
11/8/2010

1

CUDA

More on threads, shared memory,
synchronization

cuPrintf

• Library function for CUDA Developers

• Copy the files from /opt/cuPrintf into your
source code folder

#include “cuPrintf.cu”

__global__ void testKernel(int val)
{
 cuPrintf(“Value is: %d\n”, val);
}

int main()
{
 cudaPrintfInit();

 testKernel<<< 2, 3 >>>(10);
 cudaPrintfDisplay(stdout, true);

 cudaPrintfEnd();
 return 0;
}

11/8/2010

2

Handling Arbitrarily Long Vectors

• The limit is 512 threads per block, so there is a failure
if the vector is of size N and N/512 > 65535
– N > 65535*512 = 33,553,920 elements

– Pretty big but we could have the capacity for up to 4GB

• Solution
– Have to assign range of data values to each thread

instead of each thread only operating on one
value

• Next slide: An easy-to-code solution

Approach
• Have a fixed number of blocks and threads per block

– Ideally some number to maximize the number of threads the GPU can
handle per warp, e.g. 128 or 256 threads per block

• Each thread processes an element with a stride equal to the total
number of threads.

• Example with 2 blocks, 3 threads per block, 10 element vector

0 1 2 3 4 5 6 7 8 9

B0T0 B0T1 B0T2 B1T0 B1T1 B1T2 B0T0 B0T1 B0T2 B1T0

Vector

Thread

Thread starts work at: (blockIdx.x * (NumBlocks)) + threadIdx.x
 (blockIdx.x * blockDim.x) + threadIdx.x

e.g. B1T0 starts working at (1*2)+0 = index 3
 next item to work on is at index 3 + TotalThreads = 3 + 6 = 9

blockDim.x * gridDim.x

11/8/2010

3

Vector Add Kernel For Arbitrarily Long
Vectors

#define N (100 * 1024) // Length of vector

__global__ void add(int *a, int *b, int *c)
{
 int tid = threadIdx.x + (blockIdx.x * blockDim.x);
 while (tid < N)
 {
 c[tid] = a[tid] + b[tid];
 tid += blockDim.x * gridDim.x;
 }
}

main: Pick some number of blocks less than N, threads to fill up a warp:

 add<<<128, 128>>>(dev_a, dev_b, dev_c); // 16384 total threads

G80 Implementation of CUDA Memories

• Each thread can:
– Read/write per-thread registers
– Read/write per-thread local

memory
– Read/write per-block shared

memory
– Read/write per-grid global

memory
– Read/only per-grid constant

memory

• Shared memory
– Only shared among threads in the

block
– Is on chip, not DRAM, so fast to

access
– Useful for software-managed

cache or scratchpad
– Must be synchronized if the same

value shared among threads

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

11/8/2010

4

Shared Memory Example

• Dot Product
– Book does a more complex version in matrix multiply

– (x1x2x3x4) ● (y1y2y3y4) =x1y1+x2y2+x3y3+x4y4

– When we did this with matrix multiply we had one
thread perform this entire computation for a row and
column

– Obvious parallelism idea: Have thread0 compute x1y1
and thread1 compute x2y2, etc.
• We have to store the individual products somewhere then

add up all of the intermediate sums

• Use shared memory

Shared Memory Dot Product

0 1 2 3 4 5 6 7 8 9

B0T0 B0T1 B0T2 B0T3 B1T0 B1T1 B1T2 B1T3 B0T0 B0T1

B

Thread

0 1 2 3 4 5 6 7 8 9 A

B0T0 computes A[0]*B[0] + A[8]*B[8]
B0T1 computes A[1]*B[1] + A[9]*B[9]
Etc. – this will be easier later with threadsPerBlock a power of 2

Store result in a per-block shared memory array:
 __shared__ float cache[threadsPerBlock];

0 1 2 3 B0 cache

B0T0 sum

B0T1 sum

B0T2 sum

B1 cache

B1T0 sum

B1T1 sum

B1T2 sum

0 1 2 3

B0T3 sum B0T3 sum

11/8/2010

5

Kernel Test Code
#include "stdio.h"

#define N 10
const int THREADS_PER_BLOCK = 4; // Have to be int, not #define; power of 2
const int NUM_BLOCKS = 2; // Have to be int, not #define

__global__ void dot(float *a, float *b, float *c)
{
 __shared__ float cache[THREADS_PER_BLOCK];
 int tid = threadIdx.x + (blockIdx.x * blockDim.x);
 int cacheIndex = threadIdx.x;
 float temp = 0;
 while (tid < N)
 {
 temp += a[tid] * b[tid];
 tid += blockDim.x * gridDim.x; // THREADS_PER_BLOCK * NUM_BLOCKS
 }
 cache[cacheIndex] = temp;
 if ((blockIdx.x == 0) && (threadIdx.x == 0))
 *c = cache[cacheIndex]; // For a test, only send back result of one thread
}

