
1

19 Deadly Sins of Software
Security

M. Howard, D. LeBlanc, J. Viega

Security Defects

• We live in an age with constant threat of
security breaches
– Holes in web software

– Flaws in server software

• Security defects very easy to make
– Blaster worm defect only two lines long

– One line error can be catastrophic

• Here we look at 19 common security
defects (sins of security)

2

Sin 1 : Buffer Overruns

• You’ve heard this one many times/

• Occurs when a program allows input to
write beyond the end of the allocated
buffer

– Program might crash or allow attacker to gain
control

– Still possible in languages like C#, Java since
they use libraries written in C/C++ but more
unlikely

Buffer Overflow Example

void DontDoThis(char *input)
{

char buf[16];
strcpy(buf, input);
printf(“%s\n”, buf);

}

int main(int argc, char *argv[])
{

DontDoThis(argv[1]);
return 0;

}

3

Buffer Overflow

• Here’s what caused the Morris finger worm
char buf[20];

gets(buf);

• What about this?

bool CopyStructs(InputFile *pInFile, unsigned long count)
{

unsigned long i;
m_pStructs = new Structs[count];
for (i=0; i<count; i++)
{

if (!ReadFromFile(pInFile, &(m_pStructs[i])))
break;

}
}

Buffer Overflow

• Or this?

#define MAX_BUF 256

void BadCode(char *input)
{

short len;
char buf[MAX_BUF];

len = strlen(input);

if (len < MAX_BUF)
strcpy(buf, input);

}

4

Buffer Overflow

• Or this?

#define MAX_BUF 256

void BadCode(char *input)
{

short len;
char buf[MAX_BUF];

len = strlen(input);

if (len < MAX_BUF)
strcpy(buf, input);

}

If a short is 2 bytes and
input > 32767, then len becomes
a negative number

If input is not null-terminated/

Slightly better: Use size_t
to define size for MAX_BUF and len

Spotting Buffer Overflows

• Look for input read from the network, a
file, the user interface, or the command
line

• Transfer of data from input to internal
structures

• Use of unsafe string handling calls

• Use of arithmetic to calculate an allocation
size or remaining buffer size

5

Buffer Overrun Examples

• CVE = Common Vulnerabilities and Exposures List

• CVE-2008-0778

– Multiple stack-based buffer overflows in an ActiveX control in
QTPlugin.ocx for Apple QuickTime 7.4.1 and earlier allow
remote attackers to cause a denial of service (crash) and
possibly execute arbitrary code via long arguments to the (1)
SetBgColor, (2) SetHREF, (3) SetMovieName, (4) SetTarget,
and (5) SetMatrix methods.

• CVE-2003-0352

– Buffer overflow in a DCOM interface for RPC in Windows /
allows remote attackers to execute arbitrary code via a
malformed message, as exploited by
Blaster/MSblast/LovSAN/Nachi/Welcia worms

Buffer Overflow Redemption

• Replace dangerous string handling calls
with safe ones

– C++ STL String Library considered safe

– Check loops and array accesses

– Replace static arrays with STL Containers

6

Sin 2 : Format String Problems

• A C/C++ type of problem

• First mentioned June 23, 2000

• Pretty simple, what could go wrong?

void main(int argc, char * argv[])
{

printf(argv[1]);
}

Format String

• What if the program is invoked as :

bug.exe “%x %x”

• Output something like:

12FFC0 4011E5
The %x specifier reads the stack
4 bytes at a time and outputs them

Leaks important info to the attacker

7

Format String

• Another obscure format string: %n

unsigned int bytes;

printf(“%s%n\n”, argv[1], &bytes);

printf(“Input is %d characters long.\n”, bytes);

Usage:

bug.exe “Hello“

Hello

Input is 5 characters long

The %n specifier writes
4 bytes at a time based on the length
of the previous argument

Carefully crafted, allows an attacker
to place own data into the stack

Examples

• CVE-2000-0573
– The lreply function in wu-ftpd 2.6.0 and earlier does
not properly cleanse an untrusted format string, which
allows remote attackers to execute arbitrary
commands.

– “Providing *remote* root since 1994”

• CVE-2007-4708 TA07-352A
– Format string vulnerability in Address Book in Apple
Mac OS X 10.4.11 allows remote attackers to execute
arbitrary code via the URL handler.

