
1

Routines and Defensive

Programming

Chapter 7-8

McConnell

Identify two things that are bad
void MyClass::HandleStuff(CORP_DATA &inputRec, int crntQtr, EMP_DATA empRec,

double &estimRevenue, COLOR_TYPE &prevColor, int expenseType)

{

int i;

for (i=0; i<100; i++) {

inputRec.revenue[i] = 0;

inputRec.expense[i] = corpExpense[crntQtr][i];

}

UpdateCorpDatabase(empRec);

estimRevenue = ytdRevenue * 4.0 / (double) crntQtr;

newColor = prevColor;

status = SUCCESS;

if (expenseType==1) {

for (i=0; i<12; i++) profit[i] = revenue[i] – expense.type1[i];

}

else if (expenseType==2) {

profit[i]=revenue[i] – expense.type2[i];

}

}

2

Subroutines

• Perhaps the single greatest invention in
Computer Science Programming

• “OK, I know routines are great and use them all
the timeEso what?”
– Point is to understand that many valid reasons exist
to make a routine and there are right and wrong ways
to go about it

– E.g. In CS A201 you might have been told that
subroutines are used to share code and avoid
duplication, period.
• Better explanationE

Valid Reasons to Create Routines

• Reduce complexity

– Single most important reason

– Hide information so that you don’t have to

think about it

– Improves maintainability, correctness

– Indicator: deep nesting of loops or

conditionals

3

Valid Reasons to Create Routines

• Introduce an intermediate, understandable

abstraction

if (node != NULL) {

while (node.next != NULL) {

node = node.next;

leafName = node.name;

}

else {

leafName = “”;

}

OR

leafName = getLeafName(node) // Self-documenting!

Valid Reasons to Create Routines

• Avoid duplicate code

• Support subclassing

• Hide sequences

– Good idea to hide the order in which events happen

to be processed

– E.g. in Pop stack and decrement stack top

• Hide pointer operations

• Improve portability

• Improve performance

– Easier to profile to find inefficiencies

4

Valid Reasons to Create Routines

• Simplify complicated boolean tests

– Put complex boolean tests into subroutine, rarely

need detail for understanding program flow

• Details of test are out of the way

• Descriptive function name summarizes purpose

– Example with a bug:

do

{

// Code here E.

System.out.println(“Enter ‘A’ for option A, ‘B’ for option B”);

s = keyboard.next();

c = s.charAt(0);

} while ((c != ‘A’) || (c != ‘B’));

Easier to Read

do

{

// Code here E.

System.out.println(“Enter ‘A’ for option A, ‘B’ for option B”);

s = keyboard.next();

c = s.charAt(0);

} while (!validKey(c));

bool validKey(char c)

{

if (c == ‘A’) return true;

if (c == ‘B’) return true;

return false;

}

5

Small Routines?

• Even a single line of code can be a valid
subroutine
– points = deviceUnits * (POINTS_PER_INCH /
DeviceUnitsPerInch());

• Can turn into a inline function:
– Function DeviceUnitsToPoints(deviceUnits Integer) :
Integer

DeviceUnitsToPoints = deviceUnits * (POINTS_PER_INCH /
DeviceUnitsPerInch())

• More readable to use:
– points = DeviceUnitsToPoints(deviceUnits)

More robust to maintenance

• One liner expanded to

Function DeviceUnitsToPoints(deviceUnits Integer) : Integer

if (DeviceUnitsPerInch() != 0)

DeviceUnitsToPoints = deviceUnits *

(POINTS_PER_INCH / DeviceUnitsPerInch())

else

DeviceUnitsToPoints = 0

End If

End Function

If original line of code still in dozens of places, the test would be repeated many

times...

6

Cohesion

• Read in text, but skipping (cover in 401)

Good Routine Names

• Describe everything the routine does
– If this results in a ridiculously long silly name then
your routine is probably doing too much
• ComputeReportTotalsAndOpenOutputFile

• Avoid wishy-washy verbs
– HandleCalculation, PerformService, ProcessInput,
DoOutput

– Either your name is bad or if it is appropriate then
your subroutine is doing too many vague things

• Don’t differentiate routines solely by number
– Part1, Part2, Part3E

7

Good Routine Names

• Make names as long as necessary
– Optimum length for a variable 9-15 chars

– Routines more complex, so longer OK

• To name a function, use a description of the return value
– Printer.IsReady()

– Pen.CurrentColor()

– Customer.NextID()

• To name a procedure (void method), use a strong verb
followed by an object
– PrintDocument()

– CalcMonthlyRevenues()

– Object not necessary in an OOP language since the object
automatically tells you what the object is
• Mydocument.Print()

Good Routine Names

• Use opposites precisely

– Add/remove

– Increment/decrement

– Begin/end

• Establish conventions for common

operations

– E.g. if each object has a unique identifier, give

a common id() method

8

How Long?

