3/21/2017

Intro to GPU’s for Parallel
Computing

Goals for Rest of Course

* Learn how to program massively parallel
processors and achieve
— high performance
— functionality and maintainability
— scalability across future generations

* Acquire technical knowledge required to achieve
the above goals
— principles and patterns of parallel programming
— processor architecture features and constraints
— programming API, tools and techniques

* QOverview of architecture first, then introduce
architecture as we go

3/21/2017

Equipment

* Your own, if CUDA-enabled; will use CUDA SDK in C
— Compute Unified Device Architecture
— NVIDIA G80 or newer
— G80 emulator won’t quite work
* Lab machine — uaa-csetesla.duckdns.org
— Ubuntu
— two Intel Xeon E5-2609 @2.4Ghz, each four cores
— 128 Gb memory

— Two nVidia Quadro 4000’s
* 256 CUDA Cores
* 1 Ghz Clock
* 2 Gb memory

Why Massively Parallel Processors

* A quiet revolution and potential build-up
— 2006 Calculation: 367 GFLOPS vs. 32 GFLOPS
— G80 Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
— Until recently, programmed through graphics API

&= AMD (GPU)
=—= NVIDIA (GPU)
000 |- [#==t 1ntel (CPU)

— GPU in every PC and workstation — massive volume and potential
impact

3/21/2017

CPUs and GPUs have fundamentally
different design philosophies

Architecture of a CUDA-capable GPU

Streaming
Building .
Block I\;I:/:tlprocessor Streaming
(SM) Processor
(SP) \

st e 1
| 1

[
4

H 4

32 SM’s each with 8 SP’s on one Quadro 4000

> |

3/21/2017

GT200 Characteristics

* 1TFLOPS peak performance (25-50 times of current high-
end microprocessors)

* 265 GFLOPS sustained for apps such as Visual Molecular
Dynamics (VMD)

* Massively parallel, 128 cores, 90W

* Massively threaded, sustains 1000s of threads per app

* 30-100 times speedup over high-end microprocessors on
scientific and media applications: medical imaging,
molecular dynamics

“I think they're right on the money, but the huge performance
differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)
will invite close scrutiny so | have to be careful what | say
publically until | triple check those numbers.”

-John Stone, VMD group, Physics UIUC

Future Apps Reflect a Concurrent
World

* Exciting applications in future mass computing
market have been traditionally considered
“supercomputing applications”

— Molecular dynamics simulation, Video and audio coding and
manipulation, 3D imaging and visualization, Consumer game
physics, and virtual reality products

—These “Super-apps” represent and model physical,
concurrent world
 Various granularities of parallelism exist, but...

— programming model must not hinder parallel implementation
— data delivery needs careful management

Sample of Previous GPU Projects

Application | Description Source| Kernel | % time
H 264 SPEC ‘06 version, change in guess vector 34,811 194 35%
SPEC ‘06 version, change to single precision 0
LBM and print fewer reports 1’481 285 >99 A)
RC5-72 Distributed.net RC5-72 challenge client code 1’979 218 >0004
Finite element modeling, simulation of 3D 0
FEM graded materials 1’874 146 99 %
Rye Polynomial Equation Solver, quantum 0
RPES chem, 2-electron repulsion 1’104 281 99 /O
P NS Petri Net simulation of a distributed system 322 160 >99%
Single-precision implementation of saxpy, 0,
SAXPY used in Linpack’s Gaussian elim. routine 952 31 >99 A)
TRACF Two Point Angular Correlation Function 536 98 96%
Finite-Difference Time Domain analysis of 0
FDTD 2D electromagnetic wave propagation 1’365 93 16 A)
. Computing a matrix Q, a scanner’s 0
MRI Q configuration in MRI reconstruction 490 33 >99 %o
Speedup of Applications
210 457 316
79 431 263
60
o
>
204l pplication
o 2
g
2 S 20
Oy,
0 i

H.264 LBM RC5-72 FEM RPES PNS SAXPY TPACF FDTD MRI-Q MRI-

* GeForce 8800 GTX vs. 2.2GHz Opteron 248 FHD

* 10x speedup in a kernel is typical, as long as the kernel can occupy
enough parallel threads

* 25x to 400x speedup if the function’s data requirements and control
flow suit the GPU and the application is optimized

3/21/2017

GPU History
CUDA

Graphics Pipeline Elements

1. A scene description: vertices, triangles, colors,
lighting

2. Transformations that map the scene to a
camera viewpoint

3. “Effects”: texturing, shadow mapping, lighting
calculations

4.Rasterizing: converting geometry into pixels

5.Pixel processing: depth tests, stencil tests, and
other per-pixel operations.

3/21/2017

CPU

GPU

Vertex A leed FunCtion

Cache . .
GPU Pipeline
Trange Senp
Il
[l
Texture
Cache
o]
11
FBI

Texture image

texture image

Texture mapping example: painting a world map
texture image onto a globe object.

