
1

Caching Review and
Performance

CS448

1

Memory Hierarchies

• Takes advantage of locality of reference
principlep p
– Most programs do not access all code and data

uniformly, but repeat for certain data choices
• spatial – nearby references are likely
• temporal – repeat reference is likely

– Fast memory is expensive per byte

2

– Make a hierarchy with fast at the top (but not much
memory) and slow at the bottom (but lots of memory)

2

Sample Memory Hierarchy

CPU
L0 Icache Dcache

L1 Cache

L2 Cache

M i M

3

Main Memory
Disk Cache / RAM Disk

Disk and I/O Devices, e.g. Network

Hierarchy Concepts

• Data access in terms of blocks at each level
– Size of a block varies, especially from L1 to L2, etc.
– Hit : data you want is found in the cache
– Miss: data you want is not found in the cache, must be fetched

from the lower level memory system
• Misses cause stall cycles
• Stall Cycles = IC * Mem-Refs-Per-Instruction * Miss Rate * Miss

Penalty

F j ti di l l i th hi h

4

• Four major questions regarding any level in the hierarchy
– Q1 : Where can a block be placed in the upper level?
– Q2 : How is a block found in the upper level?
– Q3 : Which block should be replaced on a miss?
– Q4 : What happens on a write?

3

Cache Parameters
• Some typical parameters for caches
• Block / Line Size

– 16 to 256 bytes16 to 256 bytes

• Hit time
– 1 Cycle in L1 Cache

• Miss penalty
– 10 to hundreds of clock cycles

• Access time of next lower memory

5

y
– 4 - 32 clock cycles

• Miss rate
– 1% to 20% (application dependent)

• L1 Cache Size
– 0 to 1GB

Cache Strategies – Block Placement
• Direct Mapped

– Each block has only one place to go in a cache, typically
• Address mod Num-Blocks-In-Cache
• Usually lower n bits corresponds to the offset in the block, where 2n = y p ,

Block size, and then another m bits corresponding to the cache block,
where 2m = Num blocks in the cache

• Fully Associative
– Block can be placed anywhere in the cache
– Implies we must be able to search for it associatively

• Set Associative

6

– A set is a group of arbitrary blocks in the cache
– An address in memory maps to a set, then maps into a block

within that set
– Usually lower n bits corresponds to the offset in the block,

where 2n = Block size, and then another m bits corresponding to
the set, where 2m = Num sets;

4

Block Placement

2-way
Set associative

7

Block Identification
• Physical Address

– For direct-mapped:
• Tag ## Block-Index ## Block-Offset

– For set-associative
• Tag ## Set-Index ## Block-Offset

Tag Set Offset

r bits m bits n bits

8

b ts b ts b ts
In set-associative cache

2m sets possible
r bits searched simultaneously for matching block
2n gives offset to the data into the matching block

–For fully associative, just tag and offset

5

Typical Cache

• May be composed of 2 types of fast memory devices
– SRAM’s - hold the actual data and address and status tags in a

direct mapped cache
– TAG RAM’s help with the accounting for set-associative cache

• TAG RAM’s are small associative memories
– provide fully parallel search capability
– sequential search would take too long so not even an option

• Where do you have to search

9

• Where do you have to search
– fully associative - everywhere
– set associative - only within the set
– direct mapped - no search

• just check for valid and compare one ID

Finding a Block

• We’ve already covered how to look up a block in either
scheme
– Find block via direct map or associative mapping, perhaps first

finding the right set and then comparing the tag bits for a match

– Go to the offset of this block to get the memory data

• Extra details
– Valid bit

10

• Added to indicate if a tag entry contains a valid address

– Dirty bit
• Added to indicate if data has been written to

6

Block Replacement
• Random

– Pick a block at random and discard it
– For set associative, randomly pick a block within the mappedFor set associative, randomly pick a block within the mapped

set
– Sometimes use pseudo-random instead to get reproducibility at

debug time

• LRU - least recently used
– Need to keep time since each block was last accessed
– Expensive if number of blocks is large due to global compare

11

– Expensive if number of blocks is large due to global compare
– Approximation is often used; Use bit tag or counter and LFU

