Intro to GPU's for Parallel Computing

Goals for Rest of Course

- Learn how to program massively parallel processors and achieve
 - high performance
 - functionality and maintainability
 - scalability across future generations
- Acquire technical knowledge required to achieve the above goals
 - principles and patterns of parallel programming
 - processor architecture features and constraints
 - programming API, tools and techniques
- Overview of architecture first, then introduce architecture as we go

Equipment

- · Your own, if CUDA-enabled; will use CUDA SDK in C
 - Compute Unified Device Architecture
 - NVIDIA G80 or newer
 - G80 emulator won't quite work
- Lab machine uaa-csetesla.duckdns.org
 - Ubuntu
 - two Intel Xeon E5-2609 @2.4Ghz, each four cores
 - 128 Gb memory
 - Two nVidia Quadro 4000's
 - 256 CUDA Cores
 - 1 Ghz Clock
 - · 2 Gb memory

Why Massively Parallel Processors

- A guiet revolution and potential build-up
 - 2006 Calculation: 367 GFLOPS vs. 32 GFLOPS
 - G80 Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 - Until recently, programmed through graphics API

GPU in every PC and workstation – massive volume and potential impact

CPUs and GPUs have fundamentally different design philosophies

Architecture of a CUDA-capable GPU

32 SM's each with 8 SP's on one Quadro 4000

GT200 Characteristics

- 1 TFLOPS peak performance (25-50 times of current highend microprocessors)
- 265 GFLOPS sustained for apps such as Visual Molecular Dynamics (VMD)
- Massively parallel, 128 cores, 90W
- Massively threaded, sustains 1000s of threads per app
- 30-100 times speedup over high-end microprocessors on scientific and media applications: medical imaging, molecular dynamics

"I think they're right on the money, but the huge performance differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s) will invite close scrutiny so I have to be careful what I say publically until I triple check those numbers."

-John Stone, VMD group, Physics UIUC

Future Apps Reflect a Concurrent World

- Exciting applications in future mass computing market have been traditionally considered "supercomputing applications"
 - Molecular dynamics simulation, Video and audio coding and manipulation, 3D imaging and visualization, Consumer game physics, and virtual reality products
 - These "Super-apps" represent and model physical, concurrent world
- Various granularities of parallelism exist, but...
 - programming model must not hinder parallel implementation
 - data delivery needs careful management

Sample of Previous GPU Projects

Application	Description	Source	Kernel	% time
H.264	SPEC '06 version, change in guess vector	34,811	194	35%
LBM	SPEC '06 version, change to single precision and print fewer reports	1,481	285	>99%
RC5-72	Distributed.net RC5-72 challenge client code	1,979	218	>99%
FEM	Finite element modeling, simulation of 3D graded materials	1,874	146	99%
RPES	Rye Polynomial Equation Solver, quantum chem, 2-electron repulsion	1,104	281	99%
PNS	Petri Net simulation of a distributed system	322	160	>99%
SAXPY	Single-precision implementation of saxpy, used in Linpack's Gaussian elim. routine	952	31	>99%
TRACF	Two Point Angular Correlation Function	536	98	96%
FDTD	Finite-Difference Time Domain analysis of 2D electromagnetic wave propagation	1,365	93	16%
MRI-Q	Computing a matrix Q, a scanner's configuration in MRI reconstruction	490	33	>99%

Speedup of Applications

- GeForce 8800 GTX vs. 2.2GHz Opteron 248
- $\bullet\,$ 10× speedup in a kernel is typical, as long as the kernel can occupy enough parallel threads
- $25\times$ to $400\times$ speedup if the function's data requirements and control flow suit the GPU and the application is optimized

GPU History CUDA

Graphics Pipeline Elements

- 1. A scene description: vertices, triangles, colors, lighting
- 2. Transformations that map the scene to a camera viewpoint
- 3. "Effects": texturing, shadow mapping, lighting calculations
- 4. Rasterizing: converting geometry into pixels
- 5. Pixel processing: depth tests, stencil tests, and other per-pixel operations.

Anti-Aliasing Example

Programmable Vertex and Pixel Processors

An example of separate vertex processor and fragment processor in a programmable graphics pipeline

GeForce 8800 GPU

- 2006 Mapped the separate programmable graphics stages to an array of unified processors
 - Logical graphics pipeline visits processors three times with fixed-function graphics logic between visits
 - Load balancing possible; different rendering algorithms present different loads among the programmable stages
 - · Dynamically allocated from unified processors
- Functionality of vertex and pixel shaders identical to the programmer
 - geometry shader to process all vertices of a primitive instead of vertices in isolation

Unified Graphics Pipeline GeForce 8800

What is (Historical) GPGPU?

