
1

How to Break Software

by James Whittaker

CS 470

Practical Guide to Testing

• Consider the system as a whole and their

interactions

Application Under Test

File System, Operating System

API UI

Human invokes app � App requests memory from OS �

App interfaces with database, API, libraries �

App opens, reads, and closes files

Opening powerpoint : 59 calls to 29 Windows functions upon invocation

2

Testing

• Let’s examine attacks from these perspectives

• User Interface

– Black Box : Inputs and Outputs

– Open Box : Explore stored data, computation and

feature interaction

• System Interface

– File System

– Operating System

Black Box User Interface Attack #1

• Apply inputs that force error messages to occur

– Basic test to ensure that software responds

appropriately to bad input

– Ensures developers wrote code to handle erroneous

input, something that is often not in their mindset

– How to carry out: explore input types, length,

boundary values

– Example: Word 2000. I)nsert, “Index and Tables”,

change “Columns” to five, press enter. Get two error

messages.

3

Attack 1 Example

• On Windows ME, Powerpoint 2000,

inserting MSVSA Button Class Object from

“Insert” menu, “Object” item

Powerpoint found an error that it can’t correct.

You should save presentations, quit,

and then restart Powerpoint.

UI Attack #2

• Apply inputs that force the software to (re)

establish default values

– If software tries to use a variable before it is initialized

to a proper value, the software will fail

– How to carry out: Change default values, enter null

values, enter legit values and switch to null values

– Example: Word 2000, I)nsert, “Index and Tables”,

“Table of Contents”, click “Options” and Enter.

Anything missing?

4

UI Attack #3

• Explore allowable character sets and data
types

– Example, in an input string, try NULL
character or other characters that might be used
as delimiters

– Unix uses ^D as text end-of-file, program might
terminate or behave unpredictably

– In some bugs, shell command strings can be
sent

UI Attack #4

• Overflow input buffers

– Exceeding array or structure size will cause a crash

– How: input long strings or other data beyond “normal”
size

– Example : Word 2000, find/replace. Replace a short
string with one that is 255 characters long. Winword
crash.

• Such bugs are more serious in a server or other
component that could be exploited to run arbitrary
code

5

UI Attack #5

• Find inputs that interact and test combinations of

their values

– Check to see if integration testing has been adequately

performed

– How to carry out: identify candidate processes that are

normally separate, but through some interaction may

share a common data structure

– Example: Word 2000, insert table. Max columns = 63

but Max rows = 32767. App hangs if enter 32000+

rows and 50+ for columns.

UI Attack #6

• Repeat the same input or series of inputs

numerous times

– Applicable when input received within a loop.

May consume resources or cause data

initialization problems.

– Example : memory leak, chunk of allocated

memory not released

6

UI Attack #7

• Force different outputs to be generated for

each input

– This checks if all major behaviors associated

with each input are tested

– How: A single input often causes different

outputs depending on the context

– Example: picking up the phone when someone

else is on the line, vs. idle

UI Attack #8

• Force invalid outputs to be generated

– Similar to attack #7, but focusing on invalid

outputs

– One key ingredient is often input sequencing to

generated the invalid output

– Example: Feb 29, 2001 possible on Windows

NT date/time clock if Feb 29 selected on a valid

date (leap year) then change year to 2001

7

Attack #9

• Force properties of an output to change

– Gives testers a way to think about persistent outputs;

outputs that hang around on the screen or file can be

updated in ways to break the software

– How to conduct: Set properties to one value, then try

changing to something else

– Example: WordArt in Windows 2000. Enter long word

art – too big to fit on the screen. This sets the

width/height properties. Then edit to a single letter.

The width/height properties stay the same.

UI Attack #10

• Force the screen to refresh

– There are often errors with refresh events where

not everything is repainted correctly

– How to conduct: resize, minimize, drag objects

about so they are overlapping

– Example: Equation Editor in Word 2000 has

refresh problems as formulas are added

8

Open Box - UI Attack #11

• Apply inputs using a variety of initial

conditions

– Search for a configuration where internal data

is incompatible with the inputs and input

sequences

• As with all open box attacks, requires

access to the source to design the attack

UI Attack #12

• Force a data structure to store too many or too few
values

– The overflow/boundary check problem for arrays or
data structures

– Even dynamic structures like lists or stacks have upper
bounds

– How to conduct : Read/write beyond size of allocated
array or data structures

– Example : Table in Word with 32767 rows and 50
columns

9

UI Attack #13

• Investigate ways to modify internal data

constraints

– More general form of previous attack; rather than

concentrate on overflowing size, investigate violating

any constraint (e.g. dimension, location on screen, etc.)