• Replacement strategy critical for small caches
– doesn’t make a lot of difference for large ones
– ideal would be a least-likely prediction scheme
– No simple scheme known for least-likely prediction

Miss Rates

• On benchmark traces, block size of 16 bytes

12

• Not much difference with larger caches

• Not much difference with eight-way scheme

7

Cache Writes

• Reads dominate cache access
Only 7% of overall memory traffic are writes on MIPS– Only 7% of overall memory traffic are writes on MIPS

– Implies we should make reads fastest (which is good
because it is easier to handle)

• Can read block the same time we compare the tag for a
match; ignore value if there is no match

• Can’t do this with writes if we compare the tag and write at

13

Can t do this with writes, if we compare the tag and write at
the same time, we’d have to undo the write if there was no
match

– So we wait an extra cycle for result of the tag comparison

– Complicated more if we write multiple bytes

Cache Write Schemes

• Write Through
– Write information back to the cache and to the lower-level

memory at the same time
• Lower level access is slower, though

– Maintains memory consistency for other devices
• Other processors
• DMA

• Write Back

14

– Write to cache only, but set the dirty bit when we write
– Dirty blocks are written back to memory only when replaced
– Faster, independent of main memory speeds

• But causes complications with memory consistency

8

Write Stalls
• Occur when we must stall for a write to complete
• Write miss may generate write stall

– Write Buffers allows processor to act as soon as data written to
the buffer, providing overlapping execution with memory

• decrease write stalls but do not eliminate them

• Common operations on a write miss
– write allocate

• load the block, do the write
ll h h i f i b k h h d i il bl f

15

• usually the choice for write back caches so the data is available for a
subsequent read or writes

– No-write allocate or write around
• modify the block in the lower-level memory, do not load the block in

the cache
• usually the choice for write through caches since subsequent writes

would go to memory anyway

Improving Cache Performance

• Processor needs data and instructions

T o separate caches often implemented• Two separate caches often implemented
– Avoids structural hazard problems with fetching

instruction, data we discussed with pipelining

– The two caches have separate access patterns

• When there is one cache containing both, it is

16

g ,
called a unified or mixed cache

9

Miss Rates for Caches

SPEC92 on an AXP 21064 DECstation 5000 direct mapped cache

Size I-Cache D-Cache Unified

1K 3.06% 24.61% 13.34%

2K 2.26% 20.57% 9.78%

4K 1.78% 15.94% 7.24%

8K 1.10% 10.19% 4.57%

16K 0.64% 6.47% 2.87%

17

32K 0.39% 4.82% 1.99%

64K 0.15% 3.77% 1.35%

128K 0.02% 2.88% 0.95%

What is missing from this chart?

Miss Rates for Caches (2)
We need to know the % of time we go to the I-Cache and D-Cache
100% of I-Cache accesses, 26% Load, 9% Store

100/(100+26+9) = 0.74 for I-Cache, 0.26 for D-Cache100/(100 26 9) 0.74 for I Cache, 0.26 for D Cache

Size I-Cache D-Cache Ave Unified

1K 3.06% 24.61% 8.66% 13.34%

2K 2.26% 20.57% 7.02% 9.78%

4K 1.78% 15.94% 5.46% 7.24%

8K 1.10% 10.19% 3.46% 4.57%

18

16K 0.64% 6.47% 2.15% 2.87%

32K 0.39% 4.82% 1.54% 1.99%

64K 0.15% 3.77% 1.09% 1.35%

128K 0.02% 2.88% 0.76% 0.95%

10

Cache Performance

• Average memory access time = Hit time + (Miss Rate * Miss
Penalty)

• Memory Stall Clock Cycles = (Reads * Read Miss Rate * Read
Penalty) + (Writes * Write Miss Rate * Write Penalty)

• Sometimes we combine reads and writes as an approximation
using a generic “Miss”
– Memory Stall Clock Cycles = Memory Accesses * Miss Rate * Miss Penalty

19

Memory Stall Clock Cycles Memory Accesses Miss Rate Miss Penalty

• CPUTime = IC * (CPIexec + Mem Accesses/Instr * Miss Rate *
Miss Penalty) * Clock Cycle Time

Cache Performance Example

Cache Miss Penalty = 50 cycles
Instructions normally take 2 cycles, ignoring stalls
C h Mi i 2%Cache Miss rate is 2%
Average of 1.33 Memory References per instruction

Impact of cache vs. no cache?

