
1

1

Pipelining

Appendix A

CS A448

2

What is Pipelining?

• Like an Automobile Assembly Line for

Instructions

– Each step does a little job of processing the instruction

– Ideally each step operates in parallel

• Simple Model

– Instruction Fetch

– Instruction Decode

– Instruction Execute

F1 D1 E1

F2 D2 E2

F3 D3 E3

2

3

Ideal Pipeline Performance

• If stages are perfectly balanced:

• The more stages the better?

– Each stage typically corresponds to a clock cycle

– Stages will not be perfectly balanced

– Synchronous: Slowest stage will dominate time

– Many hazards await us

• Two ways to view pipelining

– Reduced CPI (when going from non-piped to pipelined)

– Reduced Cycle Time (when increasing pipeline depth)

StagesPipelineNumber

tructionTimePerIns
tructionTimePerIns

Unpiped

__


4

Ideal Pipeline Performance

• Implemented completely in hardware

– Exploits parallelism in a sequential instruction stream

• Invisible to the programmer!

– Not so for other forms of parallelism we will see

– Not invisible to programmer looking to optimize

– Compiler must become aware of pipelining issues

• All modern machines use pipelines

– Widely used in 80’s

– Multiple pipelines in 90’s

3

MIPS32 Instruction Formats

6

Stages for an Unpipelined MIPS-

like Machine
• Every instruction for our hypothetical MIPS-like machine

can be executed in 5 steps

1. IF – Instruction Fetch

– IR Mem[PC]

– NPC  PC + 4 ; Next Program Counter

2. ID – Instruction Decode / Register Fetch

– A  Regs[IR21..25] ; rs1

– B  Regs[IR11..15] ; rd

– Imm  (IR0..15)

 ; Sign extend immediate

– Fetch operands in parallel for later use.
• Might not be used!

• Fixed Field decoding

4

7

Stages for a MIPS-like Machine

• 3. EX - Execution / Effective Address Cycle

– There are four operations depending on the opcode decoded
from the previous stage

– Memory Reference

• ALUOutput  A + Imm ; Compute effective address

– Register-Register ALU Operation

• ALUOutput  A func B ; e.g. R1 + R2

– Register-Immediate ALU Operation

• ALUOutput  A op Imm ; e.g. R1 + 10

– Branch (can be done in Stage 2 if aggressive)

• ALUOutput  NPC + Imm ; PC based offset

• Cond  A op 0 ; e.g. op is == for BEQZ

– Note that the load/store architecture means that effective address and
execution cycles can be combined into one clock cycle since no instruction
needs to simultaneously calculate a data address and perform an ALU op

8

Stages for a MIPS-like Machine

• 4. MEM – Memory Access / Branch Completion

– There are two cases, one for memory references and
one for branches

– Both cases

• PC  NPC ; Update PC

– Memory reference

• LMD Mem[ALUOutput] ; for memory Loads

• Mem[ALUOutput]  B ; or Stores

• Note the address was previously computed in step 3

– Branch

• If (cond) PC  ALUOutput ; PC gets new address

5

9

Stages for a MIPS-like Machine

• 5. WB – Write Back

– Writes data back to the REGISTER FILE

• Memory writes were done in step 4

– Three options

– Register to Register ALU

• Regs[IR11..15]  ALUOutput ; rd for R-Type

– Register-Immediate ALU

• Regs[IR16..20]  ALUOutput ; rd for I-Type

– Load Instruction

• Regs[IR11..15]  LMD ; LMD from 4

10

Hardware Implementation of the

Datapath

Registers between stages  Pipelined

6

11

Implementation of the Stages for

a MIPS-like Machine
• Most instructions require five cycles

• Branch and Store require four clock cycles

– Which aren’t needed?

– Reduces CPI to 4.83 using 12% branch, 5% store

frequency

• Other optimizations possible

• Control Unit for five cycles?

– Finite State Machine

– Microcode (Intel)

12

Why do we need Control?

• Clock pulse controls when cycles operate

– Control determines which stages can function, what
data is passed on

– Registers are enabled or disabled via control

– Memory has read or write lines set via control

– Multiplexers, ALU, etc. must be selected

• COND selects if MUX is enabled or not for new PC value

• Control mostly ignored in the book

– We’ll do the same, but remember… it’s a complex and
important implementation issue

7

13

Adding Pipelining

• Run each stage concurrently

• Need to add registers to hold data between stages

– Pipeline registers or Pipeline latches

– Rather than ~5 cycles per instruction, 1 cycle per instruction!

