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What is Pipelining? 

• Like an Automobile Assembly Line for 

Instructions 

– Each step does a little job of processing the instruction 

– Ideally each step operates in parallel 

• Simple Model 

– Instruction Fetch 

– Instruction Decode 

– Instruction Execute 

 

F1 D1 E1 

F2 D2 E2 

F3 D3 E3 
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Ideal Pipeline Performance 

• If stages are perfectly balanced: 

 

 

• The more stages the better? 

– Each stage typically corresponds to a clock cycle 

– Stages will not be perfectly balanced 

– Synchronous: Slowest stage will dominate time 

– Many hazards await us 

• Two ways to view pipelining 

– Reduced CPI (when going from non-piped to pipelined) 

– Reduced Cycle Time (when increasing pipeline depth) 

 

StagesPipelineNumber

tructionTimePerIns
tructionTimePerIns

Unpiped

__

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Ideal Pipeline Performance 

• Implemented completely in hardware 

– Exploits parallelism in a sequential instruction stream 

• Invisible to the programmer! 

– Not so for other forms of parallelism we will see 

– Not invisible to programmer looking to optimize 

– Compiler must become aware of pipelining issues 

• All modern machines use pipelines 

– Widely used in 80’s 

– Multiple pipelines in 90’s 
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MIPS32 Instruction Formats 
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Stages for an Unpipelined MIPS-

like Machine 
• Every instruction for our hypothetical MIPS-like machine 

can be executed in 5 steps 

1. IF – Instruction Fetch 

– IR Mem[PC] 

– NPC  PC + 4  ; Next Program Counter 

2. ID – Instruction Decode / Register Fetch 

– A  Regs[IR21..25]  ; rs1 

– B  Regs[IR11..15]  ; rd 

– Imm  (IR0..15)
  

 ; Sign extend immediate 

– Fetch operands in parallel for later use.  
• Might not be used! 

• Fixed Field decoding 

 



4 

7 

Stages for a MIPS-like Machine 

• 3. EX - Execution / Effective Address Cycle 

– There are four operations depending on the opcode decoded 
from the previous stage 

– Memory Reference 

• ALUOutput  A + Imm         ; Compute effective address 

– Register-Register ALU Operation 

• ALUOutput  A func B  ;  e.g. R1 + R2 

– Register-Immediate ALU Operation 

• ALUOutput  A op Imm  ; e.g. R1 + 10 

– Branch (can be done in Stage 2 if aggressive) 

• ALUOutput  NPC + Imm  ; PC based offset 

• Cond  A op 0   ; e.g. op is == for BEQZ 

– Note that the load/store architecture means that effective address and 
execution cycles can be combined into one clock cycle since no instruction 
needs to simultaneously calculate a data address and perform an ALU op 
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Stages for a MIPS-like Machine 

• 4. MEM – Memory Access / Branch Completion 

– There are two cases, one for memory references and 
one for branches 

– Both cases 

• PC  NPC    ; Update PC 

– Memory reference 

• LMD Mem[ALUOutput]  ; for memory Loads 

• Mem[ALUOutput]  B  ; or Stores 

• Note the address was previously computed in step 3 

– Branch 

• If (cond) PC  ALUOutput ; PC gets new address 
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Stages for a MIPS-like Machine 

• 5.  WB – Write Back 

– Writes data back to the REGISTER FILE 

• Memory writes were done in step 4 

– Three options 

– Register to Register ALU 

• Regs[IR11..15]  ALUOutput  ; rd for R-Type 

– Register-Immediate ALU 

• Regs[IR16..20]  ALUOutput  ; rd for I-Type 

– Load Instruction 

• Regs[IR11..15]  LMD   ; LMD from 4 

 

10 

Hardware Implementation of the 

Datapath 

Registers between stages  Pipelined 
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Implementation of the Stages for 

a MIPS-like Machine 
• Most instructions require five cycles 

• Branch and Store require four clock cycles 

– Which aren’t needed? 

– Reduces CPI to 4.83 using 12% branch, 5% store 

frequency 

• Other optimizations possible 

• Control Unit for five cycles? 

– Finite State Machine 

– Microcode (Intel) 
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Why do we need Control? 

• Clock pulse controls when cycles operate 

– Control determines which stages can function, what 
data is passed on 

– Registers are enabled or disabled via control 

– Memory has read or write lines set via control 

– Multiplexers, ALU, etc. must be selected 

• COND selects if MUX is enabled or not for new PC value 

• Control mostly ignored in the book 

– We’ll do the same, but remember… it’s a complex and 
important implementation issue 
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Adding Pipelining 

• Run each stage concurrently 

• Need to add registers to hold data between stages 

– Pipeline registers or Pipeline latches 

– Rather than ~5 cycles per instruction, 1 cycle per instruction! 

