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Synchronization 

Synchronization 

• How to synchronize processes? 

– Need to protect access to shared data to avoid 
problems like race conditions 

– Typical example: Updating a shared account 
balance.  Problem below? 

 
Processor 1 
lw      $t0,balance 

lw      $t1,amount 

add     $t0,$t0,t1 

sw      $t0,balance 

Processor 2 
lw      $t2,balance 

lw      $t3,amount 

sub     $t2,$t2,t3 

sw      $t2,balance 
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Critical Sections 

• In general: 
– n processes all competing to use some shared data 

– Each process has a critical section in which shared data is accessed 

• Goal 
– Ensure that when one process is executing in its critical section, no 

other process is allowed to execute in its critical section 

Processor 
 
Entry_section()  // Wait until exclusive access 

Critical Section 

Remainder_section()  // Release exclusivity 

Criteria for Critical Sections 

• Mutual exclusion 
– Two processors can never be in the critical section at the same 

time 

• Progress 
– If no process is executing in its critical section and some 

processes wish to enter their critical sections, then only those 
processes that are not executing in their remainder sections can 
participate in the decision on which will enter its critical section 
next.  

• Bounded waiting 
– There exists a bound or limit on the number of times that other 

processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and 
before that request is granted 
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First Attempt - Alternation 

Processor 0 
 
shared int turn = 0; 

 

while (turn != 0); 

Critical Section 

turn = 1; 

Remainder_section() 

Processor 1 
 
shared int turn = 0; 

 

while (turn != 1); 

Critical Section 

turn = 0; 

Remainder_section() 

Satisfies mutual exclusion 
Does not satisfy progress 
Might satisfy bounded wait if processors eventually set the turn variable 

Second Attempt – Warning Flags 

Processor 0 
 
shared int flag[2] = {0,0}; 

 

flag[0] = TRUE; 

while (flag[1]); 

Critical Section 

flag[0] = FALSE; 

Remainder_section() 

Satisfies mutual exclusion and progress 
 P0 only enters critical section if flag[0] && !flag[1] 
 P1 only enters critical section if flag[1] && !flag[0] 
 
Satisfy bounded wait?   Deadlock possible? 
 

Processor 1 
 
shared int flag[2] = {0,0}; 

 

flag[1] = TRUE; 

while (flag[0]); 

Critical Section 

flag[1] = FALSE; 

Remainder_section() 
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Software Solution – Peterson’s 
Algorithm 

Processor 0 
 
shared int flag[2] = {0,0}; 

shared int turn; 

 

flag[0] = TRUE; 

turn = 1; 

while (turn == 1 && flag[1]); 

Critical Section 

flag[0] = FALSE; 

Remainder_section() 

Processor 1 
 
shared int flag[2] = {0,0}; 

shared int turn; 

 

flag[1] = TRUE; 

turn = 0; 

while (turn == 0 && flag[0]); 

Critical Section 

flag[1] = FALSE; 

Remainder_section() 

Combines alternation and warning flags 
 Polite – we want to enter, but if someone else wants to enter, go ahead 
Satisfies mutual exclusion, progress, and bounded wait 
 
Slow (busy wait) and unwieldy to extend to many processors 
 

Hardware Synchronization 

• For large scale MPs, synchronization can be a 
bottleneck 
– Contention adds additional delays, latency is potentially 

great 

• Hardware primitives needed 
– all solutions based on "atomically inspect and update a 

memory location" 

• Higher level synchronization solutions can be build on 
top of the basic hardware primitives 
– Locks, barriers 
– Generally employed by the system software not the 

programmer directly 
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Uninterruptible Instructions to Fetch 
and Write to Memory 

• Atomic exchange: interchange a value in a register for a value in memory 
– Used to build a simple lock 
– To lock, set register to 1 and exchange 

• 0 => synchronization variable is free  
• 1 => synchronization variable is locked by some other processor and unavailable 

– Must be atomic or synchronization may fail 
 

• Test-and-set: tests a value and sets it if the value passes the test  
– Ex. Test for 0 and if so set to 1 

 
• Fetch-and-increment: it returns the value of a memory location and 

atomically increments it 
– 0 => synchronization variable is free  

 

• All implementations require coherence 
 

A spin lock using the exchange primitive 

• Spin locks: processor continuously tries to acquire, spinning 
around a loop trying to get the lock: 

 
  LI R2,#1  ;load immediate  
lock: EXCH R2,0(R1)  ;atomic exchange 
  BNEZ R2,lock  ;already locked? 
 

