
1

1

Improving on Caches

CS448

2

#4: Pseudo-Associative Cache
• Also called column associative
• Idea

– start with a direct mapped cache, then on a miss check another
entry

• A typical next location to check is to invert the high order index bit to
get the next try

– Similar to hashing with probing
• Initial hit fast (direct), second hit slower

– may have the problem that you mostly need the slow hit
– in this case it’s better to swap the blocks
– like victim caches - provides selective on demand associativity

2

3

#5: Hardware Prefetch
• Get proactive!
• Modify our hardware to prefetch into the cache

instructions and data we are likely to use
– Alpha AXP 21064 fetches two blocks on a miss from the I-

cache
• Requested block and the next consecutive block
• Consecutive block catches 15-25% of misses on a 4K direct mapped

cache, can improve with fetching multiple blocks
– Similar approach on data accesses not so good, however

• Works well if we have extra memory bandwidth that is
unused

• Not so good if the prefetch slows down instructions
trying to get to memory

4

#6 Compiler-Controlled Prefetch
• Two types

– Register prefetch (load value into a register)
– Cache prefetch (load data into cache, need new instr)

• The compiler determines where to place these
instructions, ideally in such a way as to be invisible to the
execution of the program
– Nonfaulting instructions – if there is a fault, the instruction just

turns into a NOP
• Only makes sense if cache can continue to supply data

while waiting for prefetch to complete
– Called a nonblocking or lockup-free cache

• Loops are a key target

3

5

Compiler Prefetch Example
for (i=0; i<3; i++)

for (j=0; j<100; j++)
a[i][j]=b[j][0]+b[j+1][0];

Using a Write-Back cache

Spatial locality
Say even j’s miss, odd hit
Total of 300/2 = 150 misses

Temporal locality
Hits on next iteration
Misses on j=0 only
Total of 101 misses

Prefetched version, assuming we need to prefetch 7 iterations in
advance to avoid the miss penalty. Doesn’t address initial misses:

for (j=0; j<100; j++) {
prefetch(b[j+7][0]);
prefetch(a[0][j+7]);
a[0][j]=b[j][0]+b[j+1][0];

}
for (i=0; i<3; i++)

for (j=0; j<100; j++) {
prefetch(a[i][j+7]);
a[i][j]=b[j][0]+b[j+1][0]; }

Fetch for 7 iterations later
Pay penalty for first 7 iterations

Total misses = (3*7/2) + 1 + 7
= 19

6

#7 Compiler Optimizations
• Lots of options
• Array merging

– allocate arrays so that paired operands show up in same cache
block

• Loop interchange
– exchange inner and outer loop order to improve cache

performance
• Loop fusion

– for independent loops accessing the same data
– fuse these loops into a single aggregate loop

• Blocking
– Do as much as possible on a sub-block before moving on
– We’ll skip this one

4

7

Array Merging
Given a loop like this:
int val1[SIZE], val2[SIZE];
for (i=0; i<1000; i++) {

x += val1[i] * val2[i];
}

For spatial locality, instead use:
struct merge {

int val1, val2;
} m[SIZE];

for (i=0; i<1000; i++) {
x += m[i].val1 * m[i].val2;

}For some situations, array
splitting is better:
struct merge {

int val1, val2;
} m1[SIZE], m2[SIZE];

for (i=0; i<1000; i++) {
x += m1[i].val1 * m2[i].val1;

}

val2 unused, getting in the way of
spatial locality. First version could
actually be better!

Objects can be good
or bad, depending
on access pattern

8

Loop Interchange
for (i=0; i<100; i++) {

for (j=0; j< 5000; j++)
x[i][j]++;

}

Say the cache is small, much less than 5000 numbers
We’ll have many misses in the inner loop due to replacement

Switch order:
for (i=0; i<5000; i++) {

for (j=0; j< 100; j++)
x[i][j]++;

}

With spatial locality, presumably we can operate on all
100 items in the inner loop without a cache miss

Access all words in the cache block before going on to the next one

5

9

Loop Fusion
for (i=0; i<100; i++) {

for (j=0; j< 5000; j++)
a[i][j]=1/b[i][j] * c[i][j];

}
for (i=0; i<100; i++) {

for (j=0; j< 5000; j++)
d[i][j]=a[i][j] * c[i][j];

}

Merge loops:
for (i=0; i<100; i++) {

for (j=0; j< 5000; j++)

a[i][j]=1/b[i][j] * c[i][j];
d[i][j]=a[i][j] * c[i][j];

}

Freeload on cached value!