– How to conduct: Look for constraints and see if there

are any ways to access ways to violate them

– Example: Powerpoint 2000. Insert table; allows only

25x25 in creation. But then edit the table to insert a

row and column (boom!)

UI Attack #14

• Experiment with invalid operand and operator

combinations

– Verifies that computations do not take place with

incorrect or invalid data, that the software accounts for

more global exception handling

– Ex: divide by zero

– Example: Windows calculator. Take square root of 4

(inverse x2). Then square and subtract 4. Don’t get

zero! (close, though). Windows hides the floating

point format in rounding the number.

10

UI Attack #15

• Force a function to call itself recursively

– Checks if developer correctly handles the termination

case and whether or not an object can interact with

itself

• Can manifest itself as an infinite loop

– How to conduct: Find recursive calls and test if there

are ways to invoke them

– Example: Insert a footnote within a footnote in Word

2000; get weird behavior, should be disabled

UI Attack #16

• Find features that share data or interact poorly

– These are candidates for errors with integration,

especially when we are mixing data types or creating

new data structures

– How to conduct: Look at shared features and ask if the

same inputs can be applied to each feature in question

– Example: Word 2000, resize embedded text box,

picture, word art, or drawing objects that have been

grouped together

11

System Interface Attacks

• First let’s look at attacks through the file system

• Inputs from the file system similar to inputs from
the user

– But often even worse since many apps expect user input
to be weird, but files often expected to be consistent
with some specified format

– Media Based Attacks: Simulate problems with the
storage media, e.g. failure in the disk

– File Based Attacks: Problems with properties of a
particular file

System Attack #1

• Fill the file system to its capacity

– Has the developer tested for this potential

problem?

– A crash would be undesirable when the user

has the chance to free up some space to allow

execution to continue

– How to conduct: Fill file system, try file

operations

12

System Attack #2

• Force the media to be busy or unavailable

– A resource may be unavailable in a multi-

tasking operating system

– Does the app wait, lock, or ?

– Typically we can look at issues such as delayed

response times; may need to put up appropriate

delay error messages

System Attack #3

• Damage the media

– Useful for software that should work despite

damaged media, or software that should at least

detect that there was a problem with the file

– Dust, dirt, scratches, magnetic scrambling

13

System Attack #4

• Assign an invalid file name

– File names often restricted by the file system,

or can exploit common standards used by the

file system (long names, weird characters, etc.)

– Example: Saving a Word file as

startrek;starwars-8.1.2001 is saved, but the

“.doc” extension is not generated and a user

could not double-click to open it

System Attack #5

• Vary file access permissions

– Can uncover subtle bugs if apps might require

most general permissions

– Example: Web server app may not function

properly unless “all” permission set to readable,

but then this might compromise security

14

System Attack #6

• Vary or corrupt file contents

– Simulates data being modified intentionally (perhaps

maliciously) or incidentally (e.g., during transmission).

Many apps may not check for an error code.

– Ex: With Excel, a carefully placed bad block causes

the file to open, but then Excel crashes with a memory

pointer error (Instruction referenced memory at address

08). Should notify user the file is bad.

Operating System Attacks

• Next, let’s look at various attacks through

the operating system (excluding the file

system)

15

System Attack #7

• Exhaust the amount of physical memory

– Does the application handle cases when no

more free memory is available on the heap?

• C/C++ coders: When was the last time you checked

if your “new” call returned null?

– Can also test under varying amounts of memory

or generating other memory faults

System Attack #8

• Inject Network Faults

– Explore network traffic, load on a particular

port, or loss of services (e.g. network is down,

port unavailable)

– Useful to examine performance

– E.g., on versions of IE can lose current page if

network shut down

16

Generating System Faults

• Some of these system faults are difficult to
generate, e.g.

– Out of memory

– Locked memory

– Out of disk space

– CRC errors

• Tools exist to simulate the system software

– Tester can inject faults of choosing

– Ex. Canned HEAT or Holodeck from Florida Institute
of Technology

– Virtual machine, e.g. VM Ware of Virtual Server

Canned Heat 3

17

Conclusions

• Being a tester is like studying for a Ph.D.; the more you
learn, the more you realize there is much more to know

• Testing is not something one can master, always
something new to learn
– But we can learn what kind of tests to perform and what kind of

bugs are common

• Testing often not as glamorous as developing, but requires
lots of creativity and often as much expertise as the
developer to do well
– Can be challenging and also fun to find bugs!