CPUTime = IC * (CPIexec + Mem Accesses/Instr * Miss Rate * Miss
P lt) * Cl k C l Ti

20

Penalty) * Clock Cycle Time

CPUTime(cache) = IC * (2 + 1.33 * 0.02 * 50) * Cycle Time
= 3.33 * IC * Cycle Time ; from 2 to 3.33 when not perfect

CPUTime(nocache) = IC * (2 + 1.33 * 50) * Cycle Time
= 68.5 ; Over 30 times longer!

11

Cache Performance Limitations

• Caches can have a huge impact on performance

• Downside

– The lower the CPI(exec) the higher the relative impact of a fixed number of
cache miss clock cycles

– CPU’s with higher clock rates and same memory hierarchy has a larger
number of clock cycles per miss

• Bottom line : Amdahl’s Law strikes again, impact of caching can slow us down
as we get high clock rates

• Set-Associative Cache appears to perform best on the simulation data

21

– Implementing set-associative cache requires some extra multiplexing to
select the block we want in the set

– Increases basic cycle time the larger each set is

– This basic cycle time could make set-associative caches slower than direct-
mapped caches in some cases!

Sources of Cache Misses – 3 C’s

• Compulsory
– first access to a block, no choice but to load it
– also called cold-start or first-reference misses

• Capacity
– if working set is too big for the cache then even after steady

state they all won’t fit
– Therefore, needed lines will be displaced by other needed lines
– thrashing possible if we later want to retrieve something tossed

22

thrashing possible if we later want to retrieve something tossed

• Conflict
– Collision as a result of the block placement strategy
– Data you want maps to the same block in the cache

• Data on these three miss types for 1-8 way caches

12

23

Miss Rates

24

13

Miss Rate Per Type,
Total/Distribution

25

Total Miss Rate per Type Distribution by Type

Reducing Cache Misses

• We’ll examine seven techniques
Larger Block Size– Larger Block Size

– Higher Associativity

– Victim Caches

– Pseudo-Associative Caches

– Hardware prefetching

26

– Compiler prefetching

– Compiler Optimizations

14

#1: Increased Block Size

• Advantages
Reduce compulsory misses due to spatial locality– Reduce compulsory misses due to spatial locality

• Disadvantages
– Larger block takes longer to move, so higher penalty

for miss

– More conflicts now though, because there are fewer

27

blocks in the cache, so more memory blocks map to
the same cache blocks

Miss Rate vs. Block Size

28

Cache Size
Sweet Spot

15

#2: Higher Associativity

• 2:1 Rule of Thumb
– 2 way set associative cache of size N/ 2 is about the same as a2 way set associative cache of size N/ 2 is about the same as a

direct mapped cache of size N

– So does this mean even more associations is better?

• Advantage
– Higher associativity should reduce conflicts

• Disadvantage

29

g
– Higher associativity can reduce number of sets, if we keep the

same cache size

– There is overhead with higher associativity in the hardware,
increases the basic clock cycle for all instructions

Associativity Example
Assume higher associativity increases the clock cycle as:

CycleTime(2-way) = 1.10 * CycleTime(1-way)
CycleTime(4 way) = 1 12 * CycleTime(1 way)CycleTime(4-way) = 1.12 * CycleTime(1-way)
CycleTime(8-way) = 1.14 * CycleTime(1-way)

A hit takes 1 cycle, miss penalty for direct-map is 50 cycles
Calculate Ave. Mem Access Times

Ave mem Access Time = HitTime + miss Rate * Miss Penalty

30

Ave mem Access Time HitTime + miss Rate Miss Penalty

AveTime(1-way) = 1 + MissRate(1-way) * 50
AveTime(2-way) = 1.10 * MissRate(2-way) * 50
…
(continued on next slide)

16

Associativity Example (2)
Look up miss rates for the different caches from the previous table
e.g. for direct-mapped cache, miss rate = 0.133 at 1Kb cache

AveTime(1-way) = 1 + 0.133 * 50 = 7.65
…
Gives us the table below:

31

Yikes!