10

Reducing Miss Penalties

• So far we’ve been talking about ways to reduce
cache misses

• Let’s discuss now reducing access time (the
penalty) when we have a miss

• What we’ve seen so far
– #1: Write Buffer

• Most useful with write-through cache
• no need for the CPU to wait on a write

– hence buffer the write and let the CPU proceed
– needs to be associative so it can respond to a read of a buffered

value

6

11

Problems with Write Buffers
• Consider this code sequence

– SW 512(R0), R3 ! Maps to cache index 0
– LW R1, 1024(R0) ! Maps to cache index 0
– LW R2, 512(R0) ! Maps to cache index 0

• There is a RAW data hazard
– Store is put into write buffer
– First load puts data from M[1024] into cache index 0
– Second load results in a miss, if the write buffer isn’t done

writing, the read of M[512] could put the old value in the cache
and then R2

• Solutions
– Make the read wait for write to finish
– Check the write buffer for contents first, associative memory

12

#2 Other Ways to Reduce Miss
Penalties

• Sub-Block Placement
– Large blocks reduces tag storage and increases spatial

locality, but more collisions and a higher penalty in
transferring big chunks of data

– Compromise is Sub-Blocks
– Add a “valid” bit to units smaller than the full block,

called sub-blocks
• Allow a single sub-block to be read on a miss to reduce

transfer time
• In other modes of operation, we fetch a regular-sized block

to get the benefits of more spatial locality

7

13

#3 Early Restart & Critical Word
First

• CPU often needs just one word of a block at a time
– Idea : Don’t wait for full block to load, just pass on the

requested word to the CPU and finish filling up the block while
the CPU processes the data

• Early Start
– As soon as the requested word of the block arrives, send it to

the CPU

• Critical Word First
– Request the missed word first from memory and send it to the

CPU as soon as it arrives; let the CPU continue execution while
filling in the rest of the block

14

#4 Nonblocking Caches

• Scoreboarding or Tomasulo-based machines
– Could continue executing something else while

waiting on a cache miss
– This requires the CPU to continue fetching

instructions or data while the cache retrieves the block
from memory

– Called a nonblocking or lockup-free cache
– Cache could actually lower the miss penalty if it can

overlap multiple misses and combine multiple memory
accesses

8

15

#5 Second Level Caches
• Probably the best miss-penalty reduction technique, but

does throw in a few extra complications on the analysis
side…

• L1 = Level 1 cache, L2 = Level 2 cache

• Combining gives:

– little to be done for compulsory misses and the penalty goes up
– capacity misses in L1 end up with a significant penalty reduction since they

likely will get supplied from L2
– conflict misses in L1 will get supplied by L2 unless they also conflict in L2

)1(_)1(_)1(____ LPenaltyMissLRateMissLTimeHitTimeAccessMemoryAverage ×+=

)2(_)2(_)2(_)1(_ LPenaltyMissLRateMissLTimeHitLPenaltyMiss ×+=

())2(_)2(_)2(_
)1(_)1(____

LPenaltyMissLRateMissLTimeHit
LRateMissLTimeHitTimeAccessMemoryAverage

×+
×+=

16

Second Level Caches
• Terminology

– Local Miss Rate
• Number of misses in the cache divided by total accesses to the cache;

this is Miss Rate(L2) for the second level cache
– Global Miss Rate

• Number of misses in the cache divided by the total number of memory
accesses generated by the CPU; the global miss rate of the second-level
cache is

– Miss Rate(L1)*Miss Rate(L2)
• Indicates fraction of accesses that must go all the way to memory

