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RISC Machines 

• Because of their load-store ISAs, RISC architectures 

require a large number of CPU registers. 

• These register provide fast access to data during 

sequential program execution. 

• They can also be employed to reduce the overhead 

typically caused by passing parameters to 

subprograms. 

• Instead of pulling parameters off of a stack, the 

subprogram is directed to use a subset of registers. 
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Register Windows 

• This technique was motivated by quantitative 
analysis of how procedures pass parameters 
back and forth 

• Normal parameter passing: Uses the stack 

– But this is slow 

– Would be faster to use registers 

– Benchmarks indicate that  

• Most procedures only pass a few parameters 

• A nesting depth of more than 5 is rare 

 



2 

3 

User View of Registers 

• Used on SPARC 
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Overlap Register Windows 

CWP = Current Window Pointer 
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Register Windows 

• Parameters are “passed” by simply updating the 

window pointer 

– All parameter access in registers, very fast 

– In the rare event we exceed the number of registers 

available, can use main memory for overflow 
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Flynn’s Taxonomy 

• The four combinations of multiple processors and 

multiple data paths are described by Flynn as: 

– SISD: Single instruction stream, single data stream. These 

are classic uniprocessor systems. 

– SIMD: Single instruction stream, multiple data streams. 

Execute the same instruction on multiple data values, as in 

vector processors. 

– MIMD: Multiple instruction streams, multiple data 

streams. These are today’s parallel architectures. 

– MISD: Multiple instruction streams, single data stream. 
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Vector Processors 

• Appendix F 

• Most well-known is perhaps the Cray I 

• Essentially a SIMD machine 

– Small-scale versions in place today on commodity 

processors with MMX, SSE, Velocity Engine 

• Programming is similar to that of a uniprocessor 

machine, but can take advantage of parallelism 

when we run into performance barriers from 

pipelining 

What is a Vector Processor? 

• Provides high-level operations that work on vectors 

– Vector is a linear array of numbers 

• Type of number can vary (IEEE 754, 2’s complement) 

• Length of the array also varies depending on hardware 

– Example vectors would be 64 or 128 elements in length 

– Small vectors (e.g. MMX/SSE) are about 4 elements in length 

– Example usage: 

• Add two 64-element floating point vectors to obtain a single 64-element 

vector result 

• Performed in parallel instead of sequentially 

• Vector instruction equivalent to a loop (up to the vector length) with 

each iteration computing one of the results, update indices, branch back 
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Vector Processor Properties 

• Computation of each result must be independent of 
previous results 

– i.e. need absence of data hazards 

• Single vector instruction specifies a great deal of work 

– Equivalent to executing an entire loop 

• Vector instructions must access memory in a known 
access pattern 

– Need vector elements to be located adjacent; can then fetch 
them from heavily interleaved memory banks quickly 

– Latency of data to memory should only be one for the entire 
vector, not for each word of the vector 

• Many control hazards can be avoided since the entire 
loop is replaced by a vector instruction 

Basic Vector Architecture 

• Vector processor typically consists of 

– Ordinary pipelined scalar unit 

– Add a vector unit that can deal with FP or Integers 

• Generally use a vector-register processor 

– All vector operations except load/store are among 

vector register. 

– Advantages the same as our load/store uniprocessor 

reasons 
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Primary Components of the 

Vector Processor 
• Vector Registers 

– Like a regular register, but holds an entire array of data (e.g. 
perhaps are 8 vector registers, each holding 64 elements) 

• Vector functional units 

– Fully pipelined 

– Operates like our old functional units; need to detect hazards 
and stall when necessary 

• Vector Load/Store unit 

– Load/Store instructions can transmit entire array at once 
• Need high-bandwidth memory 

• Will want pipelined writes 

• Could also handle scalar loads/stores 

• Set of Scalar Registers 

– Normal general purpose registers, could use to load vectors 

 

Vectorization Concepts 

• Vectorization occurs for operations on arrays 

• Vectorization occurs in loops (explicit or implicit) of any type 

• Only innermost loops are vectorized 

• Data dependencies can inhibit vectorization; results are then 
computed serially. 

• Vector registers allow array values to be stored very close the the 
functional units. 

• Once vector registers are loaded, operands can be pumped into the 
functional units (and results generated) every clock period due to 
pipelining 
– Ideally one FU per vector element, but this may be unlikely 

• Vectorization increases sustained performance by increasing 
bandwidth of data flow into the functional units. 
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Vectorization Example 

Loop will vectorize automatically (often still coded 

in FORTRAN!) 

DO I=1,N 

 A(I) = X(I) + Y(I) 

 D(I) = E(I) * COS(F(I)) 

END DO 

 

• Load elements into vector registers 

• Pump values in register through functional units. 

Vectorization Speedup 

• Real performance is determined by number of results that 

can be calculated in functional units per clock period (as 

in serial computation). 

– Convoy : set of instructions that could begin execution in the 

same clock cycle without hazards 

– Chime : execution time for a vector sequence of convoys 

– m convoys execute in m chimes; for a vector of length n, 

approximately m*n clock cycles to complete 

• Vector registers help sustain high performance by 

increasing bandwidth to the functional units. Serial 

computers have trouble keeping the functional units busy. 
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Vectorization Speedup 

• Vectorized speedup is limited by vector loads and 
operations that don’t chain efficiently. Typically 
see 10x speedup over serial computation of same 
loop. 