8

Redemption

• printf(“%s”, user_input);

• Or filter user input for dangerous
characters

Sin 3 : Integer Overflows

• When an unsigned integer gets too big for the
number of bits allocated, it overflows back to 0

– For signed integers, positive numbers suddenly
become negative numbers

• “Obvious” errors where integers are
multiplied/added/etc. and overflow

– Result can be very bad and unpredictable behavior if
relational operators suddenly behave the opposite of
how they are supposed to

• Also many less obvious errors

9

Casting

• Implicit type casting is a frequent cause of
integer overflows

• Most languages require the same types to
be compared so an up-cast is done

const long MAX_LEN = 0x7FFF;

short len = strlen(input);

if (len < MAX_LEN)

{

// Do stuff

}

If a short is 2 bytes and
input > 32767, then len becomes
a negative number

Casting

• Signed int to Larger signed int

– Smaller value is sign-extended

• 0x7F to an int becomes 0x0000007F

• 0x80 to an int becomes 0xFFFFFF80

• Signed int to Larger unsigned int

– Positive numbers behave as expected

– Negatives unexpected

• (char) -1 becomes 0xFFFFFFFFF or
4,294,967,295

10

Overflow Problem

• Problem here to detect whether two
unsigned 16-bit numbers would overflow
when added?

bool IsValidAddition(unsigned short x, unsigned short y)

{

if (x + y < x)

return false;

return true;

}

Overflow Problem in C#?

• Following code throws a compiler error,
how would you fix it?

byte a, b;

a = 255;

b = 1;

byte c = (a + b);

ERROR: Cannot implicitly convert type ‘int’ to ‘byte’

11

Examples

• CVE-2008-0726

– Integer overflow in Adobe Reader and Acrobat 8.1.1
and earlier allows remote attackers to execute
arbitrary code via crafted arguments to the
printSepsWithParams, which triggers memory
corruption.

• CVE-2007-6261

– Integer overflow in the load_threadstack function in the Mach-O
loader (mach_loader.c) in the xnu kernel in Apple Mac OS X
10.4 through 10.5.1 allows local users to cause a denial of
service (infinite loop) via a crafted Mach-O binary.

Spotting the Overflow Sin

• Anything doing arithmetic

• Especially if input provided by the user

• Focus especially on array index calculations

• Redemption

– Use size_t type in C/C++

– Use unsigned integers if appropriate, easier to verify

– Avoid “clever” code in favor of straightforward code

12

Sin 4 : SQL Injection

• How do bad guys get credit card numbers
from sites?

– Break into server using exploit like buffer
overrun

– Go through open port with sysadmin
password

– Social engineering

– SQL injection attacks

SQL Injection Example

• PHP code

$id = $_REQUEST[“id”];

$pass = $_REQUEST[“password”];

$qry = “SELECT ccnum FROM cust WHERE id = $id AND pass=$pass”;

13

SQL Injection Example

• PHP code

$id = $_REQUEST[“id”];

$pass = $_REQUEST[“password”];

$qry = “SELECT ccnum FROM cust WHERE id = ‘$id’ AND
pass=‘$pass’”;

User inputs id of user to attack
For password, enters: ‘ OR 1=1 –

-- is the comment operator, to ignore whatever comes afterwards

Another:

Password:’ OR ‘’=‘

Spotting the Sin

• Takes user input

• Does not check user input for validity

• Uses user input data to query a database

• Uses string concatenation or string
replacement to build the SQL query or
uses the SQL Exec command

14

Examples

• CAN-2004-0348

– SQL injection vulnerability in viewCart.asp in
SpiderSales shopping cart software allows
remote attackers to execute arbitrary SQL via
the userID parameter

• CVE-2008-0682

– SQL injection vulnerability in wordspew-
rss.php in the Wordspew plugin for
Wordpress allows remote attackers to
execute arbitrary SQL commands via the id
parameter.

