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Intro to GPU’s for Parallel 
Computing 

Goals for Rest of Course 

• Learn how to program massively parallel 
processors and achieve 
– high performance 
– functionality and maintainability 
– scalability across future generations 

• Acquire technical knowledge required to achieve 
the above goals 
– principles and patterns of parallel programming 
– processor architecture features and constraints 
– programming API, tools and techniques 

• Overview of architecture first, then introduce 
architecture as we go 
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Equipment 

• Your own, if CUDA-enabled; will use CUDA SDK in C 
– Compute Unified Device Architecture 
– NVIDIA G80 or newer 
– G80 emulator won’t quite work 

• Lab machine – Tesla 
– Ubuntu 
– Quad core Xeon, 2 Ghz 
– 16 Gb memory 
– Two Tesla C1060 “Tesla C1060 Computing Processor Board” 

• 240 Cores 
• 1.3 Ghz Clock 
• 4 Gb memory 

– MD5 test 
• Average 363.67 Mhash/s 
• 2x 3.2 Ghz Xeon: 42 Mhash/s 

 

 

Equipment 

• May use our Beowulf cluster for MPI, 
beancounter.math.uaa.alaska.edu 

– 13 custom-built boxes each containing a dual 
processor 1 Ghz Pentium III, 768 Mb of shared 
memory 

– Total of 27 nodes, including the master.  

– NetBSD 2.0F 

– Connected through a 100Mbps switch. 
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Why Massively Parallel Processors 
• A quiet revolution and potential build-up 

– 2006 Calculation: 367 GFLOPS vs. 32 GFLOPS 
– G80 Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s 
– Until recently, programmed through graphics API 

 

 
 

 
 
 
 
 
 

 
– GPU in every PC and workstation – massive volume and potential 

impact 
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CPUs and GPUs have fundamentally 
different design philosophies 
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Architecture of a CUDA-capable GPU 

Streaming 
Processor 
(SP) 

Streaming 
Multiprocessor 
(SM) 

Building 
Block 

30 SM’s each with 8 SP’s on the C1060 

GT200 Characteristics 
• 1 TFLOPS  peak performance (25-50 times of current high-

end microprocessors) 
• 265 GFLOPS sustained for apps such as Visual Molecular 

Dynamics (VMD) 
• Massively parallel, 128 cores, 90W 
• Massively threaded, sustains 1000s of threads per app 
• 30-100 times speedup over high-end microprocessors on 

scientific and media applications: medical imaging, 
molecular dynamics 

 
“I think they're right on the money, but the huge performance  

differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)  
will invite close scrutiny so I have to be careful what I say 
publically until I triple check those numbers.”     

  -John Stone, VMD group, Physics UIUC 
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Future Apps Reflect a Concurrent 
World 

• Exciting applications in future mass computing 
market have been traditionally considered 
“supercomputing applications” 
– Molecular dynamics simulation, Video and audio coding and 

manipulation, 3D imaging and visualization, Consumer game 
physics, and virtual reality products  

–These “Super-apps” represent and model physical, 
concurrent world 

• Various granularities of parallelism exist, but… 
– programming model must not hinder parallel implementation 
– data delivery needs careful management 

Traditional applications

Current architecture 

coverage

New applications

Domain-specific

architecture coverage

Obstacles

Stretching Traditional Architectures  
• Traditional parallel architectures cover some super-

applications 
– DSP, GPU, network apps, Scientific 

• The game is to grow mainstream architectures “out” or 
domain-specific architectures “in” 
– CUDA is latter 
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Sample of Previous GPU Projects 
Application Description Source Kernel % time  

H.264 SPEC ‘06 version, change in guess vector 34,811 194 35% 

LBM SPEC ‘06 version, change to single precision 

and print fewer reports 
1,481 285 >99% 

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99% 

FEM Finite element modeling, simulation of 3D 

graded materials 
1,874 146 99% 

RPES Rye Polynomial Equation Solver, quantum 

chem, 2-electron repulsion 
1,104 281 99% 

PNS Petri Net simulation of a distributed system 322 160 >99% 

SAXPY Single-precision implementation of saxpy, 

used in Linpack’s Gaussian elim. routine 
952 31 >99% 

TRACF Two Point Angular Correlation Function 536 98 96% 

FDTD Finite-Difference Time Domain analysis of 

2D electromagnetic wave propagation 
1,365 93 16% 

MRI-Q Computing a matrix Q, a scanner’s 

configuration in MRI reconstruction 
490 33 >99% 

Speedup of Applications 

• GeForce 8800 GTX vs. 2.2GHz Opteron 248  

• 10 speedup in a kernel is typical, as long as the kernel can occupy 
enough parallel threads 

• 25 to 400 speedup if the function’s data requirements and control 
flow suit the GPU and the application is optimized 
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