Main Test Code
int main()
{
 float a[N], b[N], c[NUM_BLOCKS]; // We’ll see why c[NUM_BLOCKS] shortly
 float *dev_a, *dev_b, *dev_c;

 cudaMalloc((void **) &dev_a, N*sizeof(float));
 cudaMalloc((void **) &dev_b, N*sizeof(float));
 cudaMalloc((void **) &dev_c, NUM_BLOCKS*sizeof(float));

 // Fill arrays
 for (int i = 0; i < N; i++)
 {
 a[i] = (float) i;
 b[i] = (float) i;
 }

 // Copy data from host to device
 cudaMemcpy(dev_a, a, N*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, N*sizeof(float), cudaMemcpyHostToDevice);

 dot<<<NUM_BLOCKS,THREADS_PER_BLOCK>>>(dev_a,dev_b,dev_c);

 // Copy data from device to host
 cudaMemcpy(c, dev_c, NUM_BLOCKS*sizeof(float), cudaMemcpyDeviceToHost);

 // Output results
 printf("%f\n", c[0]);

 < cudaFree, return 0 would go here>

11/8/2010

6

Accumulating Sums

• At this point we have products in cache[] in each
block that we have to sum together

• Easy solution is to copy all these back to the host
and let the host add them up

– O(n) operation

– If n is small this is the fastest way to go

• But we can do pairwise adds in logarithmic time

– This is a common parallel algorithm called reduction

Summation Reduction

0 1 2 3 4 5 6 7 cache

0+4 1+5 2+6 3+7 4 5 6 7 cache

0+4+
2+6

1+5+
3+7

2+6 3+7 4 5 6 7 cache

i=8/2=4

i=4/2=2

i=2/2=1

0+4+
2+6+
1+5+
3+7

1+5+
3+7

2 3 4 5 6 7 cache
i=1/2=0

Have to wait for all working threads to finish adding before starting the next iteration

11/8/2010

7

Summation Reduction Code

At the end of the kernel after storing temp into cache[cacheIndex]:

 int i = blockDim.x / 2;
while (i > 0)
{
 if (cacheIndex < i)
 cache[cacheIndex] += cache[cacheIndex + i];
 __syncthreads();
 i /= 2;
}

Summation Reduction Code

We still need to sum the values computed by each block. Since there are not
too many of these (most likely) we just return the value to the host and let the host
sequentially add them up:

 int i = blockDim.x / 2;
while (i > 0)
{
 if (cacheIndex < i)
 cache[cacheIndex] += cache[cacheIndex + i];
 __syncthreads();
 i /= 2;
}

if (cacheIndex == 0) // We’re thread 0 in this block
 c[blockIdx.x] = cache[cacheIndex]; // Save the sum in array of blocks

11/8/2010

8

Main

 dot<<<NUM_BLOCKS,THREADS_PER_BLOCK>>>(dev_a,dev_b,dev_c);

 // Copy data from device to host
 cudaMemcpy(c, dev_c, NUM_BLOCKS*sizeof(float), cudaMemcpyDeviceToHost);

 // Sum and output result
 float sum = 0;
 for (int i =0; i < NUM_BLOCKS; i++)
 {
 sum += c[i];
 }
 printf("The dot product is %f\n", sum);

 cudaFree(dev_a);
 cudaFree(dev_b);
 cudaFree(dev_c);
 return 0;
}

Thread Divergence

• When control flow differs among threads this is called
thread divergence

• Under normal circumstances, divergent branches
simply result in some threads remaining idle while
others execute the instructions in the branch

 int i = blockDim.x / 2;
while (i > 0)
{
 if (cacheIndex < i)
 cache[cacheIndex] += cache[cacheIndex + i];
 __syncthreads();
 i /= 2;
}

11/8/2010

9

Optimization Attempt

• In the reduction, only some of the threads (always less
than half) are updating entries in the shared memory
cache

• What if we only wait for the threads actually writing to
shared memory

 int i = blockDim.x / 2;
while (i > 0)
{
 if (cacheIndex < i)
 {
 cache[cacheIndex] += cache[cacheIndex + i];
 __syncthreads();
 }
 i /= 2;
}

Won’t work;
waits until
ALL threads
In the block
reach this point

Summary

• There are some arithmetic details to map a
block’s thread to elements it should compute

• Shared memory is fast but only accessible by
threads in the same block

• __syncthreads() is necessary when multiple
threads access the same shared memory and
must be used with care

