

Memory Contents

…

…

hi

…

…

hi

…

s1

s2

Here is a program that illustrates the above problem (if you actually run the above, Java

may store the “hi” in the same place and == may actually work):

 boolean b;

 String s1,s2;

 Scanner keyboard = new Scanner(System.in);

 s1 = keyboard.nextLine();

 s2 = keyboard.nextLine();

 System.out.println("S1 = " + s1);

 System.out.println("S2 = " + s2);

 if (s1 == s2)

System.out.println("Equal");

 else

System.out.println("Not equal");

Try running this program with the same input. Java will say they are not equal.

As one further example, consider the following change:

 boolean b;

 String s1,s2;

 Scanner keyboard = new Scanner(System.in);

 s1 = keyboard.nextLine();

 s2 = s1;

 System.out.println("S1 = " + s1);

 System.out.println("S2 = " + s2);

 if (s1 == s2)

System.out.println("Equal");

else

System.out.println("Not equal");

Using our hypothetical values from earlier, we now have a picture that looks like:

Both variables are now referring to the same location due to the assignment, so the

program now prints out “Equal”. You might wonder why such behavior might be

Memory Contents

…

…

hi

…

s1

s2

useful. This will become much more useful later on when we discuss linked data

structures.

For now then, how do we compare strings to see if they are the same? We need to

compare every character of each string to see if they match. Fortunately, there is already

a string method defined that does this for us, called equals():

 s1 = keyboard.readLine();

 s2 = keyboard.readLine();

 System.out.println("S1 = " + s1);

 System.out.println("S2 = " + s2);

 if (s1.equals(s2))

System.out.println("Equal");

 else

System.out.println("Not equal");

There is also a method called equalsIgnoreCase() that checks for equality but treats upper

and lower case the same.

There is also a method called compareTo() that compares two strings and returns a

number based on lexicographic ordering (i.e. if one is alphabetically greater than or less

than the other). This will be useful later when we do things like sort lists of names.

Switch Statement

The switch statement is a more convenient way to write multiple if-then-else statements.

Alternative statements are listed with a switch label in front of each. A switch label is

either a case label or the word default. A case label is the word case followed by a

constant integral expression (Strings are allowed if using Java version 7). An integral

expression called the switch expression is used to match one of the values on the case

labels. The statement associated with the value that is matched is the statement that is

executed. Execution then continues sequentially from the matched label until the end of

the Switch statement is encountered or a break statement is encountered.

The format for switch is:

 switch (integral_expression)

 {

 case const_expr1 :

 statement1; // Exec if expr1 true

 statement2;

 …

 break;

 case const_expr2:

 statement101; // Exec if expr2 true

 statement102;

 …

 break;

 case const_expr3:

 …

 break;

 . . .

 default:

 statement555; // Exec if all above false

 … // no break needed

 }

Remember, the statement following switch() must evaluate to an integral expression.

This means you can’t use switch on more complex data types. It will work with int, char,

and long.

Also remember that what follows the case must be a constant integral value, not a

variable! BUT starting with Java 7 (which came out in July, 2011 and most of you

should have) this changed and you are able to add Strings as the expression in the switch

statement.

Here is an example:

char grade;

// Some code here that somehow assigns a value to

grade

// e.g. read it in from the scanner or grade = ‘A’;

switch (grade)

{

 case 'A' : System.out.println("Great work!");

 break;

 case 'B' : System.out.println("Good work!");

 break;

 case 'C' : System.out.println("Satisfactory

work!");

 break;

 case 'D' :

 case 'F' : System.out.println("Unsatisfactory

work.");

 System.out.println("See your

instructor.");

 break;

 default : System.out.println(grade + " is not

legal");

 break;

}

grade is the switch expression; the letters beside the statements make up the case labels.

The value in grade is compared with the value in each case label. When a match is found,

the corresponding statement is executed. If the value of the switch expression does not

match a value in any case label, the default label is matched by default. Because

execution continues after a match until break is encountered, both 'D' and 'F' send the

same message to the screen.

