
1/28/2013

1

GUI Bloopers

Basic Principles

What is a GUI Blooper?

• “Bloopers” are mistakes that software
developers frequently make when designing
graphical user interfaces

– Not just specific examples but mistakes that
developers make over and over

– Goal is to give examples of mistakes AND help
designers and developers learn to produce better
GUIs

1/28/2013

2

Basic Principle 1

• Focus on the users and their tasks, not on the
technology

• This means you should answer these questions:
– For whom is the software being designed?
– What is the software for?
– What problems do the users have now?
– What skills and knowledge do the users have?
– How do users conceptualize the data?
– What are the users’ preferred ways of working?

Basic Principle 1

• Requires collaboration with the user

• “Software should be designed neither for
users nor by them, but rather with them.”

• We covered most of these items in the
software engineering class

1/28/2013

3

Basic Principle 2

• Consider function first, presentation later

• We’ve said that you should make a GUI mock-up
before coding, isn’t this contradictory?
– No, function means determining the requirements

and basic functions of the software. It doesn’t mean
writing actual code functions.

– Before GUI layout we must decide what data the users
can create, view, or manipulate.
• Conceptual Model

Basic Principle 3

• Conform to the user’s view of the task

• Software user interfaces should be designed from the
user’s point of view
– Obviously this requires that you know what the user’s point

of view is (Basic Principle 1)
– Strive for naturalness

• E.g. in chess, drag and drop piece or enter coordinates?

– Don’t impose arbitrary restrictions
• E.g. maximum of 255 entries

– Use user’s vocabulary, not your own
– Keep program internals inside the program

• Includes error messages

1/28/2013

4

Basic Principle 4

• Design for the common case

• Ever create a new “object” in a program and
find yourself having to change its default
properties all the time?

• Strive to make common tasks easy

• Sensible defaults, templates or “canned”
solutions, wizards, customizability

Basic Principle 5

• Don’t distract users from their goals

• People are good at multi-tasking, but not for
problem solving and stuff we don’t do all the
time. Software shouldn’t distract users from
their own tasks and goals.
– E.g. hard to find functions, confusing terminology

• Operate in the background, not the
foreground of user’s consciousness.

1/28/2013

5

Basic Principle 6

• Facilitate Learning

• Software is often hard to learn, some of the
blame may be from “inside-out” thinking, the
idea that users will actually know how to
operate the software

– Clear to developers but may not be clear to users

Basic Principle 6

• Example: Graphical Ambiguity

– With lots of icons it is difficult to make them
meaningful

– What does this mean?

Antenna for a transmit function, not a martini glass with a stick

1/28/2013

6

Basic Principle 7

• Deliver information, not just data

• E.g. comparative chart vs. list of data values

• Don’t treat the data like information, focus on
the important data and extract necessary
information from it

Basic Principle 7

• The screen belongs to the user

– Don’t take over the screen, researchers discovered it
is usually a bad idea for software to unilaterally move
controls and data around on the screen

• Jump or “warp” the mouse to new positions

• Move something to the mouse location

• Reposition windows

• Automatically rearrange data for the user

– Controlling the mouse for the user violates the hand-
eye coordination a user has with the machine

1/28/2013

7

Basic Principle 7

• Preserve “Display Inertia”
• When software changes a display to show the effect of

a user’s actions, it should try to minimize what it
changes
– Small local changes should produce small, local changes on

the display
– Attempt to keep as much of the display unchanged as

possible

• Helps the user retain context, minimizes disruption
• Examples of poor display inertia:

– Forcing entire page to refresh
– Scrolling to a different position in the browser

Basic Principle 8

• Design for responsiveness

• A software application’s ability to keep up with users
and not make them wait
– The most important factor in determining user satisfaction

– Users hate waiting more than anything else

• Desire for speed is perceived, not actual
– A responsive interface that shows progress in computing a

result is perceived as faster than one that displays nothing
(system pauses) until the result is done

1/28/2013

8

Basic Principle 8

• Systems can be slow in terms of performance but still
responsive
– Might queue requests but never lock-up or force users to wait

for the system to catch up

• Examples of poor responsiveness
– Delayed feedback for button-press or mouse click
– Operations that block activity
– No visual feedback as to how long a lengthy operation will take
– Jerky animation

Effect of response time on user productivity

Basic Principle 8

• Designing for responsiveness
– Acknowledge user actions instantly, even if

returning the answer will take time

– Let users know when it is busy and when it isn’t

– Free users to do other things while waiting for
something to finish

– Animate movement smoothly

– Allow users to abort lengthy operations

– Allow users to accurately judge how long
something will take

1/28/2013

9

Basic Principle 9

• Try it out on users, then fix it!

• Test early and often, results may surprise even
experienced designers

• Schedule time to correct problems found by tests

• Tests have two goals
– Information on aspects of the UI that cause difficulty

– Socially it convinces developers that there are design
problems that need correcting. Some developers
need to see users have problems for themselves.

