How to Break Software
by James Whittaker

CS 470

Practical Guide to Testing

* Consider the system as a whole and their
interactions

File System, Operating System

API Ul

Human invokes app = App requests memory from OS -
App interfaces with database, API, libraries >
App opens, reads, and closes files

Opening powerpoint : 59 calls to 29 Windows functions upon invocation

Testing

» Let’s examine attacks from these perspectives

* User Interface
— Black Box : Inputs and Outputs

— Open Box : Explore stored data, computation and
feature interaction

* System Interface
— File System
— Operating System

Black Box User Interface Attack #1

* Apply inputs that force error messages to occur
— Basic test to ensure that software responds
appropriately to bad input
— Ensures developers wrote code to handle erroneous
input, something that is often not in their mindset

— How to carry out: explore input types, length,
boundary values

— Example: Word 2000. Dnsert, “Index and Tables”,
change “Columns” to five, press enter. Get two error
messages.

Attack 1 Example

* On Windows ME, Powerpoint 2000,
inserting MSVSA Button Class Object from
“Insert” menu, “Object” item

UI Attack #2

* Apply inputs that force the software to (re)
establish default values
— If software tries to use a variable before it is initialized
to a proper value, the software will fail

— How to carry out: Change default values, enter null
values, enter legit values and switch to null values

— Example: Word 2000, I)nsert, “Index and Tables”,
“Table of Contents”, click “Options” and Enter.
Anything missing?

UI Attack #3

* Explore allowable character sets and data
types
— Example, in an input string, try NULL
character or other characters that might be used
as delimiters
— Unix uses ~D as text end-of-file, program might
terminate or behave unpredictably

— In some bugs, shell command strings can be
sent

UI Attack #4

* Overflow input buffers
— Exceeding array or structure size will cause a crash
— How: input long strings or other data beyond “normal”
size
— Example : Word 2000, find/replace. Replace a short
string with one that is 255 characters long. Winword
crash.
* Such bugs are more serious in a server or other
component that could be exploited to run arbitrary
code

UI Attack #5

* Find inputs that interact and test combinations of
their values

— Check to see if integration testing has been adequately
performed

— How to carry out: identify candidate processes that are
normally separate, but through some interaction may
share a common data structure

— Example: Word 2000, insert table. Max columns = 63
but Max rows = 32767. App hangs if enter 32000+
rows and 50+ for columns.

UI Attack #6

» Repeat the same input or series of inputs
numerous times
— Applicable when input received within a loop.

May consume resources or cause data
initialization problems.

— Example : memory leak, chunk of allocated
memory not released

UI Attack #7

» Force different outputs to be generated for
each input

— This checks if all major behaviors associated
with each input are tested

— How: A single input often causes different
outputs depending on the context

— Example: picking up the phone when someone
else 1s on the line, vs. idle

UI Attack #8

» Force invalid outputs to be generated

— Similar to attack #7, but focusing on invalid
outputs

— One key ingredient is often input sequencing to
generated the invalid output

— Example: Feb 29, 2001 possible on Windows
NT date/time clock if Feb 29 selected on a valid
date (leap year) then change year to 2001

Attack #9

» Force properties of an output to change

— Gives testers a way to think about persistent outputs;
outputs that hang around on the screen or file can be
updated in ways to break the software

— How to conduct: Set properties to one value, then try
changing to something else

— Example: WordArt in Windows 2000. Enter long word
art — too big to fit on the screen. This sets the
width/height properties. Then edit to a single letter.
The width/height properties stay the same.

UI Attack #10

e Force the screen to refresh
— There are often errors with refresh events where
not everything is repainted correctly

— How to conduct: resize, minimize, drag objects
about so they are overlapping

— Example: Equation Editor in Word 2000 has
refresh problems as formulas are added

Open Box - UI Attack #11

* Apply inputs using a variety of initial
conditions
— Search for a configuration where internal data
is incompatible with the inputs and input
sequences
» As with all open box attacks, requires
access to the source to design the attack

UI Attack #12

» Force a data structure to store too many or too few
values

— The overflow/boundary check problem for arrays or
data structures

— Even dynamic structures like lists or stacks have upper
bounds

— How to conduct : Read/write beyond size of allocated
array or data structures

— Example : Table in Word with 32767 rows and 50
columns

UI Attack #13

» Investigate ways to modify internal data
constraints
— More general form of previous attack; rather than

concentrate on overflowing size, investigate violating
any constraint (e.g. dimension, location on screen, etc.)

— How to conduct: Look for constraints and see if there
are any ways to access ways to violate them

— Example: Powerpoint 2000. Insert table; allows only
25x25 in creation. But then edit the table to insert a
row and column (boom!)

UI Attack #14

* Experiment with invalid operand and operator
combinations

— Verifies that computations do not take place with
incorrect or invalid data, that the software accounts for
more global exception handling

— Ex: divide by zero

— Example: Windows calculator. Take square root of 4
(inverse x?). Then square and subtract 4. Don’t get

zero! (close, though). Windows hides the floating
point format in rounding the number.

