
10/18/2010

1

Intro to GPU’s for Parallel
Computing

Goals for Rest of Course

• Learn how to program massively parallel
processors and achieve
– high performance
– functionality and maintainability
– scalability across future generations

• Acquire technical knowledge required to achieve
the above goals
– principles and patterns of parallel programming
– processor architecture features and constraints
– programming API, tools and techniques

• Overview of architecture first, then introduce
architecture as we go

10/18/2010

2

Equipment

• Your own, if CUDA-enabled; will use CUDA SDK in C
– Compute Unified Device Architecture
– NVIDIA G80 or newer
– G80 emulator won’t quite work

• Lab machine – Tesla
– Ubuntu
– Quad core Xeon, 2 Ghz
– 16 Gb memory
– Two Tesla C1060 “Tesla C1060 Computing Processor Board”

• 240 Cores
• 1.3 Ghz Clock
• 4 Gb memory

– MD5 test
• Average 363.67 Mhash/s
• 2x 3.2 Ghz Xeon: 42 Mhash/s

Equipment

• May use our Beowulf cluster for MPI,
beancounter.math.uaa.alaska.edu

– 13 custom-built boxes each containing a dual
processor 1 Ghz Pentium III, 768 Mb of shared
memory

– Total of 27 nodes, including the master.

– NetBSD 2.0F

– Connected through a 100Mbps switch.

10/18/2010

3

Why Massively Parallel Processors
• A quiet revolution and potential build-up

– 2006 Calculation: 367 GFLOPS vs. 32 GFLOPS
– G80 Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
– Until recently, programmed through graphics API

– GPU in every PC and workstation – massive volume and potential

impact

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

CPUs and GPUs have fundamentally
different design philosophies

10/18/2010

4

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Architecture of a CUDA-capable GPU

Streaming
Processor
(SP)

Streaming
Multiprocessor
(SM)

Building
Block

30 SM’s each with 8 SP’s on the C1060

GT200 Characteristics
• 1 TFLOPS peak performance (25-50 times of current high-

end microprocessors)
• 265 GFLOPS sustained for apps such as Visual Molecular

Dynamics (VMD)
• Massively parallel, 128 cores, 90W
• Massively threaded, sustains 1000s of threads per app
• 30-100 times speedup over high-end microprocessors on

scientific and media applications: medical imaging,
molecular dynamics

“I think they're right on the money, but the huge performance

differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)
will invite close scrutiny so I have to be careful what I say
publically until I triple check those numbers.”

 -John Stone, VMD group, Physics UIUC

10/18/2010

5

9

Future Apps Reflect a Concurrent
World

• Exciting applications in future mass computing
market have been traditionally considered
“supercomputing applications”
– Molecular dynamics simulation, Video and audio coding and

manipulation, 3D imaging and visualization, Consumer game
physics, and virtual reality products

–These “Super-apps” represent and model physical,
concurrent world

• Various granularities of parallelism exist, but…
– programming model must not hinder parallel implementation
– data delivery needs careful management

Traditional applications

Current architecture

coverage

New applications

Domain-specific

architecture coverage

Obstacles

Stretching Traditional Architectures
• Traditional parallel architectures cover some super-

applications
– DSP, GPU, network apps, Scientific

• The game is to grow mainstream architectures “out” or
domain-specific architectures “in”
– CUDA is latter

10/18/2010

6

Sample of Previous GPU Projects
Application Description Source Kernel % time

H.264 SPEC ‘06 version, change in guess vector 34,811 194 35%

LBM SPEC ‘06 version, change to single precision

and print fewer reports
1,481 285 >99%

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99%

FEM Finite element modeling, simulation of 3D

graded materials
1,874 146 99%

RPES Rye Polynomial Equation Solver, quantum

chem, 2-electron repulsion
1,104 281 99%

PNS Petri Net simulation of a distributed system 322 160 >99%

SAXPY Single-precision implementation of saxpy,

used in Linpack’s Gaussian elim. routine
952 31 >99%

TRACF Two Point Angular Correlation Function 536 98 96%

FDTD Finite-Difference Time Domain analysis of

2D electromagnetic wave propagation
1,365 93 16%

MRI-Q Computing a matrix Q, a scanner’s

configuration in MRI reconstruction
490 33 >99%

Speedup of Applications

• GeForce 8800 GTX vs. 2.2GHz Opteron 248

• 10 speedup in a kernel is typical, as long as the kernel can occupy
enough parallel threads

• 25 to 400 speedup if the function’s data requirements and control
flow suit the GPU and the application is optimized

0

1 0

2 0

3 0

4 0

5 0

6 0

H.264 L BM RC5-72 F EM RPES PNS SAXPY T PACF F DT D M RI-Q M RI-

F HD

Ke rn e l

Ap p lic a tio n

210 457
431

316
263

G
P

U
 S

p
e

e
d

u
p

R
e

la
ti
v
e

 t
o

 C
P

U

79