Sphere with texture

3/21/2017

Anti-Aliasing Example

oo o ditiie,0e 0000
o]0
T o000 0000oe

00000000000

Anti-Aliased

Triangle Geometry

Programmable Vertex and Pixel Processors

3D Application
or Game

3D API
Commands
3D API: C P U
OpenGL or
Direct3D
CPU - GPU Boundary

GPU Assembled GPU
Command & Polygons, Pixel
Data Stream Vertex Index Lines, and Location Pixel
GPU Stream Points Stream Updates
Front Primitive Rastenzatlt_)n & Raster Eramebuffer
End Assembly Interpolation Ops

Pre-transformed
Vertices

T " d Rasterized
V’a”,S OMMEA pre-transformed
ertices Fragments

Transformed
Fragments

Programmable
L Vertex
Processor

Programmable
Fragment
Processor

An example of separate vertex processor and fragment processor in
a programmable graphics pipeline

3/21/2017

3/21/2017

GeForce 8800 GPU

« 2006 — Mapped the separate programmable graphics
stages to an array of unified processors

— Logical graphics pipeline visits processors three times with
fixed-function graphics logic between visits

— Load balancing possible; different rendering algorithms
present different loads among the programmable stages
« Dynamically allocated from unified processors

 Functionality of vertex and pixel shaders identical to
the programmer

— geometry shader to process all vertices of a primitive
instead of vertices in isolation

Unified Graphics Pipeline GeForce
8800

Host

Data Assembler Setup / Rstr / ZCull

Vtx Thread Issue Geom Thread Issue Pixel Thread Issue

52 53 I {52 2
IO
IO

~— Thread Processor

3/21/2017

What is (Historical) GPGPU ?

» General Purpose computation using GPU and graphics API in
applications other than 3D graphics
— GPU accelerates critical path of application

+ Data parallel algorithms leverage GPU attributes
— Large data arrays, streaming throughput
— Fine-grain SIMD parallelism mG P U
— Low-latency floating point (FP) computation

» Applications — see http://gpgpu.org

— Game effects (FX) physics, image processing

— Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting

Previous GPGPU Constraints

 Dealing with graphics API o
— Working with the corner cases of the

graphics API
+ Addressing modes
— Limited texture size/dimension
e T
 Shader capabilities |
— Limited outputs

. -]
» |nstruction sets

— Lack of Integer & bit ops
« Communication limited

— Between pixels

— Scatter afi]=p

10

Tesla GPU

* NVIDIA developed a more general purpose GPU
« Can programming it like a regular processor

» Must explicitly declare the data parallel parts of the
workload

— Shader processors > fully programming processors with
instruction memory, cache, sequencing logic

— Memory load/store instructions with random byte
addressing capability

— Parallel programming model primitives; threads, barrier
synchronization, atomic operations

CUDA

» “Compute Unified Device Architecture”

» General purpose programming model
— User kicks off batches of threads on the GPU
— GPU = dedicated super-threaded, massively data parallel co-processor

» Targeted software stack
— Compute oriented drivers, language, and tools

* Driver for loading computation programs into GPU
— Standalone Driver - Optimized for computation
— Interface designed for compute — graphics-free API
— Data sharing with OpenGL buffer objects
— Guaranteed maximum download & readback speeds
— Explicit GPU memory management

3/21/2017

11

http://www.opengl.org/

Parallel Computing on a GPU

8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications \
— Available in laptops, desktops, and clusters GeForce 8800

GPU parallelism is doubling every year
Programming model scales transparently Tes|a D870
Programmable in C with CUDA tools

Multithreaded SPMD model uses application
data parallelism and thread parallelism

Tesla S870

Overview

CUDA programming model — basic concepts and
data types

CUDA application programming interface - basic

Simple examples to illustrate basic concepts and
functionalities

Performance features will be covered later

3/21/2017

12

3/21/2017

CUDA — C with no shader limitations!

 Integrated host+device app C program
— Serial or modestly parallel parts in host C code
— Highly parallel parts in device SPMD/SIMT kernel C code

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

CUDA Devices and Threads

« A compute device
— Is acoprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel
— s typically a GPU but can also be another type of parallel processing
device
» Data-parallel portions of an application are expressed as device
kernels which run on many threads

« Differences between GPU and CPU threads
— GPU threads are extremely lightweight
* Very little creation overhead
— GPU needs 1000s of threads for full efficiency
» Multi-core CPU needs only a few

13

G80 CUDA mode — A Device Example

» Processors execute computing threads
* New operating mode/HW interface for computing

Host

Input Assembler

NI O O
N
NI O O
N
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

reuure | recore] recorel e [rosure T Tress s [Trenurel

Extended C

__device float filter|[N];

Type Qualifiers
— global, device, shared,
local, host

Keywords

— threadldx, blockldx
Intrinsics

— __syncthreads

Runtime API

— Memory, symbol,
execution management

Function launch

__global__ void convolve

__shared float region

(float *image)

[M];

region[threadIdx] = image[i];