– Ideal case:

• Really this simple?

– No, but it is a good idea… we’ll see the pitfalls shortly

14

Important Pipeline

Characteristics
• Latency

– Time required for an instruction to propagate through the
pipeline

– Based on the Number of Stages * Cycle Time

– Dominant if there are lots of exceptions / hazards, i.e. we have
to constantly be re-filling the pipeline

• Throughput

– The rate at which instructions can start and finish

– Dominant if there are few exceptions and hazards, i.e. the
pipeline stays mostly full

• Note we need an increased memory bandwidth over the
non-pipelined processor

8

15

Pipelining Example

• Assume the 5 stages take time 10ns, 8ns, 10ns, 10ns, and
7ns respectively

• Unpipelined

– Ave instr execution time = 10+8+10+10+7= 45 ns

• Pipelined

– Each stage introduces some overhead, say 1ns per stage

– We can only go as fast as the slowest stage!

– Each stage then takes 11ns; in steady state we execute each
instruction in 11ns

– Speedup = UnpipelinedTime / Pipelined Time
= 45ns / 11ns = 4.1 times or about a 4X speedup

Note: Actually a higher latency for pipelined instructions!

16

Pipelining Hazards
• Unfortunately, the picture presented so far is a bit too

good to be true… we have problems with hazards

• Structural

– Resource conflicts when the hardware can’t support all
combinations of overlapped stages

– e.g. Might use ALU to add 4 to PC and execute op

• Data

– An instruction depends on the results of some previous
instruction that is still being processed in the pipeline

– e.g. R1 = R2 + R3; R4 = R1 + R6; problem here?

• Control

– Branches and other instructions that change the PC

– If we branch, we may have the wrong instructions in the
pipeline

9

17

Structural Hazards

• Overlapped execution may require duplicate

resources

• Clock 4:

– Memory access for i may conflict with IF for i+4

• May solve via separate cache/buffer for instructions, data

– IF might use the ALU which conflicts with EX

18

Dealing with Hazards

• One solution: Stall

– Let the instructions later in the stage continue, and

stall the earlier instruction

• Need to do in this order, since if we stalled the later

instructions, they would become a bottleneck and nothing

else could move out of the pipeline

– Once the problem is cleared, the stall is cleared

– Often called a pipeline bubble since it floats through

the pipeline but does no useful work

• Stalls increase the CPI from its ideal value of 1

10

19

Structural Hazard Example

• Consider a CPU with a single memory pipeline

for data and instructions

– If an instruction contains a data memory reference, it

will conflict with the instruction fetch

– We will introduce a bubble while the latter instruction

waits for the first instruction to finish

20

Structural Hazard Example

11

21

Structural Hazard Example

What if Instruction 1 is also a LOAD?

No Instr

finished

in CC8

22

Alternate Depiction of Stall

12

23

Avoiding Structural Hazards

• How can we avoid structural hazards?

– Issue of cost for the designer

– E.g. allow multiple access paths to memory

• Separate access to instructions from data

– Build multiple ALU or other functional units

• Don’t forget the cost/performance tradeoff and Amdahl’s

law

– If we don’t encounter structural hazards often, it might not be

worth the expense to design hardware to address it, instead just

handle it with a stall or other method

24

Measuring Performance with

Stalls

PipedCycleClock

UnpipedCycleClock

PipelinedCPI

UnpipedCPI

PipelinedTimeInstrAve

UnpipedTimeInstrAve
PipeliningfromSpeedup

__

__
*

_

_

__





We also know that the Ideal CPI is 1:

Instrper cycles stall Pipeline 1

Instrper cycles stall Pipeline __



CPIIdealPipelinedCPI

Assuming an identical clock cycle, substitution yields:

Instrper cycles stall Pipeline1

_
__



UnpipedCPI
PipeliningfromSpeedup

13

25

Measuring Stall Performance
Given:

In our simple case each instruction takes the same number of

cycles, which is equal to the number of pipeline stages or the

pipeline depth:

nInstructioPerCyclesStall

DepthPipeline
PipeliningfromSpeedup

___1

_
__




Instrper cycles stall Pipeline1

_
__




UnpipedCPI
PipeliningfromSpeedup

If there are no pipeline stalls we get the intuitive result that

pipelining can improve performance by the depth of the pipeline.