Random Numbers

It is often useful to generate random numbers to produce simulations or games (or

homework problems :) One way to generate these numbers in Java is to use the Random

class.

The random function takes no arguments and returns a value of type double that is a

pseudo-random number between 0 and 1. What is a pseudo-random number? It is a

number that is not truly random, but appears random. That is, every number between 0

and 1 has an equal chance (or probability) of being chosen each time random() is called.

(In reality, this is not the case, but it is close).

Here is a very simple pseudorandom number generator to compute the ith random #:

 Ri = (Ri-1 * 7) % 11

Initially, we set the “seed”, R0 = 1. Then our first “random” number is 7 % 11 or 7.

Our second “random” number is then (7*7)%11 or 5.

Our third “random” number is then (5*7)%11 or 3.

Our fourth “random” number is then (3*7)%11 or 10.

Our fifth “random” number is then (10*7)%11 or 4.

..etc.

As you can see, the values we get seem random, but are really not. This is why they are

called pseudorandom. We can get slightly more random results by making the initial

seed some variable number, for example, derived from the time of day or something.

This particular function would not be a very good pseudorandom number generator

because it would repeat numbers rather quickly.

To use the Random class we first have to import it just like we imported the

Scanner class:

import java.util.Random;

Next we have to create an object of type Random that can generate the random

numbers for us. This follows the same pattern as creating a Scanner object to read

from the keyboard.

Random randomGenerator = new Random();

Similarly, just as you created only one Scanner object to read in all of your keyboard

inputs, in general you should create only one Random object to generate all of your

random numbers. In particular, older versions of Java used the computer’s clock to seed

the random number generator. This meant that two Random objects created within the

same millisecond would generate the same sequence of numbers. Newer versions of Java

don’t have this limitation, but normally only one instance of a Random object is needed.

To generate a random integer in the range of all possible integers use:

int r = randomGenerator.nextInt();

To generate a random integer in the range from 0 to n-1 use:

int r = randomGenerator.nextInt(n);

If you want a random number in a different range then you can scale the number by

adding an offset. For example, to generate a random number that is 4, 5, or 6 use:

int r = randomGenerator.nextInt(3) + 4;

This generates a number that is 0, 1, or 2 and then adds 4 to get a number that is 4, 5,

or 6.

To generate a random double use:

double r = randomGenerator.nextDouble();

This returns a number that is greater than or equal to 0.0 but less than 1.0.

Here is a sample program that simulates flipping a coin 5 times, where 0 is tails and 1 is

heads:

import java.util.Random;

public class CoinFlipDemo

{

 public static void main(String[] args)

 {

 Random randomGenerator = new Random();

int coinFlip;

 System.out.print("Flip number 1: ");

 coinFlip = randomGenerator.nextInt(2);

 if (coinFlip == 1)

 System.out.println("Heads");

 else

 System.out.println("Tails");

 System.out.print("Flip number 2: ");

 coinFlip = randomGenerator.nextInt(2);

 if (coinFlip == 1)

 System.out.println("Heads");

 else

 System.out.println("Tails");

 System.out.print("Flip number 3: ");

 coinFlip = randomGenerator.nextInt(2);

 if (coinFlip == 1)

 System.out.println("Heads");

 else

 System.out.println("Tails");

 }

}

Example Problem: Monty Hall Game Show Problem

You are a contestant on a game show and have won a shot at the grand prize. Before you

are three doors. Behind one door is $1,000,000 in cash. Behind the other two doors is the

consolation prize of a box of rice-a-roni. The location of the prizes have been randomly

selected. You want the cash. The game show host asks you to select a door, and you

randomly pick one. However, before revealing the contents behind your door, the game

show host reveals one of the other doors that contains rice-a-roni. At this point, the game

show host asks if you would like to stick with your original choice or switch your choice

to the remaining door. What choice should you make to optimize your chances of

winning the grand prize, or does it matter?

Write a program to play the game show. Allow the user to input 1, 2, or 3 to select a door

and then have the computer generate random numbers to play the game and output what

we win.

