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CUDA 

More on Blocks/Threads 
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Debugging Using the 
Device Emulation Mode 

• An executable compiled in device emulation 
mode (nvcc -deviceemu) runs 
completely on the host using the CUDA 
runtime 
– No need of any device and CUDA driver 
– Each device thread is emulated with a host thread 
 

• Running in device emulation mode, one can: 
– Use host native debug support (breakpoints, inspection, etc.)‏ 

• Compile with –g –G              debug with:  cuda-gdb <program name> 

– Access any device-specific data from host code and vice-versa 
– Call any host function from device code (e.g. printf) and vice-

versa 
– Detect deadlock situations caused by improper usage of 

__syncthreads 

X 



11/3/2010 

2 

3 

Device Emulation Mode Pitfalls 

• Emulated device threads execute sequentially, 
so simultaneous accesses of the same memory 
location by multiple threads could produce 
different results. 

• Dereferencing device pointers on the host or 
host pointers on the device can produce 
correct results in device emulation mode, but 
will generate an error in device execution 
mode 
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Floating Point 

• Results of floating-point computations will 
slightly differ because of: 

– Different compiler outputs, instruction sets 

– Use of extended precision for intermediate results 

• There are various options to force strict single precision 
on the host 
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CUDA Thread Block 

• All threads in a block execute the same kernel 
program (SPMD) 

• Programmer declares block: 
– Block size 1 to 512 concurrent threads 

– Block shape 1D, 2D, or 3D 

– Block dimensions in threads 

• Threads have thread id numbers within block 
– Thread program uses thread id to select work 

and address shared data 

 

• Threads in the same block share data and 
synchronize while doing their share of the work 

• Threads in different blocks cannot cooperate 
– Each block can execute in any order relative to 

other blocs! 

– End kernel and go back to host to enforce order 

CUDA Thread Block 

Thread Id #: 
0 1 2 3 …          m    

Thread program 

Courtesy: John Nickolls, NVIDIA 
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G80 CUDA mode – A Review 
• Processors execute computing threads 

• New operating mode/HW interface for computing 

Load/store 

Global Memory 

Thread Execution Manager 

Input Assembler 

Host 

Texture Texture Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Load/store Load/store Load/store Load/store Load/store 
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Transparent Scalability 

• Hardware is free to assigns blocks to any 
processor at any time 

– A kernel scales across any number of parallel 
processors 

Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative to other blocks.  

time 
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G80 Example: Executing Thread Blocks 

• Threads are assigned to Streaming 
Multiprocessors in block granularity 
– Up to 8 blocks to each SM as resource 

allows 

– SM in G80 can take up to 768 threads 

• Could be 256 (threads/block) * 3 blocks  

• Or 128 (threads/block) * 6 blocks, etc. 

• Threads run concurrently 
– SM maintains thread/block id #s 

– SM manages/schedules thread execution 

t0 t1 t2 … tm 

Blocks 

SP 

Shared 
Memory 

MT IU 

SP 

Shared 
Memory 

MT IU 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 
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G80 Example: Thread Scheduling 

  
• Each Block is executed as 

32-thread Warps 

– An implementation decision, 

not part of the CUDA 

programming model 

– Warps are scheduling units 

in SM 

• If 3 blocks are assigned to an 

SM and each block has 256 

threads, how many Warps are 

there in an SM? 

– Each Block is divided into 

256/32 = 8 Warps 

– There are 8 * 3 = 24 Warps  

… 
t0 t1 t2 … t31 

… 

… 
t0 t1 t2 … t31 

… Block 1 Warps Block 2 Warps 

SP 

SP 

SP 

SP 

SFU 

SP 

SP 

SP 

SP 

SFU 

Instruction Fetch/Dispatch 

Instruction L1 

Streaming Multiprocessor 

Shared Memory 

… 
t0 t1 t2 … t31 

… Block 1 Warps 

G80 Example: Thread Scheduling (Cont.) 

• SM implements zero-overhead warp scheduling 
– At any time, only one of the warps is executed by SM 

– Warps whose next instruction has its operands ready for consumption 
are eligible for execution 

– Eligible Warps are selected for execution on a prioritized scheduling 
policy 

– All threads in a warp execute the same instruction when selected 

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4
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G80 Block Granularity Considerations 

• For Matrix Multiplication using multiple blocks, should I use 8X8, 
16X16 or 32X32 threads per block? 

 

– For 8X8, we have 64 threads per Block. Since each SM can take up to 768 
threads, there are 12 Blocks. However, each SM can only take up to 8 
Blocks, only 512 threads will go into each SM! 