Developer watching video of usability test

1/28/2013

10

GUI Control Bloopers

• Two categories of control bloopers

– Using the wrong GUI Control

– Using a control incorrectly

• Control bloopers harm usability and give
customers an impression of a shoddy,
unprofessional product

Blooper 1: Confusing checkboxes and
radio buttons

• Radio buttons when only one is selectable

• Checkboxes when many selectable

Word: Change font, effects, subscript
and superscript

1/28/2013

11

Blooper 1
• Diebold/Premier AccuVote TSx operates

somewhere between checkboxes and radio
buttons

Avoiding Blooper 1

• Use radio buttons
– When only one option may be selected
– In sets of at least two
– Ensure enough space is available to see all options
– The number of options is fixed and small (2-8)

• Consider dropdown or scrolling menus which
requires less space

• Checkboxes represent ON/OFF conditions that
are independent of each other

1/28/2013

12

Blooper 2: Checkboxes for non-ON/OFF
Setting

• Checkboxes should be used for on/off not for
a selection of items.

• Instead use radio buttons.

Blooper 3: Command Buttons as Toggles

• Saves space on the screen but toggling
meaning of a button can be missed by the
user

• Misleads users; can’t predict by looking at
them how they’ll behave, have to try them
– “Mystery Meat Navigation”

• Use two buttons and disable the inactive one,
or use a toggle switch style control

1/28/2013

13

• Misuse of tabs is to use them as if they are radio buttons to
present choices that affect what the application will do rather
than just which controls are displayed

• Some users will not realize the last tab selected is the one that
is used – users expect tabs just for switching between panels

Blooper 4: Using tabs as radio buttons

Tabs as Radio Buttons

• Better design:

Tabs should be purely navigational controls, not for settings

1/28/2013

14

Blooper 5: Too Many Tabs

• Intended to save space but too many uses
more space – usually doesn’t scale beyond a
handful

• Never use dancing tabs; change position
based upon which tab is selected
– Unavoidable with multi-rows of tabs

Multi-Row Tabs

Solutions: Widen panel, make tabs narrower, or use another control
instead of tabs

1/28/2013

15

Avoiding Too Many Tabs

Blooper 6: Using input controls for
display-only data

• Don’t use input controls (textboxes, radio
buttons, checkboxes, etc.) to present data
users cannot change. This refers to controls
that are never editable, not to ones that are
temporarily inactive (grayed out).

1/28/2013

16

Blooper 6
Example

Better uBid Page

1/28/2013

17

Blooper 6 Example

Blooper 6 Example

Avoiding Blooper 6: Use labels, don’t use controls that look like they
can be edited

1/28/2013

18

Blooper 7 : Overusing text fields for
constrained input

• Text fields are too
unstructured for
constrained data
– Dates, postal codes,

volume levels, monetary
amounts, etc.

– Especially occurs in
paper to GUI conversion

• Use structured controls
to allow only valid data

Take advantage of the GUI

1/28/2013

19

Database Project w/Job Titles

• Contractor is trying to match up titles, but
getting values like:

Consiltant(Nonexempt)
Consultan(Nonexempt)

Consultant (Noneexempt0

Consultant (Nonexempt(

Consultant (Nonexempt)
Consultant(Nonexempt)

Blooper 8: Dynamic Menus

• Menu item that changes depending upon the context
– Might seem to help; removes commands one shouldn’t be

able to execute at that time
– But users end up wondering where commands went

1/28/2013

20

Blooper 8 Example

Dynamic Menus: Better
• Gray out or add entirely new menu that

appears/disappears

1/28/2013

21

Dynamic Menus: Better
• Add and remove menus, not menu items

• Exception: quick lists

– E.g. recently opened files, bookmarks, opened
documents

Blooper 9 : Intolerant Data Fields

• To be friendly and helpful your text fields
should tolerate reasonable variations in what
people type

– E.g. filter out spaces (common w/cut and paste),
dashes, period, tab, etc.

1/28/2013

22

Blooper 9 Example

Avoiding Blooper 9

• Match field length to data
– Visible length suggests how much to type

• Accept common formats

• Beware of rejecting legitimate data

• Make case irrelevant

• Provide a pattern (e.g. draw dashes in QP-00-
3412)

• Structure text fields
– Use pull-down menus or combo-boxes

1/28/2013

23

Blooper 10 : Input fields and controls
with no default

• Defaults should be set up with the most likely
values; users only need to scan the settings,
change a few, and proceed

Blooper 10 Examples

Radio buttons
with no default
values

1/28/2013

24

Blooper 10 Examples

• Drop-down menu with no default and poor
labeling

Avoiding Blooper 10

• Use likely default values

• Always add initial value for radio buttons, or
“None” as an explicit choice

1/28/2013

25

Blooper 11 : Poor Defaults

• A default value that is unlikely to be what
users want is more harmful than no default
value

Blooper 12: Negative Checkboxes

• Negative checkboxes turn a feature or
attribute OFF when checked and ON when
unchecked

1/28/2013

26

Blooper 12 Example

• SQL Server
Enterprise Manager
– Deny or Allow

access

• Avoiding Blooper 12
– All checkboxes

should be positive