• Routine size inversely correlated with errors, as the size increased (up
to 200 lines) the number of errors per line decreased
– Basili and Perricone 1984

• Routine size not correlated with errors, although complexity/data were
– Shen 1985

• Routines < 32 lines of code not correlated with lower cost or fault
– Card/Church/Agresti 1986

• Small routines had 23 percent more errors per line of code than larger
routines but were 2.4 times less expensive to fix
– Selby and Basili 1991

• Most error prone routines were larger than 500 lines of code
– Jones 1986

• Issues like cohesion, complexity more important than size, but
probably no more than 200 lines

Parameters

• Put parameters in input-modify-output

order

– Instead of random or alphabetical

– Use in/out keywords if language supports it

– Can define yourself in some languages

#define IN

#define OUT

void Invertmatrix(

IN StringCase desiredCase,

IN OUT Sentence *sentenceToEdit)

);

Disadvantages?

9

Parameters

• Use all the parameters

• Put status or error variables last

– Common convention, incidental to main

purpose of the routine and output only

• Don’t use parameters as working variables

int Sample(int inputVal) {

inputVal += CurrentFactor(inputVal);

inputVal *= Multiplier(inputVal);

E

return inputVal;

}

Can use const keyword in C++

Parameters

• Document interface assumptions about

parameters

– Units, input only, range of expected values,

etc.

• Limit the number of a routine’s parameters

to about seven

– Magic number for people’s comprehension

– Could use composite data type to pass more

10

Pass Objects or Primitives?

• Given a class Foo:

– Exposes data through ten accessors

– GetA(), GetB(), GetC() E GetJ()

• Yes, bad names, but only for purposes of the exercise ☺

• If you are writing a method “FooCalc” in another

object that requires access to A, B, and C from

Foo, how would you design this method?

– FooCalc(ValA, ValB, ValC) ?

– FooCalc(Foo obj) ?

Functions vs. Procedures

• A common practice is to have a function

operate as a procedure and return a status

value

If (FormatOutput(data) == SUCCESS) thenE

• Alternative

FormatOutput(data, outputStatus)

If (outputStatus == SUCCESS) thenE

• Which is better?

11

Defensive Programming

• What is it?

Exercise

• How would you handle the error scenario

where too many items were added to the

array?

public void AddItem(int num, String name)

{

// Say that data Array’s size is 100

dataArray[numItems++] = new Item(num, name);

}

12

Defensive Programming

• Protect yourself from the cold cruel world of
– Invalid data passed to routines

– Events that can “never” happen

– Bad code written by some other programmer

• Invalid Input – Handling Garbage In
– Check the values of all data from external sources

• Numeric values within tolerance

• Strings short enough to handle

• Strings are valid (e.g. injected SQL)

– Check the values of all routine input parameters

– Decide how to handle bad inputs

Assertions

• Assertions are small lines of code that can be used to

check if everything is operating as expected

– otherwise an error results and the program terminates

– For errors that should never occur in the code

• Assertion takes an input that’s supposed to be true, and

a message to display if it isn’t

– assert (denominator != 0) : “Denominator not zero”

• Use to document assumptions made in code and flush

out error conditions

13

Sample Assert Usage Scenarios

• Input value of a parameter in proper range

• File or stream open/closed

• Value of an input only variable not changed

• Pointer is not null

• Array contains expected number of elements

• Container is empty/full

• Verify preconditions and postconditions

• Results from an optimized routine match the slower but
clearly written routine

• For real-world programs, both assertions and error-
handling code might be used to address the same error

Assert Example (C++)

// Approximates the square root of n using Newton's Iteration.
// Precondition: n is positive, num_iterations is positive
// Postcondition: returns the square root of n
double newton_sqroot(double n, int num_iterations)
{

double answer = 1;
int i = 0;
assert((n > 0) && (num_iterations > 0));
while (i < num_iterations)
{

answer = 0.5 * (answer + n / answer);
i++;

}
return answer;

}

14

Handling Expected Errors

• Return a neutral value

– Might continue operating but return a neutral value

known to be harmless

• Empty string, 0, etc.

• Substitute next piece of valid data

– Typically when processing a stream, e.g. reading

from a file or sampling data

• Return the same answer as the previous time

– E.g. temperature reading software sampling

• Substitute the closest legal value

Handling Expected Errors

• Log a warning message to a file

• Return an error code

• Set a status variable

• Problems associated with these?