26

How Realistic is the Pipeline

Speedup Equation?
• Good for a ballpark figure, comes close to a SWAG

• Overhead in pipeline latches shouldn’t be ignored

• Effects of pipeline depth

– Deeper pipelines have a higher probability of stalls

– Also requires additional replicated resources and higher cost

• Need to run simulations with memory, I/O systems,

cache, etc. to get a better idea of speedup

• Next we’ll examine the myriad of problems from data

hazards and control hazards to further complicate our

simple pipeline

14

27

Data Hazards

• Data hazards occur when the pipeline changes the
order of read/write accesses to operands that
differs from the normal sequential order

• Example:

– ADD R1, R2, R3

– SUB R4, R1, R5

– AND R6, R1, R7

– OR R8, R1, R9

– XOR R10, R1, R11

• Looks pretty innocent, what is the problem?

28

Data Hazard Example

Results of first ADD not available when the SUB needs it!

Any instructions correct?

Could be even worse with memory-based operands

Split

Cycle

15

29

Forwarding

• Technique to minimize data stalls as in the previous
example

• Note we’ve actually computed the correct result needed
by the other instructions, but it’s in an earlier stage

– ADD R1, R2, R3 R1 at ALUOutput

– SUB R4, R1, R4 Need R1 at ALUInput

• Forward this data to subsequent stages where it may be
needed

– ALU result automatically fed back to input latch for next stage

– Need control logic to detect if the feedback should be selected,
or the normal input operands

30

Forwarding

16

31

Scoreboarding

• One way to implement the control needed for
forwarding

• Scoreboard stores the state of the pipeline

– What stage each instruction is in

– Status of each destination register, source register

– Can determine if there is a hazard and know which
stage needs to be forwarded to what other stage

• Controls via multiplexer selection

• If state of the pipeline is incomplete

– Stalls and get pipeline bubbles

32

Another Data Hazard Example

• What are the hazards here?

– DADD R1, R2, R3

– LD R4, 0(R1)

– SD R4, 12(R1)

• Need forwarding to stages other than the same

one

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

17

33

Data Hazard Classification

• Three types of data hazards

• Instruction i comes before instruction j

– RAW : Read After Write

• j tries to read a source before i writes it, so j incorrectly gets
the old value. Solve via forwarding.

– WAW : Write After Write

• j tries to write an operand before it is written by i, so we end
up writing values in the wrong order

• Only occurs if we have writes in multiple stages
– Not a problem with single cycle integer instructions

– We’ll see this when we do floating point

34

Data Hazard Classification

• WAR : Write After Read

– j tries to write a destination before it is read by i, so i
incorrectly gets the new value

– For this to happen we need a pipeline that writes
results early in the pipeline, and then other instruction
read a source later in the pipeline

– Can this happen in our simple MIPS-like machine?

– This problem led to a flaw in the VAX

• RAR : Read After Read

– Is this a hazard?

18

35

Forwarding is not Infallible

• Unfortunately, forwarding does not handle all

cases, e.g.:

– LW R1, 0(R2)

– SUB R4, R1, R5

– AND R6, R1, R7

– OR R8, R1, R9

• Load of R1 not available until MEM, but we need

it for the second instruction in ALU

36

Data Hazard Requiring Stall

Result needed before it is even computed!

19

37

Data Hazard Stall

• Need hardware (pipeline interlock) to detect the data
hazard and introduce a vertical pipeline bubble