– Ideal case: 

 

 

 

• Really this simple?   

– No, but it is a good idea… we’ll see the pitfalls shortly 
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Important Pipeline 

Characteristics 
• Latency 

– Time required for an instruction to propagate through the 
pipeline 

– Based on the Number of Stages * Cycle Time 

– Dominant if there are lots of exceptions / hazards, i.e. we have 
to constantly be re-filling the pipeline 

• Throughput 

– The rate at which instructions can start and finish 

– Dominant if there are few exceptions and hazards, i.e. the 
pipeline stays mostly full 

• Note we need an increased memory bandwidth over the 
non-pipelined processor 
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Pipelining Example 

• Assume the 5 stages take time 10ns, 8ns, 10ns, 10ns, and 
7ns respectively 

• Unpipelined 

– Ave instr execution time = 10+8+10+10+7= 45 ns 

• Pipelined 

– Each stage introduces some overhead, say 1ns per stage 

– We can only go as fast as the slowest stage! 

– Each stage then takes 11ns; in steady state we execute each 
instruction in 11ns 

– Speedup = UnpipelinedTime / Pipelined Time 
= 45ns / 11ns = 4.1 times    or about a 4X speedup 

 

Note: Actually a higher latency for pipelined instructions! 
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Pipelining Hazards 
• Unfortunately, the picture presented so far is a bit too 

good to be true… we have problems with hazards 

• Structural 

– Resource conflicts when the hardware can’t support all 
combinations of overlapped stages 

– e.g. Might use ALU to add 4 to PC and execute op 

• Data 

– An instruction depends on the results of some previous 
instruction that is still being processed in the pipeline 

– e.g. R1 = R2 + R3;    R4 = R1 + R6;    problem here? 

• Control 

– Branches and other instructions that change the PC 

– If we branch, we may have the wrong instructions in the 
pipeline 
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Structural Hazards 

• Overlapped execution may require duplicate 

resources 

 

 

 

• Clock 4: 

– Memory access for i may conflict with IF for i+4 

• May solve via separate cache/buffer for instructions, data 

– IF might use the ALU which conflicts with EX 
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Dealing with Hazards 

• One solution: Stall 

– Let the instructions later in the stage continue, and 

stall the earlier instruction 

• Need to do in this order, since if we stalled the later 

instructions, they would become a bottleneck and nothing 

else could move out of the pipeline 

– Once the problem is cleared, the stall is cleared 

– Often called a pipeline bubble since it floats through 

the pipeline but does no useful work 

• Stalls increase the CPI from its ideal value of 1 
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Structural Hazard Example 

• Consider a CPU with a single memory pipeline 

for data and instructions 

– If an instruction contains a data memory reference, it 

will conflict with the instruction fetch 

– We will introduce a bubble while the latter instruction 

waits for the first instruction to finish 
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Structural Hazard Example 
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Structural Hazard Example 

What if Instruction 1 is also a LOAD?  

No Instr 

finished 

in CC8 

22 

Alternate Depiction of Stall 
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Avoiding Structural Hazards 

• How can we avoid structural hazards? 

– Issue of cost for the designer 

– E.g. allow multiple access paths to memory 

• Separate access to instructions from data 

– Build multiple ALU or other functional units 

 

• Don’t forget the cost/performance tradeoff and Amdahl’s 

law 

– If we don’t encounter structural hazards often, it might not be 

worth the expense to design hardware to address it, instead just 

handle it with a stall or other method 
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Measuring Performance with 

Stalls 

PipedCycleClock

UnpipedCycleClock

PipelinedCPI

UnpipedCPI

PipelinedTimeInstrAve

UnpipedTimeInstrAve
PipeliningfromSpeedup

__

__
*

_

_

___

___
__





We also know that the Ideal CPI is 1: 

Instrper  cycles stall Pipeline  1                   

Instrper  cycles stall Pipeline  __



CPIIdealPipelinedCPI

Assuming an identical clock cycle, substitution yields: 

Instrper  cycles stall Pipeline1

_
__



UnpipedCPI
PipeliningfromSpeedup
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Measuring Stall Performance 
Given: 