• Multiprocessors with cache coherency 
– Want to spin on cache copy to avoid full memory latency 
– Likely to get cache hits for such variables 

 
– Problem: exchange includes a write, which invalidates all other copies; 

this generates considerable bus traffic 
– Solution: start by simply repeatedly reading the variable; when it 

changes, then try exchange (“test and test & set”): 
 

   try: LI R2,#1  ;load immediate  
lock: LW R3,0(R1)  ;load var 
  BNEZ R3,lock  ;not free=>spin 
  EXCH R2,0(R1)  ;atomic exchange 
  BNEZ R2,try  ;already locked? 
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Load Linked / Store Conditional 

• Challenging to implement a single atomic memory 
operation 
– Has to do a memory read and a write 

– Complicates coherence since the hardware cannot allow 
any other operations between the read and the write 

• Alternative 
– Have a pair of instructions, a load and a store 

– The second instruction returns a value from which it can 
deduced if the pair executed as if it were atomic 

– The load is a special load called load linked or load locked 
and the special store is called store conditional 

Load Linked / Store Conditional 

• If the contents of the memory location 
specified by the load linked are changed 
before the store conditional occurs, then the 
store conditional fails 

• If the processor does a context switch 
between the two instructions then the store 
conditional fails 

• Store conditional returns 1 if successful and 0 
otherwise 
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Examples with LL/SC 

Atomic swap with LL & SC on memory location specified by R1 
 
   try: MOV R3, R4  ; Mov Exchange value 
  LL R2, 0(R1) ; Load Linked 
  SC R3, 0(R1) ; Store Conditional 
  BEQZ R3, try ; Branch store fails 
  MOV R4, R2  ; Put load value in R4 
 

If SC fails then R3 = 0 and we branch and try again (e.g. a processor intervened 
and modified the value in 0(R1)). 

Atomic fetch and increment: 
 
   try: LL R2, 0(R1) ; Load Linked 
  DADDUI R3, R2, #1 ; Increment 
  SC R3, 0(R1) ; Store Conditional 
  BEQZ R3, try ; Branch store fails 
 

Implementing LL/SC 

• Link Register 
– Stores the address specified in the LL instruction 

• Interrupt or Cache block matching the link register is 
invalidated 
– Clear the link register 

– Same idea as snooping, listening for a write on the address 
of the link register 

 

• Some care must be taken; deadlock conditions possible 
depending upon what is placed between LL and SC 
(should only be register-register instructions) 
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Barrier Synchronization 

• All must arrive before any can leave 

– Used between different parallel sections 

• Uses two shared variables 

– A counter that counts how many have arrived 

– A flag that is set when the last processor arrives 

  

Simple Barrier Synchronization 
lock(); 

if(count==0) release=FALSE;  /* First resets release */ 

count++;                    /* Count arrivals */ 

unlock(); 

if(count==total)             /* All arrived */   

{ 

  count=0;                   /* Reset counter */ 

  release = TRUE;            /* Release processes */ 

} 

else                         /* Wait for more to come */ 

{ 

  while (!release);          /* Wait for release  */ 

} 

• Problem: deadlock possible if reused 
– Two processes: fast and slow 
– Slow arrives first, reads release, sees FALSE 
– Fast arrives, sets release to TRUE, goes on to execute other code, 

comes to barrier again, resets release to FALSE, starts spinning on wait for release 
– Slow now reads release again, sees FALSE again 
– Now both processors are stuck and will never leave 
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Correct Barrier Synchronization 

localSense=!localSense;    /* Toggle local sense */ 

lock(); 

  count++;                 /* Count arrivals */ 

  if(count==total){        /* All arrived */ 

    count=0;               /* Reset counter */ 

    release=localSense;    /* Release processes */ 

  } 

unlock(); 

while(release!=localSense); /* Wait to be released */ 

• Release in first barrier acts as reset for second 
– When fast comes back it does not change release, 

it just waits for it to become FALSE 

– Slow eventually sees release is TRUE, stops waiting, 
does work, comes back, sets release to FALSE, and both go forward. 