Redemption
• Filter any unallowable characters like ‘ or “”

– mysql_real_escape_string($var)

• Never use string concatenation to build SQL
statements
– Use stored procedures with parameters

– C#:
cmd = new SqlCommand(queryName, sqlConn);

cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(“@ID”,Id);

– PHP 5.0:
mysqli_stmt_bind_param($stmt, “s”, $id);

mysqli_stmt_execute($stmt);

Default in PHP for GET/POST is to add slashes

15

Sin 5 : Command Injection

• In 1994, one could get a root shell on an SGI
computer running IRIX by sending the following
to a printer:

FRED; xterm&

• Code:

char buf[1024];

snprintf(buf, “system lpr –P %s”, user_input, sizeof(buf) -1);

system(buf);

Spotting the Sin

• Look for calls to system(), exec()

• Java too:

– Class.forName(String name);

• Dynamically load and run Java code

– Runtime.exec()

• Redemption

– Check the data to make sure it is ok

16

Sin 6 : Failing to Handle Errors

• We’ve already said (or will say) a fair bit
about mishandling errors and how
try/catch can be misused from the Code
Complete book

Sin 7 : Cross Site Scripting

• Somewhat misnamed, as crossing sites is
not always necessary to exploit this bug

• Sin is straightforward:

– Web app takes input from a user

– Input is stored or echoed back to the user

– That’s it

17

PHP Example
<?php

if($_SERVER['REQUEST_METHOD'] != "POST")
{

header("Content-Type: text/html");
print("<HTML><HEAD><TITLE>My Page</TITLE>");
print("</HEAD>");
print("<BODY>");
print("<FORM method=post action='cssSin.php'>");
print("Enter your comment.<p>");
print("<INPUT type=text name='comment'>");
print("<INPUT type=submit value='Submit'>");
print("</FORM>");

print("<HR>");
print("Here is the comment log:<p>");

PHP Example

$f = fopen("c:\\comments.txt","r");
print("");
while (!feof($f))
{

$line = fgets($f,2000);
print("" . $line . "");

}
fclose($f);
print("");

}
else {

$comment = $_REQUEST['comment'];

$f = fopen("c:\\comments.txt", "a");
fprintf($f, "\n" . $comment);
fclose($f);

print("Thank you, your comment has been saved.");
}

?>

18

CSS Problem

• Malicious user can inject script code that is then
executed when another user views that page

• Even if the input is merely echoed, a malicious
user might:

– Lure victim to their page

– Get victim to click on a link which refers victim to the
vulnerable site with the CSS bug

– Script code is run under domain of the server and
could get cookies or modify any elements of the DOM
like tweak all links to point to porn sites

Spotting the Sin

• The web app takes input from a header,
form, or query string

• App does not check the input for validity

• App echoes back data from a user into the
browser

• Redemption
– Restrict input to valid input only

– HTML encode the output ; < > etc.

19

Sin 8 : Failing to Protect Network
Traffic

• Mostly skipping

• Network vulnerable to

– Eavesdropping

– Replay

– Spoofing

– Tampering

– Hijacking

• Use SSL / TLS for session security

Sin 9 : Magic URLs and Hidden
Form Fields

• Magic URLs:

– http://www.xyz.com/?val=1&q=foo&user=n58

– http://www.xyz.com/?id=TKSJDARJ$J14$J==

• Hidden Form Fields to pass variables

<form action = “ /”

<input type=text name=“product”>

<input type=hidden name=“price” value=“300”>

</form>

20

Redemption

• Use SSL or store data on server side

• Session variables, encrypted

Sin 10 : Improper Use of SSL and
Transport Layer Security

• If server authentication not done properly,
attacker can eavesdrop or modify
conversations

– Especially vulnerable when key associated
with certificate

• Feeling that site is impenetrable simply
because it uses SSL

– Still can have overflow, SQL injection, etc/

21

Sin 11 : Use of Weak Passwords

• People hate passwords, it is a battle to
force people to use strong passwords

• Consider password content policy

– Length, characters, reset frequency/

– Password storage?

• Storage in the clear is bad; use hash+salt

– How to recover a lost password?

• Paris Hilton T-Mobile Sidekick phone hijack

• Broke into server side by getting username and
asking for a password reset

– Challenge question: “What is the name of your favorite
pet?”