– If L1 misses 40 times, L2 misses 20 times for 1000 references
• 40/1000 = 4% local miss rate for L1
• 20/40 = 50% local miss rate for L2
• 20/40 * 40/1000 = 2% = global miss rate for L2

9

17

Effects of L2 Cache

L2 cache with 32K L1 cache
Top: local miss rate of L2 cache
Middle: L1 cache miss rate
Bottom: Global miss rate

Takeaways:
Size of L2 should be > L1
Local miss rate not a good measure

18

Size of L2?
• L2 should be bigger than L1

– Everything in L1 likely to be in L2
– If L2 is just slightly bigger than L1, lots of misses

• Size matters for L2, then..
– Could use a large direct-mapped cache

• Large size means few capacity misses, compulsory or conflict misses
possible

– Set associativity make sense?
• Generally not, more expensive and can increase cycle time

– Most L2 caches made as big as possible, size of main memory
in older computers

10

19

L2 Cache Block Size
• Increased block size

– Big block size increases chances for conflicts (fewer blocks in
the cache), but not so much a problem in L2 if it’s already big
to start with

– Sizes of 64-256 bytes are popular

20

L2 Cache Inclusion
• Should data in L1 also be in L2?

– If yes, L2 has the multilevel inclusion property
– This can be desirable to maintain consistency between caches

and I/O; we could just check the L2 cache
– Write through will support multilevel inclusion

• Drawback if yes:
– “Wasted” space in L2, since we’ll have a hit in L1
– Not a big factor if L2 >> L1
– Write back caches

• L2 will need to “snoop” for write activity in L1 if it wants to maintain
consistency in L2

11

21

Reducing Hit Time

• We’ve seen ways to reduce misses, and reduce the
penalty.. next is reducing the hit time

• #1 Simplest technique: Small and Simple Cache
– Small " Faster, less to search
– Must be small enough to fit on-chip

• Some compromises to keep tags on chip, data off chip but
not used today with the shrinking manufacturing process

– Use direct-mapped cache
• Choice if we want an aggressive cycle time
• Trades off hit time for miss rate, since set-associative has a

better miss rate

22

#2 Virtual Caches
• Virtual Memory

– Map a virtual address to a physical address or to disk, allowing
a virtual memory to be larger than physical memory

– More on virtual memory later
• Traditional caches or Physical caches

– Take a physical address and look it up in the cache
• Virtual caches

– Same idea as physical caches, but start with the virtual address
instead of the physical address

– If data is in the cache, it avoids the costly lookup to map from a
virtual address to a physical address

• Actually, we still need to the do the translation to make sure there is no
protection fault

• Too good to be true?

12

23

Virtual Cache Problems

• Process Switching
– When a process is switched, the same virtual address

from a previous process can now refer to a different
physical addresses

• Cache must be flushed
• Too expensive to safe the whole cache and re-load it
• One solution: add PID’s to the cache tag so we know what

process goes with what cache entry
– Comparison of results and the penalty on the next slide

24

Miss Rates of Virtually
Addressed Cache

13

25

More Virtual Cache Problems…
• Aliasing

– Two processes might access different virtual addresses that are
really the same physical address

– Duplicate values in the virtual cache
– Anti-aliasing hardware guarantees every cache block has a

unique physical address
• Memory-Mapped I/O

– Would also need to map memory-mapped I/O devices to a
virtual address to interact with them

• Despite these issues…
– Virtual caches used in some of today’s processors

• Alpha, HP…

26

#3 Pipelining Writes for Fast
Hits

• Write hits take longer than read hits
– Need to check the tags first before writing data to avoid writing

to the wrong address
– To speed up the process we can pipeline the writes (Alpha)

• First, split up the tags and the data to address each independently
• On a write, cache compares the tag with the write address
• Write to the data portion of the cache can occur in parallel with a

comparison of some other tag
– We just overlapped two stages

• Allows back-to-back writes to finish one per clock cycle

• Reads play no part in this pipeline, can already operate in
parallel with the tag check

14

27

Cache Improvement Summary