In our simple case each instruction takes the same number of 

cycles, which is equal to the number of pipeline stages or the 

pipeline depth: 

nInstructioPerCyclesStall

DepthPipeline
PipeliningfromSpeedup

___1

_
__




Instrper  cycles stall Pipeline1

_
__




UnpipedCPI
PipeliningfromSpeedup

If there are no pipeline stalls we get the intuitive result that 

pipelining can improve performance by the depth of the pipeline. 
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How Realistic is the Pipeline 

Speedup Equation? 
• Good for a ballpark figure, comes close to a SWAG 

• Overhead in pipeline latches shouldn’t be ignored 

• Effects of pipeline depth 

– Deeper pipelines have a higher probability of stalls 

– Also requires additional replicated resources and higher cost 

• Need to run simulations with memory, I/O systems, 

cache, etc. to get a better idea of speedup 

• Next we’ll examine the myriad of problems from data 

hazards and control hazards to further complicate our 

simple pipeline 

 



14 

27 

Data Hazards 

• Data hazards occur when the pipeline changes the 
order of read/write accesses to operands that 
differs from the normal sequential order 

• Example: 

– ADD R1, R2, R3 

– SUB R4, R1, R5 

– AND R6, R1, R7 

– OR R8, R1, R9 

– XOR R10, R1, R11 

• Looks pretty innocent, what is the problem? 
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Data Hazard Example 

Results of first ADD not available when the SUB needs it! 

Any instructions correct? 

Could be even worse with memory-based operands 

Split 

Cycle 
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Forwarding 

• Technique to minimize data stalls as in the previous 
example 

• Note we’ve actually computed the correct result needed 
by the other instructions, but it’s in an earlier stage 

– ADD R1, R2, R3 R1 at ALUOutput 

– SUB R4, R1, R4 Need R1 at ALUInput 

• Forward this data to subsequent stages where it may be 
needed 

– ALU result automatically fed back to input latch for next stage 

– Need control logic to detect if the feedback should be selected, 
or the normal input operands 
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Forwarding 
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Scoreboarding 

• One way to implement the control needed for 
forwarding 

• Scoreboard stores the state of the pipeline 

– What stage each instruction is in 

– Status of each destination register, source register 

– Can determine if there is a hazard and know which 
stage needs to be forwarded to what other stage 

• Controls via multiplexer selection 

• If state of the pipeline is incomplete 

– Stalls and get pipeline bubbles 
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Another Data Hazard Example 

• What are the hazards here? 

– DADD R1, R2, R3 

– LD R4, 0(R1) 

– SD R4, 12(R1) 

• Need forwarding to stages other than the same 

one 

IF ID EX M WB 

IF ID EX M WB 

IF ID EX M WB 
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Data Hazard Classification 

• Three types of data hazards 

• Instruction i comes before instruction j 

– RAW :  Read After Write 

• j tries to read a source before i writes it, so j incorrectly gets 
the old value.  Solve via forwarding. 

– WAW : Write After Write 

• j tries to write an operand before it is written by i, so we end 
up writing values in the wrong order 

• Only occurs if we have writes in multiple stages 
– Not a problem with single cycle integer instructions 

– We’ll see this when we do floating point 
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Data Hazard Classification 

• WAR : Write After Read 

– j tries to write a destination before it is read by i, so i 
incorrectly gets the new value 

– For this to happen we need a pipeline that writes 
results early in the pipeline, and then other instruction 
read a source later in the pipeline 

– Can this happen in our simple MIPS-like machine? 

– This problem led to a flaw in the VAX 

• RAR : Read After Read 

– Is this a hazard? 



18 

35 

Forwarding is not Infallible 

• Unfortunately, forwarding does not handle all 

cases, e.g.: 

– LW R1, 0(R2) 

– SUB R4, R1, R5 

– AND R6, R1, R7 

– OR R8, R1, R9 

• Load of R1 not available until MEM, but we need 

it for the second instruction in ALU 
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Data Hazard Requiring Stall 

Result needed before it is even computed! 
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Data Hazard Stall 

• Need hardware (pipeline interlock) to detect the data 
hazard and introduce a vertical pipeline bubble 

• Other stalls possible too 

– Cache miss, stall until data available 
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Compilers to the Rescue 

• Compilers can help arrange instructions to avoid 

pipeline stalls, called Instruction Scheduling 

• Compiler knows delay slots (the next instruction 

that may conflict with a load) for typical 

instruction types 

– Try to move other instructions into this slot that don’t 

conflict 

– If one can’t be found, insert a NOP 

– More formal methods to do this using dataflow graphs 
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Compiler Scheduling Example 

• A=B+C;  D =E+F 

– LW R1, B 

– LW R2, C 

– ADD R3, R1, R2   Need to stall for R2  

– SW R3, A 

– LW R4, E 

– LW R5, F 

– ADD R6, R4, R5   Need to stall for R5 

– SW R6, D 
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Compiler Scheduling Example 