Guidelines for Password Resets

• Locking users out of accounts for too many bad
password attempts may result in DoS

• Recommendations
– Limit number of attempts to reasonable number like
20/hour

– Slow down authentication process after certain
number of bad attempts

– Make users provide multiple pieces of information to
reset a password, might require “thing they have” like
a ID card

– Use more obscure questions

22

Tenex Bug

• TENEX Operating System pseudocode to
validate:

For i = 0 to len(typed_password)
if i >= len(actual_password) fail;
if typed_password[i] != actual_password[i] fail;

if i < len(actual_password) fail;
Success;

Flaw: Attacker could put candidate password in memory overlapping
page boundaries. First letter on one page, second letter on the next, if the
first letter was correct there was a pause while the page for the second letter
loaded

Sin 12 : Failing to Store and Protect
Data Securely

• Unix: tendency to give permissions to all

• Windows: Access Control Lists can be mind
boggling as which objects to consider what can
be controlled

– Don’t take the easy way out and give out too many
permissions

• Don’t embed secret data in code

– E.g. passwords

– Use DPAPI or KeyChain or at least store passwords
somewhere not hard-coded in the app

23

Examples

• Diebold voting machine

– Diebold's default password identification number for
microchip-embedded "smartcards“ used by voting
administrators was “1111”

– California source code review found hard-coded
passwords of “diebold” and “12345678”

• CAN-2004-0391

– A default username/password pair is present in all
releases of the Cisco Wireless Lan Solution Engine.
A user that logs in using this username has complete
control of the device. This username cannot be
disabled. There is no workaround.

Sin 13 : Information Leakage

• Attacker gets information, implicitly or
explicitly, that could provide more
information for the attacker to reach their
goal

• Examples:

– Name of server software, versions

– Debugging information (e.g. left on in PHP)

– Error messages that reveal code structure

24

Sin 14: Improper File Access

• Watch out for race conditions among accessing
files

– Perl:

#!/usr/bin/perl

my $file = “$ENV{HOME}/.config”;

read_config($file) if –r $file;

Between the file check and read, the file may disappear
if there are multiple processes handling this file

• Manipulation of pathnames to overwrite
important files

Sample Bug

• CVE-2004-0115

– Microsoft Virtual PC for Macintosh

• The VirtualPC Services for Mac 6.0 and 6.1
allowed local attackers to truncate and overwrite
arbitrary files, and potentially execute arbitrary
code via a symlink attack on the
/tmp/VPCServices_Log temporary file. The code
blindly opens a temporary file named
/tmp/VPCServices_Log regardless of whether the
file is real or a symlink. If this symlink points to
another file, that file is clobbered.

25

Redemption

• Keep all files in a place attackers can’t
control

• Resolve the path to the file, following
symbolic links

• If opening a temp file in a public directory,
add on random numbers, base64 encode
it

Sin 15 : Trusting Network Name
Resolution

• Not too difficult to have an unsecure name
server, e.g. might use WINS

• Skipping

• Might ensure connections running over
SSL

26

Sin 16 : Race Conditions

• Common bug in multi-threaded applications, which
includes web apps

• Actual bug from a DB web application, sometimes the
queries were UPDATE to a shared field

try
{

sqlComm.sqlConn.Open();
comm.ExecuteNonQuery();
sqlComm.sqlConn.Close();

}
catch(Exception f)
{

sqlComm.sqlConn.Close();
}

Sin 16 : Race Conditions

• Lock access to any query for mutual
exclusion

lock(sqlComm.sqlConn)
{

try
{

sqlComm.sqlConn.Open();
comm.ExecuteNonQuery();
sqlComm.sqlConn.Close();

}
catch(Exception f)
{

sqlComm.sqlConn.Close();
}

}

27

Spotting the Sin

• Multiple threads or processes that write to
the same source

• Creating files or directories in common
areas

• Signal handlers

Sin 17 : Unauthenticated Key
Exchange

• Skipping this one

28

Sin 18 : Cryptographically Strong
Random Numbers

• Seeds for pseudo-random number
generators may not be that difficult to
regenerate, then use to test a sequence of
random values and determine what the
next “random” number will be

• Can try true random number generators

– Mouse, keyboard, Random.org, etc.