- General Purpose computation using GPU and graphics API in applications other than 3D graphics
 - GPU accelerates critical path of application
- Data parallel algorithms leverage GPU attributes
 - Large data arrays, streaming throughput
 - Fine-grain SIMD parallelism
 - Low-latency floating point (FP) computation
- Applications see http://gpgpu.org
 - Game effects (FX) physics, image processing
 - Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

Previous GPGPU Constraints

- Dealing with graphics API
 - Working with the corner cases of the graphics API
- Addressing modes
 - Limited texture size/dimension
- Shader capabilities
 - Limited outputs
- Instruction sets
 - Lack of Integer & bit ops
- Communication limited
 - Between pixels
 - Scatter a[i] = p

GPGPU

Tesla GPU

- NVIDIA developed a more general purpose GPU
- Can programming it like a regular processor
- Must explicitly declare the data parallel parts of the workload
 - Shader processors → fully programming processors with instruction memory, cache, sequencing logic
 - Memory load/store instructions with random byte addressing capability
 - Parallel programming model primitives; threads, barrier synchronization, atomic operations

CUDA

- "Compute Unified Device Architecture"
- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel co-processor
- Targeted software stack
 - Compute oriented drivers, language, and tools
- Driver for loading computation programs into GPU
 - Standalone Driver Optimized for computation
 - Interface designed for compute graphics-free API
 - Data sharing with OpenGL buffer objects
 - Guaranteed maximum download & readback speeds
 - Explicit GPU memory management

Parallel Computing on a GPU

- 8-series GPUs deliver 25 to 200+ GFLOPS on compiled parallel C applications
 - Available in laptops, desktops, and clusters
- GPU parallelism is doubling every year
- Programming model scales transparently
- Programmable in C with CUDA tools
- Multithreaded SPMD model uses application data parallelism and thread parallelism

Tesla S870

Overview

- CUDA programming model basic concepts and data types
- CUDA application programming interface basic
- Simple examples to illustrate basic concepts and functionalities
- Performance features will be covered later

CUDA – C with no shader limitations!

- Integrated host+device app C program
 - Serial or modestly parallel parts in host C code
 - Highly parallel parts in device SPMD/SIMT kernel C code

CUDA Devices and Threads

- A compute device
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel
 - Is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - · Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - · Multi-core CPU needs only a few

G80 CUDA mode – A **Device** Example

- Processors execute computing threads
- New operating mode/HW interface for computing

Extended C

- Type Qualifiers
 - global, device, shared, local, host
- Keywords
 - threadIdx, blockIdx
- Intrinsics
 - __syncthreads
- Runtime API
 - Memory, symbol, execution management
- Function launch

```
__device__ float filter[N];
__global__ void convolve (float *image) {
    __shared__ float region[M];
    ...
    region[threadIdx] = image[i];
    __syncthreads()
    ...
    image[j] = result;
}
// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);
```

CUDA Platform

CUDA Platform

30

Arrays of Parallel Threads

- A CUDA kernel is executed by an array of threads
 - All threads run the same code (SPMD)
 - Each thread has an ID that it uses to compute memory addresses and make control decisions

Thread Blocks: Scalable Cooperation

- Divide monolithic thread array into multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks cannot cooperate
 - Up to 65535 blocks, 512 threads/block

Block IDs and Thread IDs

CUDA Memory Model Overview

Global memory

• We will focus on global memory for now

Constant and texture memory will come later

CUDA Device Memory Allocation

- cudaMalloc()
 - Allocates object in the device Global Memory
 - Requires two parameters
 - Address of a pointer to the allocated object
 - Size of allocated object
- cudaFree()
 - Frees object from device Global Memory
 - Pointer to freed object

DON'T use a CPU pointer in a GPU function!

35

CUDA Device Memory Allocation (cont.)

- Code example:
 - Allocate a 64 * 64 single precision float array
 - Attach the allocated storage to Md
 - "d" is often used to indicate a device data structure

```
TILE_WIDTH = 64;
float* Md;
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);
```

cudaMalloc((void**)&Md, size); cudaFree(Md);

CUDA Host-Device Data Transfer

- cudaMemcpy()
 - memory data transfer
 - Requires four parameters
 - · Pointer to destination
 - · Pointer to source
 - Number of bytes copied
 - · Type of transfer
 - Host to Host
 - Host to Device
 - Device to Host
 - Device to Device

Non-blocking/asynchronous transfer

CUDA Host-Device Data Transfer (cont.)

- Code example:
 - Transfer a 64 * 64 single precision float array
 - M is in host memory and Md is in device memory
 - cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

CUDA Keywords

CUDA Function Declarations

	Executed on the:	Only callable from the:
device float DeviceFunc()	device	device
global void KernelFunc()	device	host
host float HostFunc()	host	host

- __global__ defines a kernel function
 - Must return void

CUDA Function Declarations (cont.)

- <u>__device___</u> functions cannot have their address taken
- For functions executed on the device:
 - No recursion
 - No static variable declarations inside the function
 - No variable number of arguments

Calling a Kernel Function – Thread Creation

 A kernel function must be called with an execution configuration:

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

 Any call to a kernel function is asynchronous from CUDA 1.0 on, explicit synch needed for blocking

Next Time

• Code example