 

– For 16X16, we have 256 threads per Block. Since each SM can take up to 
768 threads, it can take up to 3 Blocks and achieve full capacity unless 
other resource considerations overrule. 

 

– For 32X32, we have 1024 threads per Block. Not even one can fit into an 
SM! 

 

• Our earlier Julia fractal implementation not as good as it could 
have been; why not? 

 

Sub-Blocks and Threads 

P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Block(0,0) Block(1,0) 

Block(1,1) Block(0,1) 

TILE_WIDTH = 2 

Mapping to row and column 
 
Row in P = 
blockIdx.y * TILE_WIDTH + threadIdx.y 
 
Column in P = 
blockIdx.x * TILE_WIDTH + threadIdx.x 

Then map to 1D array 
 
P[Row * WIDTH + Column] = Value 

blockDim.x 
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Example 

• Matrix Mul program: 

#define DIM 4 
 
__global__ void MatrixGenerate(int* M, int* N, int* P, int width) 
{ 
        int row = blockIdx.y * blockDim.x + threadIdx.y; 
        int col = blockIdx.x * blockDim.x + threadIdx.x; 
        P[row * width + col] = (row + col); 
} 
 
 dim3 blocks(DIM/2, DIM/2); 
 dim3 threads(DIM/2, DIM/2); 
 MatrixGenerate<<<blocks,threads>>>(dev_m, dev_n, dev_p, DIM); 
 

Improved Julia Fractal 

• Change block/thread size to better utilize 
thread support per SM 

#define DIM 3008  // 16*188 
 
__global__ void kernel(char *ptr) 
{ 
        int row = blockIdx.y * blockDim.x + threadIdx.y; 
        int col = blockIdx.x * blockDim.x + threadIdx.x; 
        int offset = col + row * DIM; 
        ptr[offset] = julia(row,col); 
} 
 
  dim3 blocks(188,188); 
  dim3 threads(16,16); 
  kernel<<<blocks,threads>>>(dev_charmap); 
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Long Vectors 
• Using 1 block, limited to 512 threads 

• Maximum of 65535 blocks 

• If you want to operate on something longer than 65535 even 
if it’s 1D then we have to combine blocks and threads 

 
Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 

Block 0 

Block 1 

Block 2 

Block 3 

… 

Block 32000 

1D array index = (blockIdx.x * blockDim.x) + threadIdx.x =  0  to  32000*5+4 = 160,004 

Arbitrarily Long Vectors 

• The limit is 512 threads per block, so there is a failure 
if the vector is of size N and N/512 > 65535 

– N > 65535*512 = 33,553,920 elements 

– Pretty big but we could have the capacity for up to 4GB 

• Solution 

– Have to assign range of data values to each thread 
instead of each thread only operating on one 
value 
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Some Additional API Features 

Language Extensions: 
Built-in Variables 

 

• dim3 gridDim; 

– Dimensions of the grid in blocks (gridDim.z 
unused) 

• dim3 blockDim; 

– Dimensions of the block in threads 

• dim3 blockIdx; 

– Block index within the grid 

• dim3 threadIdx; 

– Thread index within the block 
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Common Runtime Component: 
Mathematical Functions 

 

• pow, sqrt, cbrt, hypot 

• exp, exp2, expm1 

• log, log2, log10, log1p 

• sin, cos, tan, asin, acos, atan, atan2 

• sinh, cosh, tanh, asinh, acosh, atanh 

• ceil, floor, trunc, round 

• Etc. 

– When executed on the host, a given function 
uses the C runtime implementation if available 

– These functions are only supported for scalar 
types, not vector types 

Device Runtime Component: 
Mathematical Functions 

• Some mathematical functions (e.g. sin(x)) 
have a less accurate, but faster device-only 
version (e.g. __sin(x)) 

– __pow 

– __log, __log2, __log10 

– __exp 

– __sin, __cos, __tan 
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Host Runtime Component 

• Provides functions to deal with: 
– Device management (including multi-device systems) 
– Memory management 
– Error handling 

 
• Initializes the first time a runtime function is called 

 
• A host thread can invoke device code on only one 

device 
– Multiple host threads required to run on multiple 

devices 

 

Device Runtime Component: 
Synchronization Function 

• void __syncthreads(); 

• Synchronizes all threads in a block 

• Once all threads have reached this point, 
execution resumes normally 

• Used to avoid RAW / WAR / WAW hazards 
when accessing shared or global memory 

• Allowed in conditional constructs only if the 
conditional is uniform across the entire thread 
block 