__syncthreads ()

image([j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc (bytes)

// 100 blocks, 10 threads

per block

convolve<<<100, 10>>> (myimage);

{

3/21/2017

14

3/21/2017

CUDA Platform

GPU Computing Applications

Libraries and Middleware

bLr VSIPL

CUBLAS CULA Thrust S PhysX MATLAB
CURAND MAGMA NPP OptiX Mathematica
CUSPARSE e

Programming Languages

Directives
{e.g. OpenACC)

CUDA Platform

v Applications CUDA Libraries Integrated CPU+GPL Code
CUDA Libraries CUDA Compiler
CUDA Runtime Cuba m{?m CPU Hast Code
CUDA Driver cuDA tha Efirrre e
& Runtime Profiler
GPU | GPU | cPU

30

15

3/21/2017

Arrays of Parallel Threads

« A CUDA kernel is executed by an array of
threads
— All threads run the same code (SPMD)

— Each thread has an ID that it uses to compute
memory addresses and make control decisions

threadID [of1]2[3]4]s]6]7]

float x = input[threadID];

float y = func(x);
output[threadID] = y;

Thread Blocks: Scalable Cooperation

 Divide monolithic thread array into multiple blocks

— Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

— Threads in different blocks cannot cooperate
— Up to 65535 blocks, 512 threads/block

Thread Block 0 Thread Block 1 Thread Block N - 1

threadrp || 2] 2[3]<[s]¢] 7] Lol a2 s <[s[e]7] [o] 2] 2] o] <[s] o] 7]

float x =
input[threadID] ;
float y = func(x);

float x =
input[threadID] ;
float y = func(x);

)i
output [threadID] = y; output[threadID] = y; output [threadID] = y;

16

Block IDs and Thread IDs

We launch a “grid” of “blocks”
of “threads”

Each thread uses IDs to decide
what data to work on

— Block ID: 1D, 2D, or 3D
Usually 1D or 2D

— Thread ID: 1D, 2D, or 3D \

Simplifies memory
addressing when processing
multidimensional data

— Image processing

Device

Grid 1

Block
(0,0)

Block
(1,0)

Block”
99

Block
(L1 i

’

7
L

’
Kernel —
’

Grid2 [

)]

\
\
|l
\
\

4

Block (1, 1

— Solving PDEs on volumes

CUDA Memory Model Overview

+ Global memory

— Main means of
communicating
Data between host aQd
device

— Contents visible to all
threads

— Long latency access
» We will focus on global
memory for now

— Constant and texture
memory will come later

Courtesy: NDVIA

Grid

Block (0, 0)

=

Block (1, 0)

=

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

[}

[}

4

[}

3/21/2017

17

CUDA Device Memory Allocation

 cudaMalloc()
— Allocates object in the
device Global Memory
— Requires two parameters

« Address of a pointer to the
allocated object

« Size of allocated object
* cudaFree()

— Frees object from device
Global Memory
« Pointer to freed object

Grid

Block (0, 0)

v

Block (1, 0)

—

Thread (0, 0)| Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

4

4

DON’T use a CPU
pointer in a GPU

function !

35

CUDA Device Memory Allocation (cont.)

« Code example:

— Allocate a 64 * 64 single precision float array
— Attach the allocated storage to Md
— “d” is often used to indicate a device data structure

TILE_WIDTH = 64;
float* Md;

int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);

cudaFree(Md);

3/21/2017

18

CUDA Host-Device Data Transfer

« cudaMemcpy()

— memory data transfer erd

— Requires four parameters Block (0, 0)

» Pointer to destination
 Pointer to source
» Number of bytes copied * *

Block (1, 0)

—

» Type of transfer Thread (0, 0)| | Thread (1, 0)
— Host to Host TN\ % 3

Thread (0, 0)

Thread (1, 0)

4

4

— Host to Device
— Device to Host

=

— Device to Device

» Non-blocking/asynchronous
transfer

CUDA Host-Device Data Transfer

(cont.)

» Code example:
— Transfer a 64 * 64 single precision float array

— M is in host memory and Md is in device memory

— cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

3/21/2017

19

CUDA Keywords

CUDA Function Declarations

Executed | Only callable
on the: from the:
__device__ float DeviceFunc() device device
__global _ void KernelFunc() device host
__host_ float HostFunc() host host
 __global _ defines akernel function

— Must return void

3/21/2017

20

CUDA Function Declarations (cont.)

« _ device__ functions cannot have their
address taken

 For functions executed on the device:
— No recursion
— No static variable declarations inside the function
— No variable number of arguments

Calling a Kernel Function — Thread Creation

« A kernel function must be called with an execution
configuration:

__global void KernelFunc(...);

dim3 DimGrid (100, 50); // 5000 thread blocks
dim3 DimBlock (4, 8, 8); // 256 threads per block

size t SharedMemBytes 64; // 64 bytes of shared

memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

» Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

3/21/2017

21

3/21/2017

Next Time

» Code example

22