Sin 19 : Poor Usability

• We will cover plenty about this one ☺

• Poor usability can also mean poor security

– Always clicking “OK” when given lots of
dialogs

– Cryptic error or status messages

29

CWE/Sans Top 25 Most
Dangerous Programming

Errors
Jan 2009

Top 25 Errors

• The Common Weakness Enumeration (CWE)
is a formal list of software weakness types
and is sponsored by the US Department of
Homeland Security's National Cyber Security
Division

• The SANS (SysAdmin, Audit, Network,
Security) Institute was established in 1989 as
a cooperative research and education
organization

• Source: http://www.sans.org/top25errors/

30

Contributors

• Robert C. Seacord, CERT
• Pascal Meunier, CERIAS, Purdue University
• Matt Bishop, University of California, Davis
• Kenneth van Wyk, KRvW Associates
• Masato Terada, Information-Technology

Promotion Agency (IPA), (Japan)
• Sean Barnum, Cigital, Inc.
• Mahesh Saptarshi and Cassio Goldschmidt,

Symantec Corporation
• Adam Hahn, MITRE
• Jeff Williams, Aspect Security
• Carsten Eiram, Secunia
• Josh Drake, iDefense Labs at VeriSign, Inc.
• Chuck Willis, MANDIANT
• Michael Howard, Microsoft
• Bruce Lowenthal, Oracle Corporation
• Mark J. Cox, Red Hat Inc.
• Jacob West, Fortify Software
• Djenana Campara, Hatha Systems
• James Walden, Northern Kentucky

University

• Frank Kim, ThinkSec

• Chris Eng and Chris Wysopal, Veracode,
Inc.

• Ryan Barnett, Breach Security

• Antonio Fontes, New Access SA,
(Switzerland)

• Mark Fioravanti II, Missing Link Security
Inc.

• Ketan Vyas, Tata Consultancy Services
(TCS)

• Lindsey Cheng, Ian Peters and Tom
Burgess, Secured Sciences Group, LLC

• Hardik Parekh and Matthew Coles, RSA -
Security Division of EMC Corporation
Mouse

• Ivan Ristic Apple Product Security

• Software Assurance Forum for Excellence in
Code (SAFECode)

• Core Security Technologies Inc.

• Depository Trust & Clearing Corporation
(DTCC)

Kudos

• National Security Agency's Information Assurance
Directorate
– "The publication of a list of programming errors that enable

cyber espionage and cyber crime is an important first step
in managing the vulnerability of our networks and
technology. There needs to be a move away from reacting
to thousands of individual vulnerabilities, and to focus
instead on a relatively small number of software flaws that
allow vulnerabilities to occur, each with a general root
cause. Such a list allows the targeting of improvements in
software development practices, tools, and requirements
to manage these problems earlier in the life cycle, where
they can be solved on a large scale and cost-effectively.“

– Tony Sager, National Security Agency's Information
Assurance Directorate

31

Kudos

• Microsoft:
– "The 2009 CWE/SANS Top 25 Programming Errors

project is a great resource to help software developers
identify which security vulnerabilities are the most
important to understand, prevent and fix.“

– Michael Howard, Principal Security Program Manager,
Security Development Lifecycle Team, Microsoft Corp.

• Symantec:
– "The 2009 CWE/SANS Top 25 Programming Errors

reflects the kinds of issues we've seen in application
software and helps provide us with actionable direction to
continuously improve the security of our software."

– - Wesley H. Higaki, Director, Software Assurance, Office of
the CTO, Symantec Corporation

Insecure Interaction Among
Components

• CWE-20: Improper Input Validation
– It's the number one killer of healthy software, so you're just

asking for trouble if you don't ensure that your input
conforms to expectations/

• CWE-116: Improper Encoding or Escaping of Output
– Computers have a strange habit of doing what you say,

not what you mean. Insufficient output encoding is the
often-ignored sibling to poor input validation, but it is at the
root of most injection-based attacks, which are all the rage
these days...

• CWE-89: Failure to Preserve SQL Query Structure
(aka 'SQL Injection')
– If attackers can influence the SQL that you use to

communicate with your database, then they can...

32

Insecure Interaction Among
Components

• CWE-79: Failure to Preserve Web Page Structure (aka
'Cross-site Scripting')
– Cross-site scripting (XSS) is one of the most prevalent,

obstinate, and dangerous vulnerabilities in web applications...If
you're not careful, attackers can...