• A=B+C;  D =E+F 

– LW R1, B 

– LW R2, C 

– LW R4, E     Swap instr, no stall 

– ADD R3, R1, R2 

– LW R5, F 

– SW R3, A 

– ADD R6, R4, R5  

– SW R6, D 
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Compiler Scheduling a Big Help 

• Study of percentage of loads causing stalls 

– TeX 

• Unscheduled  65% 

• Scheduled 25% 

– SPICE 

• Unscheduled 42% 

• Scheduled 14% 

– GCC 

• Unscheduled 54% 

• Scheduled 31% 
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Control Hazards 

• Control hazards result when we branch to a new location 

in the program, invalidated everything we have loaded in 

our pipeline 

– Potentially a greater performance loss than data hazards 

– Simplest solution: Stall until we know the branch 

• Actually a three cycle stall, since we may need a new IF 
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Control Hazards 

• Big hit in performance – can reduce pipeline 

efficiency by over 1/2 

• To reduce the clock cycles in a branch stall: 

– Find out whether the branch is taken or not taken 

earlier in the pipeline 

• Avoids longer stalls of everything else in the pipeline 

– Compute the taken PC earlier 

• Lets us fetch the next instruction with fewer stalls 
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Original Datapath 

Branch not computed until EX stage, stored in Mem 
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Revised Datapath 

Move branch logic to ID stage to reduce branch penalty 

Downside – may make ID stage longer, more circuitry 
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Software-Based Branch 

Reduction Penalty 
• Design ISA to reduce branch penalty 

– BNEZ, BEQZ, allows condition code to be known 

during the ID stage 

• Branch Prediction 

– Compute likelihood of branching vs. not branching, 

automatically fetch the most likely target 

– Can be difficult; we need to know branch target in 

advance 
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Branch Behavior 

• How often are branches taken? 

• One study: 

– 17%  branches 

– 3%  jumps or calls 

• Taken vs. Not varies with instruction use 

– If-then statement taken about 50% of the time 

– Branches in loops taken 90% of the time 

– Flag test branches taken very rarely 

• Overall, 67% of conditional branches taken on average 

– This is bad, because taking the branch results in the pipeline 
stall for our typical case where we are fetching subsequent 
instructions in the pipeline 
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Dealing with Branches 

• Several options for dealing with branches 

1. Pipeline stall until branch target known (previous case we 

examined) 

2. Continue fetching as if we won’t take the branch, but then 

invalidate the instructions if we do take the branch 

 

Implementation options 
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Dealing with Branches 

3. Always fetch the branch target 

– After all, most branches are taken 

– Can’t do in our simple architecture because we don’t 

know the target in advance of the branch outcome 

– Other architectures could precompute the target 

before the outcome 

• Later we will see how we can store a lookup table to do 

this and even better branch prediction 
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Delayed Branch Option 

4. Delayed Branch - Perform instruction 

scheduling into branch delay slots (instructions 

after a branch) 

• Always execute instructions following a branch 

regardless of whether or not we take it 

• Compiler will find some instructions we’ll always 

execute, regardless of whether or not we take the 

branch, and put in there 

• Put a NOP if we can’t find anything 
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Delayed Branch with One Delay 

Slot 

Instruction in delay slot always executed 

Another branch instruction not allowed to be in the delay slot 
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Example: Delay Slot Scheduling 

B) and C) 

execute code 

that may or may 

not be used, but 

better than a 

NOP 

 

Form of branch 

prediction – 

compiler 

predicts based 

on context 
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Delay Slot Effectiveness 

• Book – variations on scheme described here, branch 
nullifying if branch not taken 

• On benchmarks 

– Delay slot allowed branch hazards to be hidden 70% of the time 

– About 20% of delay slots filled with NOPs 

– Delay slots we can’t easily fill: when target is another branch 

• Philosophically, delay slots good? 