• Other stalls possible too

– Cache miss, stall until data available

38

Compilers to the Rescue

• Compilers can help arrange instructions to avoid

pipeline stalls, called Instruction Scheduling

• Compiler knows delay slots (the next instruction

that may conflict with a load) for typical

instruction types

– Try to move other instructions into this slot that don’t

conflict

– If one can’t be found, insert a NOP

– More formal methods to do this using dataflow graphs

20

39

Compiler Scheduling Example

• A=B+C; D =E+F

– LW R1, B

– LW R2, C

– ADD R3, R1, R2  Need to stall for R2

– SW R3, A

– LW R4, E

– LW R5, F

– ADD R6, R4, R5  Need to stall for R5

– SW R6, D

40

Compiler Scheduling Example

• A=B+C; D =E+F

– LW R1, B

– LW R2, C

– LW R4, E  Swap instr, no stall

– ADD R3, R1, R2

– LW R5, F

– SW R3, A

– ADD R6, R4, R5

– SW R6, D

21

41

Compiler Scheduling a Big Help

• Study of percentage of loads causing stalls

– TeX

• Unscheduled 65%

• Scheduled 25%

– SPICE

• Unscheduled 42%

• Scheduled 14%

– GCC

• Unscheduled 54%

• Scheduled 31%

42

Control Hazards

• Control hazards result when we branch to a new location

in the program, invalidated everything we have loaded in

our pipeline

– Potentially a greater performance loss than data hazards

– Simplest solution: Stall until we know the branch

• Actually a three cycle stall, since we may need a new IF

22

43

Control Hazards

• Big hit in performance – can reduce pipeline

efficiency by over 1/2

• To reduce the clock cycles in a branch stall:

– Find out whether the branch is taken or not taken

earlier in the pipeline

• Avoids longer stalls of everything else in the pipeline

– Compute the taken PC earlier

• Lets us fetch the next instruction with fewer stalls

44

Original Datapath

Branch not computed until EX stage, stored in Mem

23

45

Revised Datapath

Move branch logic to ID stage to reduce branch penalty

Downside – may make ID stage longer, more circuitry

46

Software-Based Branch

Reduction Penalty
• Design ISA to reduce branch penalty

– BNEZ, BEQZ, allows condition code to be known

during the ID stage

• Branch Prediction

– Compute likelihood of branching vs. not branching,

automatically fetch the most likely target

– Can be difficult; we need to know branch target in

advance

24

47

Branch Behavior

• How often are branches taken?

• One study:

– 17% branches

– 3% jumps or calls

• Taken vs. Not varies with instruction use

– If-then statement taken about 50% of the time

– Branches in loops taken 90% of the time

– Flag test branches taken very rarely

• Overall, 67% of conditional branches taken on average

– This is bad, because taking the branch results in the pipeline
stall for our typical case where we are fetching subsequent
instructions in the pipeline

48

Dealing with Branches

• Several options for dealing with branches

1. Pipeline stall until branch target known (previous case we

examined)

2. Continue fetching as if we won’t take the branch, but then

invalidate the instructions if we do take the branch

Implementation options

25

49

Dealing with Branches

3. Always fetch the branch target

– After all, most branches are taken

– Can’t do in our simple architecture because we don’t

know the target in advance of the branch outcome

– Other architectures could precompute the target

before the outcome

• Later we will see how we can store a lookup table to do

this and even better branch prediction

50

Delayed Branch Option

4. Delayed Branch - Perform instruction

scheduling into branch delay slots (instructions

after a branch)

• Always execute instructions following a branch

regardless of whether or not we take it

• Compiler will find some instructions we’ll always

execute, regardless of whether or not we take the

branch, and put in there

• Put a NOP if we can’t find anything

26

51

Delayed Branch with One Delay

Slot

Instruction in delay slot always executed

Another branch instruction not allowed to be in the delay slot

52

Example: Delay Slot Scheduling

B) and C)

execute code

that may or may

not be used, but

better than a

NOP

Form of branch

prediction –

compiler

predicts based

on context

27

53

Delay Slot Effectiveness

• Book – variations on scheme described here, branch
nullifying if branch not taken

• On benchmarks

– Delay slot allowed branch hazards to be hidden 70% of the time

– About 20% of delay slots filled with NOPs

– Delay slots we can’t easily fill: when target is another branch

• Philosophically, delay slots good?

– No longer hides the pipeline implementation from the
programmers (although it will if through a compiler)

– Does allow for compiler optimizations, other schemes don’t

– Not very effective with modern machines that have deep
pipelines, too difficult to fill multiple delay slots

54

Performance of Branch Schemes

• We can simulate the four schemes on our MIPS-

like architecture (predict taken = stall pipeline)

• Given CPI=1 as the ideal:

– Pipeline Speedup =

– Results: Delayed branch slightly better

PenaltyBranchFrequencyBranch

DepthPipeline

__1

_



28

55

Exceptions

• An exception is when the normal execution order of
instructions is changed. This has many names:

– Interrupt

– Fault

– Exception

• Examples:

– I/O device request

– Invoking OS service

– Page Fault

– Malfunction

– Undefined instruction

– Overflow/Arithmetic Anomaly

– Etc!