initially localSense = FALSE, release = FALSE 

  

Large-Scale Systems: Barriers 

• Barrier with many processors 
– Have to update counter one by one – takes a long time 
– Solution: use a combining tree of barriers 

• Example: using a binary tree 
• Pair up processors, each pair has its own barrier 

– E.g. at level 1 processors 0 and 1 synchronize on one barrier, processors 2 and 
3 on another, etc. 

• At next level, pair up pairs 
– Processors 0 and 2 increment a count a level 2, processors 1 and 3 just wait 

for it to be released 
– At level 3, 0 and 4 increment counter, while 1, 2, 3, 5, 6, and 7 just spin until 

this level 3 barrier is released 
– At the highest level all processes will spin and a few “representatives” will be 

counted. 

• Works well because each level fast and few levels 
– Only 2 increments per level, log2(numProc) levels 
– For large numProc, 2*log2(numProc) still reasonably small 
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Large-Scale Systems: Locks 

• Contention even with test-and-test-and-set 
– Every write goes to many, many spinning procs 

– Making everybody test less often reduces contention for 
high-contention locks but hurts for low-contention locks 

– Solution: exponential back-off 
• If we have waited for a long time, lock is probably high-contention 

• Every time we check and fail, double the time between checks 
– Fast low-contention locks (checks frequent at first) 

– Scalable high-contention locks (checks infrequent in long waits) 

– Special hardware support 

Memory Consistency 

• When does a processors see another processor’s written value? 
• Do different processors see writes at the same time? 

 

 

 

 

 

• If writes are immediately seen by other processors it will be impossible 
for both if statements to evaluate as true 

 

• Suppose write invalidate is delayed then it is possible P1 or P2 have not 
seen the invalidations before attempting to read the values 
– Should this be allowed? 

 

 

P1: A = 0; 
 … 
 A = 1; 
L1: if (B == 0) … 

P2: B = 0; 
 … 
 B = 1; 
L2: if (A == 0) … 
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Sequential Consistency 

Lamport (1979): A multiprocessor is sequentially consistent 
if the result of any execution is the same as if the 
(memory) operations of all processors were executed in 
some sequential order, and the operations of each 
individual processor occur in this sequence in the order 
specified by its program P

1
P

2

Memory

P
3

P
4

All processors see all loads/stores happening in the same order 

Sequential Consistency 

• Simple implementation 
– A processor issues next access only when its previous 

access is complete 
– Under sequential consistency, we cannot place the write in 

a write buffer and continue 
– Slow 

• Better performance 
– Latency hiding techniques 
– Less restrictive memory consistency models 
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Relaxed Consistency Models 

• Synchronized programs 
– A program is synchronized if all access to shared data are 

ordered by synchronization operations 
– Any two of accesses to the same variable in two different 

processes, such that at least one of the accesses is a write, 
are always ordered by synchronization operations 

• If variables may be updated without synchronization 
– Data race and outcome is unpredictable 
– Goal is data-race-free 

• Good performance even in simple implementation 
– Seems acceptable to programmers 
– Accepted that most programs are synchronized and 

behaves as if the hardware implemented sequential 
consistency 
 
 
 

  

Relaxed Consistency Models 

• There are many other relaxed models 
– Processor Consistency, Partial Store Order, Release 

Consistency, Lazy Release Consistency 

– All work just fine for data-race-free programs 

– But when there are data races, 
more relaxed models  weird program behavior 

 