– No longer hides the pipeline implementation from the 
programmers (although it will if through a compiler) 

– Does allow for compiler optimizations, other schemes don’t 

– Not very effective with modern machines that have deep 
pipelines, too difficult to fill multiple delay slots 
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Performance of Branch Schemes 

• We can simulate the four schemes on our MIPS-

like architecture (predict taken = stall pipeline) 

• Given CPI=1 as the ideal: 

– Pipeline Speedup =  

 

– Results: Delayed branch slightly better 

PenaltyBranchFrequencyBranch

DepthPipeline

__1

_


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Exceptions 

• An exception is when the normal execution order of 
instructions is changed.  This has many names: 

– Interrupt 

– Fault 

– Exception 

• Examples: 

– I/O device request 

– Invoking OS service 

– Page Fault 

– Malfunction 

– Undefined instruction 

– Overflow/Arithmetic Anomaly 

– Etc! 
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Exception Characteristics 

• Synchronous vs. asynchronous 

– Synchronous when invoked by current instruction  

– Asynchronous when external device 

• User requested vs. coerced 

– Requested is predictable 

• User maskable vs. non-maskable 

– Can sometimes ignore some interrupts, e.g. overflows 

• Within vs. Between Instructions 

– Exception can happen anywhere in the pipeline 

• Resume vs. Terminate 

– Terminate if execution stops, resume if we need to return to 
some code and restart execution, must store some state 
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Stopping/Restarting Execution 

• Our sample architecture – occurs in MEM or EX stages 

• Pipeline must be shut down 

– PC saved for restart 

– Branches must be re-executed, condition code must not change 

• Steps to restart 

– Force trap instruction into pipe on next IF 

– Erase following instructions by writing all 0’s to pipeline 
latches 

– Allow preceding instructions to complete if possible 

– Let all preceding instructions complete if they can; this freezes 
the state at the time the exception is handled 

– After OS exception handling routine starts, it must save the PC 
of the faulting instruction 
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Complications 

• Saving the single PC sometimes isn’t enough 

• Using delayed branches, given two delay slots 

– Both delay slots contain branch instructions  
• Recall with delayed branches, we’ll always execute the instructions in 

the delay slots 

– Say there is an exception processing the 1st delay slot; the 2nd 
delay slot is erased 

– Upon return, the restart position is the PC which becomes the 
1st delay slot 

• We’ll then continue to execute the 2nd delay slot instruction AND the 
following instruction!  

• If we branched on the 2nd delay slot, we just executed one instruction too 
many 

– Complication arises from interaction with effective ordering in 
the delayed branch 

• Solution : save needed delay slots and PC 
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Sample Exceptions 

Pipeline Stage Exception Possibilities 

IF Page fault on IF, misaligned 

memory access, memory-

protection violation 

ID Undefined or illegal opcode 

EX Arithmetic exception 

MEM Page fault on data fetch; 

misaligned memory access; 

memory protection violation 

WB None 
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MultiCycle Operations 

• Unfortunately, it is impractical to require all 
floating point operations to complete in one clock 
cycle (or even two) 

– Could, but it would result in a seriously slow clock! 

– Consider instead the following units: 

• Integer EX 

• FP Multiply 

• FP Add 

• FP Divide 

– Problem: The FP units require multiple cycles to 
complete 
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Unpipelined FP Units 

Unit   Latency 

Int            0 

FPAdd     3 

FPMult    6 

FPDiv     24 

Solution: Pipeline FP units 
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Example: Pipelined FP Units 

Allows 4 outstanding adds, 7 multiplies, 1 int, 1 divide 

Not pipelined 

Need 24 cycles 
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New Hazard Problems! 

• Structural hazards with divide unit not fully pipelined 

• WAW hazards now possible since instructions can reach 
WB stage at different times 

– At least WAR hazards not possible, since reads still occur early 
in the ID stage 

• Instructions can complete in a different order than issued, 
causing more problems with exception handling 

• Longer latency increases frequency of stalls for RAW 
hazards 

 

• How would you tell if the efforts here are worth it? 
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Example FP Sequence with 

RAW Hazard 

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD F4, 0(R2) IF ID EX MEM WB

MULTD F0,F4,F6 IF ID STALL M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD F2, F0, F8 IF STALL ID STALL STALL STALL STALL STALL STALL A1 A2 A3 A4 MEM

Sd 0(R2), F2 IF STALL STALL STALL STALL STALL STALL ID EX STALL STALL STALL MEM

Uses forwarding for each stage when data is available 

SD stalled one extra cycle for MEM to not conflict with ADDD 
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Example FP Sequence with 

Hazards 

Instruction 1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

LD F2, 0(R2) IF ID EX MEM WB

Cycle 9: three requirements for memory 

Cycle 11: three requirements for write-back 

   More stalls 

 

What if the last instruction was issued one cycle earlier? 

    We have a WAW conflict 
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FP Pipelining Performance 

• Given all the new problems, is it worth it? 

– Overall answer is yes 

• Latency varies from 46-59% of functional units on the 

benchmarks 

– Fortunately, divides are rare 

– As before, compiler scheduling can help a lot 