56

Exception Characteristics

• Synchronous vs. asynchronous

– Synchronous when invoked by current instruction

– Asynchronous when external device

• User requested vs. coerced

– Requested is predictable

• User maskable vs. non-maskable

– Can sometimes ignore some interrupts, e.g. overflows

• Within vs. Between Instructions

– Exception can happen anywhere in the pipeline

• Resume vs. Terminate

– Terminate if execution stops, resume if we need to return to
some code and restart execution, must store some state

29

57

Stopping/Restarting Execution

• Our sample architecture – occurs in MEM or EX stages

• Pipeline must be shut down

– PC saved for restart

– Branches must be re-executed, condition code must not change

• Steps to restart

– Force trap instruction into pipe on next IF

– Erase following instructions by writing all 0’s to pipeline
latches

– Allow preceding instructions to complete if possible

– Let all preceding instructions complete if they can; this freezes
the state at the time the exception is handled

– After OS exception handling routine starts, it must save the PC
of the faulting instruction

58

Complications

• Saving the single PC sometimes isn’t enough

• Using delayed branches, given two delay slots

– Both delay slots contain branch instructions
• Recall with delayed branches, we’ll always execute the instructions in

the delay slots

– Say there is an exception processing the 1st delay slot; the 2nd
delay slot is erased

– Upon return, the restart position is the PC which becomes the
1st delay slot

• We’ll then continue to execute the 2nd delay slot instruction AND the
following instruction!

• If we branched on the 2nd delay slot, we just executed one instruction too
many

– Complication arises from interaction with effective ordering in
the delayed branch

• Solution : save needed delay slots and PC

30

59

Sample Exceptions

Pipeline Stage Exception Possibilities

IF Page fault on IF, misaligned

memory access, memory-

protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch;

misaligned memory access;

memory protection violation

WB None

60

MultiCycle Operations

• Unfortunately, it is impractical to require all
floating point operations to complete in one clock
cycle (or even two)

– Could, but it would result in a seriously slow clock!

– Consider instead the following units:

• Integer EX

• FP Multiply

• FP Add

• FP Divide

– Problem: The FP units require multiple cycles to
complete

31

61

Unpipelined FP Units

Unit Latency

Int 0

FPAdd 3

FPMult 6

FPDiv 24

Solution: Pipeline FP units

62

Example: Pipelined FP Units

Allows 4 outstanding adds, 7 multiplies, 1 int, 1 divide

Not pipelined

Need 24 cycles

32

63

New Hazard Problems!

• Structural hazards with divide unit not fully pipelined

• WAW hazards now possible since instructions can reach
WB stage at different times

– At least WAR hazards not possible, since reads still occur early
in the ID stage

• Instructions can complete in a different order than issued,
causing more problems with exception handling

• Longer latency increases frequency of stalls for RAW
hazards

• How would you tell if the efforts here are worth it?

64

Example FP Sequence with

RAW Hazard

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD F4, 0(R2) IF ID EX MEM WB

MULTD F0,F4,F6 IF ID STALL M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD F2, F0, F8 IF STALL ID STALL STALL STALL STALL STALL STALL A1 A2 A3 A4 MEM

Sd 0(R2), F2 IF STALL STALL STALL STALL STALL STALL ID EX STALL STALL STALL MEM

Uses forwarding for each stage when data is available

SD stalled one extra cycle for MEM to not conflict with ADDD

33

65

Example FP Sequence with

Hazards

Instruction 1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

LD F2, 0(R2) IF ID EX MEM WB

Cycle 9: three requirements for memory

Cycle 11: three requirements for write-back

 More stalls

What if the last instruction was issued one cycle earlier?

 We have a WAW conflict

66

FP Pipelining Performance

• Given all the new problems, is it worth it?

– Overall answer is yes

• Latency varies from 46-59% of functional units on the

benchmarks

– Fortunately, divides are rare

– As before, compiler scheduling can help a lot

