
11/3/2010

1

CUDA

More on Blocks/Threads

2

Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation
mode (nvcc -deviceemu) runs
completely on the host using the CUDA
runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• Running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.)‏

• Compile with –g –G debug with: cuda-gdb <program name>

– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and vice-

versa
– Detect deadlock situations caused by improper usage of

__syncthreads

X

11/3/2010

2

3

Device Emulation Mode Pitfalls

• Emulated device threads execute sequentially,
so simultaneous accesses of the same memory
location by multiple threads could produce
different results.

• Dereferencing device pointers on the host or
host pointers on the device can produce
correct results in device emulation mode, but
will generate an error in device execution
mode

4

Floating Point

• Results of floating-point computations will
slightly differ because of:

– Different compiler outputs, instruction sets

– Use of extended precision for intermediate results

• There are various options to force strict single precision
on the host

11/3/2010

3

CUDA Thread Block

• All threads in a block execute the same kernel
program (SPMD)

• Programmer declares block:
– Block size 1 to 512 concurrent threads

– Block shape 1D, 2D, or 3D

– Block dimensions in threads

• Threads have thread id numbers within block
– Thread program uses thread id to select work

and address shared data

• Threads in the same block share data and
synchronize while doing their share of the work

• Threads in different blocks cannot cooperate
– Each block can execute in any order relative to

other blocs!

– End kernel and go back to host to enforce order

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls, NVIDIA

6

G80 CUDA mode – A Review
• Processors execute computing threads

• New operating mode/HW interface for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

11/3/2010

4

Transparent Scalability

• Hardware is free to assigns blocks to any
processor at any time

– A kernel scales across any number of parallel
processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

time

8

G80 Example: Executing Thread Blocks

• Threads are assigned to Streaming
Multiprocessors in block granularity
– Up to 8 blocks to each SM as resource

allows

– SM in G80 can take up to 768 threads

• Could be 256 (threads/block) * 3 blocks

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently
– SM maintains thread/block id #s

– SM manages/schedules thread execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

11/3/2010

5

G80 Example: Thread Scheduling

• Each Block is executed as

32-thread Warps

– An implementation decision,

not part of the CUDA

programming model

– Warps are scheduling units

in SM

• If 3 blocks are assigned to an

SM and each block has 256

threads, how many Warps are

there in an SM?

– Each Block is divided into

256/32 = 8 Warps

– There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

… Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

… Block 1 Warps

G80 Example: Thread Scheduling (Cont.)

• SM implements zero-overhead warp scheduling
– At any time, only one of the warps is executed by SM

– Warps whose next instruction has its operands ready for consumption
are eligible for execution

– Eligible Warps are selected for execution on a prioritized scheduling
policy

– All threads in a warp execute the same instruction when selected

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

11/3/2010

6

G80 Block Granularity Considerations

• For Matrix Multiplication using multiple blocks, should I use 8X8,
16X16 or 32X32 threads per block?

– For 8X8, we have 64 threads per Block. Since each SM can take up to 768
threads, there are 12 Blocks. However, each SM can only take up to 8
Blocks, only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each SM can take up to
768 threads, it can take up to 3 Blocks and achieve full capacity unless
other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit into an
SM!

• Our earlier Julia fractal implementation not as good as it could
have been; why not?

Sub-Blocks and Threads

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Block(0,0) Block(1,0)

Block(1,1) Block(0,1)

TILE_WIDTH = 2

Mapping to row and column

Row in P =
blockIdx.y * TILE_WIDTH + threadIdx.y

Column in P =
blockIdx.x * TILE_WIDTH + threadIdx.x

Then map to 1D array

P[Row * WIDTH + Column] = Value

blockDim.x

11/3/2010

7

Example

• Matrix Mul program:

#define DIM 4

__global__ void MatrixGenerate(int* M, int* N, int* P, int width)
{
 int row = blockIdx.y * blockDim.x + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 P[row * width + col] = (row + col);
}

 dim3 blocks(DIM/2, DIM/2);
 dim3 threads(DIM/2, DIM/2);
 MatrixGenerate<<<blocks,threads>>>(dev_m, dev_n, dev_p, DIM);

Improved Julia Fractal

• Change block/thread size to better utilize
thread support per SM

#define DIM 3008 // 16*188

__global__ void kernel(char *ptr)
{
 int row = blockIdx.y * blockDim.x + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 int offset = col + row * DIM;
 ptr[offset] = julia(row,col);
}

 dim3 blocks(188,188);
 dim3 threads(16,16);
 kernel<<<blocks,threads>>>(dev_charmap);

11/3/2010

8

Long Vectors
• Using 1 block, limited to 512 threads

• Maximum of 65535 blocks

• If you want to operate on something longer than 65535 even
if it’s 1D then we have to combine blocks and threads

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

Block 0

Block 1

Block 2

Block 3

…

Block 32000

1D array index = (blockIdx.x * blockDim.x) + threadIdx.x = 0 to 32000*5+4 = 160,004

Arbitrarily Long Vectors

• The limit is 512 threads per block, so there is a failure
if the vector is of size N and N/512 > 65535

– N > 65535*512 = 33,553,920 elements

– Pretty big but we could have the capacity for up to 4GB

• Solution

– Have to assign range of data values to each thread
instead of each thread only operating on one
value

11/3/2010

9

Some Additional API Features

Language Extensions:
Built-in Variables

• dim3 gridDim;

– Dimensions of the grid in blocks (gridDim.z
unused)

• dim3 blockDim;

– Dimensions of the block in threads

• dim3 blockIdx;

– Block index within the grid

• dim3 threadIdx;

– Thread index within the block

11/3/2010

10

Common Runtime Component:
Mathematical Functions

• pow, sqrt, cbrt, hypot

• exp, exp2, expm1

• log, log2, log10, log1p

• sin, cos, tan, asin, acos, atan, atan2

• sinh, cosh, tanh, asinh, acosh, atanh

• ceil, floor, trunc, round

• Etc.

– When executed on the host, a given function
uses the C runtime implementation if available

– These functions are only supported for scalar
types, not vector types

Device Runtime Component:
Mathematical Functions

• Some mathematical functions (e.g. sin(x))
have a less accurate, but faster device-only
version (e.g. __sin(x))

– __pow

– __log, __log2, __log10

– __exp

– __sin, __cos, __tan

11/3/2010

11

Host Runtime Component

• Provides functions to deal with:
– Device management (including multi-device systems)
– Memory management
– Error handling

• Initializes the first time a runtime function is called

• A host thread can invoke device code on only one

device
– Multiple host threads required to run on multiple

devices

Device Runtime Component:
Synchronization Function

• void __syncthreads();

• Synchronizes all threads in a block

• Once all threads have reached this point,
execution resumes normally

• Used to avoid RAW / WAR / WAW hazards
when accessing shared or global memory

• Allowed in conditional constructs only if the
conditional is uniform across the entire thread
block