– i.e. data hazards cause problems 

• Most efficient vectors are a multiple N of vector 
size V; least efficient if vectors are of size N*V + 
1 (last vector load not amortized) 

– Similar idea to loop unrolling, but with hardware 
support 

Vectorization Inhibitors 

• Pretty much our list of usual suspects that hurt ILP: 

 

• Subroutine and function calls 

– but can inline them and perhaps use vectorization 

• I/O statements 

• Arithmetic IF, GOTO 

• Partial word data (character) operations 

• Unstructured branches 

• Data dependencies 
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Dependence Example 
• Loop will not vectorize, must be computed serially: 

DO I=2,N-1 

 A(I) = B(I) + A(I-1) 

END DO 

Compiler detects backward reference on A(I-1). 

• Loop will vectorize: 

DO I=2,N-1 

 A(I) = B(I) + A(I+1) 

END DO 

A(I+1) is a forward reference, same result in serial or vector 

mode. Compiler uses non-updated value. 

MIPS/MIPSV Example 
MIPS Code: 

  LD F0, A 

 ADDI R4,Rx, #512  ; Last addr 

Loop: LD F2, 0(Rx) 

 MULTD F2, F0, F2 ; A * X[I] 

 LD F4, 0(Ry) 

 ADDD F4, F2, F4    ; + Y[I] 

 SD 0(Ry), F4 

 ADDI Rx, Rx, #8   ; Inc index 

 ADDI Ry, Ry, #8 

 SUB R20, R4, Rx 

 BNEZ R20, Loop 

MIPSV Code: 

  LD F0, A 

  LV V1, Rx   ; Load vecX 

  MULTSV V2, F0, V1   ; Vec Mult 

  LV  V3, Ry ; Load vecY 

  ADDV V4, V2, V3 ; Vec Add 

  SV Ry, V4 ; Store result 

 

Loop goes 64 times 

64 is element size in MIPSV 

So we need no loop now 

 

Great reduction in instruction 

bandwidth! 

 

Only stalls per vector 

operation, not per element 
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Vector Load-Store and Memory 

• More complex than normal memory access for a 
functional unit; can use some of the ideas we discussed 
for improving memory access 

• Start-up time 

– Time to get the first word from memory into a register 

– Vector Unit could start execution on the first word as the rest of 
the vector is loaded 

• Most vector processors use multiple memory banks as 
opposed to interleaving 

– Supports multiple simultaneous accesses 

– Many vector processors support the ability to load or store data 
that is not sequential 

– May also use SRAM as main memory to avoid high memory 
startup costs 

Vector Length 

• We would like loops to iterate the same number of times 

that we have elements in a vector 

– But unlikely in a real program 

– Also the number of iterations might be unknown at compile 

time 

• Problem: n, number of iterations, greater than MVL 

(Maximum Vector Length) 

– Solution: Strip Mining, just like we did with loop unrolling 

– Create one loop that iterates a multiple of MVL times 

– Create a final loop that handles any remaining iterations, which 

must be less than MVL 
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Vector Stride 

• Position of the elements we want in memory may 

not be sequential 

• Consider following code: 

– Do 10 I=1, 100 

• Do 10 j =1, 100 

– A(I,j) = 0.0 

– Do 10 k =1,100 

– A(I,j) = A(I,j) + B(I,k)*C(k,j) 

– 10 

 

X 

X+5 

X+10 

X+15 

X+20 

If loop accesses data 

by column, vector 

loaded with non-

sequential data 

Matrix Data in Memory 

Vector Stride 

• Distance separating elements to be gathered into a vector 

register is the stride 

• Vectors may be loaded with non-unit stride 

• Vector register behaves as if all data is contiguous 

• Can provide major advantage over cache-based processor 

– Cache inherently deals with unit stride data 

• Vector processor must be able to compute the stride 

dynamically since the matrix size may not be known at 

compile time 

– Solution is to store it in a GPR 
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Improving Vector Performance 

• Better compiler techniques 

– As with all other techniques, we may be able to rearrange code 
to increase the amount of vectorization 

• Techniques for accessing sparse matrices 

– Hardware support to move between dense (no zeros), and 
normal (include zeros) representations 

• Chaining 

– Same idea as forwarding in pipelining 

– Consider: 
• MULTV   V1, V2, V3 

• ADDV V4, V1, V5 

– ADDV must wait for MULTV to finish  
• But we could implement forwarding; as each element from the MULTV 

finishes, send it off to the ADDV to start work 

Chaining Example 

Unchained 

 

7           64             6            64  

        MULTV                  ADDV 

Total = 141 

Chained 

 

7           64 

        MULTV Total = 77 

6           64 

        ADDV 

6 and 7 cycles are start-up-times of the adder and multiplier 

 

Every vector processor today performs chaining 
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Improving Performance 

• Conditionally Executed Statements 

– Consider the following loop 

• Do 100 I=1, 64 
– If (A(I) .ne. 0) then 

» A(I)=A(I)-B(I) 

– Endif 

• 100 continue 

– Not vectorizable due to the conditional statement 

– But we could vectorize this if we could somehow only 
include in the vector operation those elements where 
A(I) != 0 

Conditional Execution 

• Solution:  Create a vector mask of bits that 

corresponds to each vector element 

– 1=apply operation 

– 0=leave alone 

• As long as we properly set the mask first, we can 

now vectorize the previous loop with the 

conditional 

• Implemented on most vector processors today 
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Concluding Remarks 

• First supercomputers were vector processors 

– Gap has closed with the advent of fast, pipelined systems 

– Idea of small-scale vector processing has re-surfaced with 

commodity processors 

• Most usage of vector processing today is in scientific 

computing 

– Requires large memory bandwidth 

– Compiler support also important 

– Days of vector processors numbered, more emphasis today on 

distributed processing, clusters, massively parallel processors; 

but was the precursor to today’s systems 

 

 

 

 