UI Attack #15

» Force a function to call itself recursively

— Checks if developer correctly handles the termination
case and whether or not an object can interact with
itself

» Can manifest itself as an infinite loop

— How to conduct: Find recursive calls and test if there
are ways to invoke them

— Example: Insert a footnote within a footnote in Word
2000; get weird behavior, should be disabled

UI Attack #16

* Find features that share data or interact poorly

— These are candidates for errors with integration,
especially when we are mixing data types or creating
new data structures

— How to conduct: Look at shared features and ask if the
same inputs can be applied to each feature in question

— Example: Word 2000, resize embedded text box,
picture, word art, or drawing objects that have been
grouped together

10

System Interface Attacks

 First let’s look at attacks through the file system

* Inputs from the file system similar to inputs from
the user
— But often even worse since many apps expect user input

to be weird, but files often expected to be consistent
with some specified format

— Media Based Attacks: Simulate problems with the
storage media, e.g. failure in the disk

— File Based Attacks: Problems with properties of a
particular file

System Attack #1

* Fill the file system to its capacity

— Has the developer tested for this potential
problem?

— A crash would be undesirable when the user
has the chance to free up some space to allow
execution to continue

— How to conduct: Fill file system, try file
operations

11

System Attack #2

* Force the media to be busy or unavailable
— A resource may be unavailable in a multi-
tasking operating system
— Does the app wait, lock, or ?

— Typically we can look at issues such as delayed
response times; may need to put up appropriate
delay error messages

System Attack #3

* Damage the media

— Useful for software that should work despite
damaged media, or software that should at least
detect that there was a problem with the file

— Dust, dirt, scratches, magnetic scrambling

12

System Attack #4

e Assign an invalid file name

— File names often restricted by the file system,
or can exploit common standards used by the
file system (long names, weird characters, etc.)

— Example: Saving a Word file as
startrek;starwars-8.1.2001 is saved, but the
“.doc” extension is not generated and a user
could not double-click to open it

System Attack #35

* Vary file access permissions

— Can uncover subtle bugs if apps might require
most general permissions

— Example: Web server app may not function
properly unless “all” permission set to readable,
but then this might compromise security

System Attack #6

e Vary or corrupt file contents

— Simulates data being modified intentionally (perhaps
maliciously) or incidentally (e.g., during transmission).
Many apps may not check for an error code.

— Ex: With Excel, a carefully placed bad block causes
the file to open, but then Excel crashes with a memory
pointer error (Instruction referenced memory at address
08). Should notify user the file is bad.

Operating System Attacks

* Next, let’s look at various attacks through
the operating system (excluding the file
system)

14

System Attack #7

e Exhaust the amount of physical memory
— Does the application handle cases when no
more free memory is available on the heap?

e C/C++ coders: When was the last time you checked
if your “new” call returned null?

— Can also test under varying amounts of memory
or generating other memory faults

System Attack #8

* Inject Network Faults

— Explore network traffic, load on a particular
port, or loss of services (e.g. network is down,
port unavailable)

— Useful to examine performance

— E.g., on versions of IE can lose current page if
network shut down

15

Generating System Faults

* Some of these system faults are difficult to
generate, e.g.
— Out of memory
— Locked memory
— Out of disk space
— CRC errors
* Tools exist to simulate the system software

— Tester can inject faults of choosing

— Ex. Canned HEAT or Holodeck from Florida Institute
of Technology

— Virtual machine, e.g. VM Ware of Virtual Server

Canned Heat 3

Application

tanitor Metwork

rMemany

Memory
Application Max allowed: 102 —
location Used: OF ey Eemice

Free: 1024ME

Soenari Scenari Scenari

Marmally Contri¥ || Menually Contr¥

Application
parameters Manual Con

Disk Spa
Max allowed: 102« e

Open an Exerutable | || sed: o
F: 1 1024MB B B
_eenaproess ||| o e

Manual Con Manual Con
Max space: 1024ME || Max wewmory:)24ME

Jome rozamw | | dome 10zamm o]

Run [Discannect

[Hetwork nat installed || ([tnsufficient diskspace ||| Insufficient memary
_ teminae | [wrong Winsack versidlf | CRC Errers [Fail to allocate

[winsock task limit reaq | | Tao many files open [Lock Memary

It ports available [verite pratect disk.

[Hetwork is down [o disk in drive

16

Conclusions

* Being a tester is like studying for a Ph.D.; the more you
learn, the more you realize there is much more to know
* Testing is not something one can master, always
something new to learn
— But we can learn what kind of tests to perform and what kind of
bugs are common
* Testing often not as glamorous as developing, but requires
lots of creativity and often as much expertise as the
developer to do well
— Can be challenging and also fun to find bugs!

17