• CWE-78: Failure to Preserve OS Command Structure (aka
'OS Command Injection')
– When you invoke another program on the operating system, but

you allow untrusted inputs to be fed into the command string that
you generate for executing the program, then you are inviting
attackers...

• CWE-319: Cleartext Transmission of Sensitive Information
– If your software sends sensitive information across a network,

such as private data or authentication credentials, that
information crosses many...

Insecure Interaction Among
Components

• CWE-352: Cross-Site Request Forgery (CSRF)
– With cross-site request forgery, the attacker gets the victim to

activate a request that goes to your site. Thanks to scripting and
the way the web works in general, the user might not even be
aware that the request is being sent. But once the request gets
to your server, it looks as if it came from the user, not the
attacker.

• CWE-362: Race Condition
– Attackers will consciously look to exploit race conditions to cause

chaos or get your application to cough up something valuable...

• CWE-209: Error Message Information Leak
– If you use chatty error messages, then they could disclose

secrets to any attacker who dares to misuse your software. The
secrets could cover a wide range of valuable data...

33

Risky Resource Management

• CWE-119: Failure to Constrain Operations within
the Bounds of a Memory Buffer
– Buffer overflows are Mother Nature's little reminder of
that law of physics that says if you try to put more
stuff into a container than it can hold, you're...

• CWE-642: External Control of Critical State Data
– There are many ways to store user state data without
the overhead of a database. Unfortunately, if you
store that data in a place where an attacker can
access it...

• CWE-73: External Control of File Name or Path
– When you use an outsider's input while constructing a
filename, you're taking a chance. If you're not careful,
an attacker could...

Risky Resource Management

• CWE-426: Untrusted Search Path
– If a resource search path (e.g. path to JAR file) is under

attacker control, then the attacker can modify it to point to
resources of the attacker's choosing. This causes the
software to access the wrong resources at the wrong
time...

• CWE-94: Failure to Control Generation of Code (aka
'Code Injection')
– For ease of development, sometimes you can't beat using

a couple lines of code to employ lots of functionality. It's
even cooler when the code is executed dynamically/

• CWE-494: Download of Code Without Integrity Check
– You don't need to be a guru to realize that if you download

code and execute it, you're trusting that the source of that
code isn't malicious. But attackers can perform all sorts of
tricks...

34

Risky Resource Management

• CWE-404: Improper Resource Shutdown or
Release
– When your precious system resources (e.g. allocated
memory) have reached their end-of-life, you need to
dispose of them correctly/

• CWE-665: Improper Initialization
– Just as you should start your day with a healthy
breakfast, proper initialization helps to ensure your
attacker doesn’t initialize your data for you/

• CWE-682: Incorrect Calculation
– When attackers have some control over the inputs
that are used in numeric calculations, this weakness
can lead to vulnerabilities. It could cause you to make
incorrect security decisions. It might cause you to...

Porous Defenses

• CWE-285: Improper Access Control
(Authorization)
– If you don't ensure that your software's users are only
doing what they're allowed to, then attackers will try to
exploit your improper authorization and...

• CWE-327: Use of a Broken or Risky Cryptographic
Algorithm
– You may be tempted to develop your own encryption
scheme in the hopes of making it difficult for attackers
to crack. This kind of grow-your-own cryptography is
a welcome sight to attackers...

• CWE-259: Hard-Coded Password
– Hard-coding a secret account and password into your
software's authentication module is...

35

Porous Defenses

• CWE-732: Insecure Permission
Assignment for Critical Resource
– If you have critical programs, data stores, or
configuration files with permissions that make
your resources accessible to the world - well,
that's just what they'll become...

• CWE-330: Use of Insufficiently Random
Values
– If you use security features that require good
randomness, but you don't provide it, then
you'll have attackers laughing all the way to
the bank...

Porous Defenses

• CWE-250: Execution with Unnecessary Privileges
– Spider Man, the well-known comic superhero, lives by
the motto "With great power comes great
responsibility." Your software may need special
privileges to perform certain operations, but wielding
those privileges longer than necessary can be
extremely risky...

• CWE-602: Client-Side Enforcement of Server-Side
Security
– Remember that underneath that fancy GUI, it's just
code. Attackers can reverse engineer your client and
write their own custom clients that leave out certain
inconvenient features like all those pesky security
controls...