• Call a centralized error processing routine

– Hard to reuse though in other programs

• Display an error message

• Shut down

15

Throwing Exceptions

• throw

– Error happened, someone else deal with it

• try-catch-finally

– Main problem is exceptions may not be

caught properly, or just everything caught

catch (Exception e)

– Behavior varies among languages if not

caught (nothing or terminates)

Exceptions

• Use exceptions to notify other parts of the
program about errors that should not be ignored
– Strength of exceptions is they are un-ignorable; if you
want the possibility to ignore then use status codes

• Throw an exception only for conditions that are
truly exceptional
– Tradeoff for complexity and exception strength;
exceptions weaken encapsulation by require calling
code to know which exceptions might be thrown

• Don’t use an exception to pass the buck
– If can handle it locally, do it

16

Exceptions

• Avoid throwing exceptions in constructors and

destructors

– Usually not caught anywhere

• Throw exceptions at the right level of abstraction

– Routine should present a consistent abstraction in its

interface and so should a class

class Employee {

E

public TaxId GetTaxId() throws EOFException {

E

}

}

Exceptions

• Avoid empty catch blocks

• Better:

try {

E

} catch (Exception e) {

}

try {

E

} catch (Exception e) {

LogError(“Unexpected exception ” + e.toString());

}

What does this say about the

code throwing the exception?

17

Consider alternatives to exceptions

• Some programmers just use exceptions because
that is what the language supports for errors

• Always consider the full set of error handling
alternatives
– Handling the error locally

– Propagation the error with an error code

– Logging debug information to a file

– Shutdown

– Ignore

– Sometimes the best response to a serious run-time
error is to release all acquired resources and abort. Let
the user rerun the program with proper input.
• Bjarne Stroustrup

Barricades

• Damage containment strategy

– E.g. double-hulled oil tanker

• Can use idea similar to a firewall

– Designate certain interfaces to boundaries as “safe”

areas

– Check data crossing the boundaries for validity and

respond sensibly if the data isn’t valid

Validation

Classes

GUI

Command

Files

Internal

classes

18

Debugging Aids

• Common assumption
– Developer version can be slow, but production
version must be fast, stingy with resources

– Assumption not always true

• Microsoft Word
– Code in the idle loop that checks the integrity of the
Document object

– Helps detect data corruption more quickly and easier
error diagnosis / recovery

• Consider if your production application really
needs the extra speed, or if there is going to be
much speed in removing error condition checks

Offensive Programming

• Exceptional cases should be handled in a way that
makes them obvious during development and
recoverable when production code is running

• Make sure asserts abort the program
– Don’t allow programmers to get in the habit of hitting enter to

bypass known problems, make it painful so it will get fixed

• Completely fill any memory allocated so you can detect
memory allocation errors

• Completely fill any files or streams allocated to flush out
file format errors

• Be sure the code in each case statement’s default clause
fails hard (aborts) or is impossible to overlook

• Fill an object with junk before it is deleted

• Set up the program to email error log files to yourself so
you can see the errors occurring in the released software

19

Plan to Remove Debugging Aids

• If you need to remove debugging code

from the production code, plan for it from

the beginning

• Use constants or preprocessor as a debug

flag

#define DEBUG

#if defined(DEBUG)

// debugging code

Remove Debugging

• Use debugging stubs
– If you call a debugging subroutine, you can replace
the complicated routine with a stub for the production
version

– Incurs small performance penalty, but debug code still
available if needed

CheckPointer(pointer);

void CheckPointer(void *pointer) {

// No code, just return

}

20

How Much to Leave?

• How much defensive code should be left
in the production version?

– Leave in code that checks for important errors

– Remove code that checks for trivial errors

– Remove code that results in hard crashes
• Replace with graceful crash

– Leave in code that helps the program crash
gracefully

– Log errors

– Make sure error messages left in are friendly

Social Defensive Programming

• Not seen in public API’s but can be used internally

• Idea: Documentation might be ignored, but invoking the
function name or variable can’t

– ReferenceType MyClass::GetPointerDoNotDelete()
• Tells the user not to delete this object because it is deleted
elsewhere

– SafeHandle.DangerousGetHandle()
• Actual example from the CLR where the developers thought it
important enough to call out a function that can be dangerous if
misused (and hopefully make the users read the docs to figure out
why it’s dangerous)

– m_dontUseMe
• A class member was often misused as an ID (because it seemed to
be unique while it wasn’t really) and that caused endless problems.
At the end, the mere name change to m_dontUseMe reduced the
misuse considerablyE

21

Easy Quiz

• An ____________ statement is used to check
for errors that should not normally occur

• A __________ is used as a buffer area between
internal classes that do real work and the
external API exposed to users

• A good order for the parameter types of (output /
input / modify) is
– First ____________

– Second _________

– Third ___________