#3: Victim Caches
• Idea: with direct mapping, conflict only occurs with a

small number of blocks
– Might occur frequently, but with not too many blocks
– Very bad if we thrash among these direct mapped blocks to the

same cache block
– So use a small, fully-associative cache to store what was thrown

out

• Add a small “victim” cache between the main cache and
main memory

32

– This cache only stores data discarded from a cache miss
– Keep it small, so it is easy to implement, even associatively
– If data is not in the main cache but is in the victim cache, swap

the data from the main/victim cache
– Since we address the victim cache and main cache at the same

time, there is no increased penalty with this scheme

17

Victim Caches

• Study by Jouppi
Victim cache of 1 5 entries effective at reducing– Victim cache of 1-5 entries effective at reducing
conflict misses for small, direct-mapped caches

– Removed 20-95% of conflict misses in a 4K direct
mapped cache

• Of course this is a very small cache by today’s standards

• Not as much benefit with larger caches even if direct

33

• Not as much benefit with larger caches, even if direct-
mapped, due to alleviation of conflicts

#4: Pseudo-Associative Cache

• Also called column associative

• IdeaIdea
– start with a direct mapped cache, then on a miss check another

entry
• A typical next location to check is to invert the high order index bit to

get the next try

– Similar to hashing with probing

I iti l hit f t (di t) d hit l

34

• Initial hit fast (direct), second hit slower
– may have the problem that you mostly need the slow hit

– in this case it’s better to swap the blocks

– like victim caches - provides selective on demand associativity

18

#5: Hardware Prefetch

• Get proactive!
• Modify our hardware to prefetch into the cache y p

instructions and data we are likely to use
– Alpha AXP 21064 fetches two blocks on a miss from the I-

cache
• Requested block and the next consecutive block
• Consecutive block catches 15-25% of misses on a 4K direct mapped

cache, can improve with fetching multiple blocks

Si il h d t t d h

35

– Similar approach on data accesses not so good, however

• Works well if we have extra memory bandwidth that is
unused

• Not so good if the prefetch slows down instructions
trying to get to memory

#6 Compiler-Controlled Prefetch

• Two types
– Register prefetch (load value into a register)
– Cache prefetch (load data into cache, need new instr)

• The compiler determines where to place these
instructions, ideally in such a way as to be invisible to the
execution of the program
– Nonfaulting instructions – if there is a fault, the instruction just

turns into a NOP

36

turns into a NOP

• Only makes sense if cache can continue to supply data
while waiting for prefetch to complete
– Called a nonblocking or lockup-free cache

• Loops are a key target

19

Compiler Prefetch Example
for (i=0; i<3; i++)

for (j=0; j<100; j++)
a[i][j]=b[j][0]+b[j+1][0];

Using a Write-Back cache

Temporal locality

Spatial locality
Say even j’s miss, odd hit
Total of 300/2 = 150 misses

Misses on i=0
Misses on i=0,j=0 only
Total of 101 misses

Prefetched version, assuming we need to prefetch 7 iterations in
advance to avoid the miss penalty. Doesn’t address initial misses:

for (j=0; j<100; j++) {

37

prefetch(b[j+7][0]);
prefetch(a[0][j+7]);
a[0][j]=b[j][0]+b[j+1][0];

}
for (i=0; i<3; i++)

for (j=0; j<100; j++) {
prefetch(a[i][j+7]);
a[i][j]=b[j][0]+b[j+1][0]; }

Fetch for 7 iterations later
Pay penalty for first 7 iterations

Total misses = (3*7/2) + 1 + 7
= 19

#7 Compiler Optimizations
• Lots of options
• Array merging

– allocate arrays so that paired operands show up in same cache
block

• Loop interchange
– exchange inner and outer loop order to improve cache

performance

• Loop fusion

38

p
– for independent loops accessing the same data
– fuse these loops into a single aggregate loop

• Blocking
– Do as much as possible on a sub-block before moving on
– We’ll skip this one

20

Array Merging
Given a loop like this:

int val1[SIZE], val2[SIZE];
for (i=0; i<1000; i++) {

For spatial locality, instead use:

struct merge {
int val1 val2;for (i=0; i<1000; i++) {

x += val1[i] * val2[i];
}

int val1, val2;
} m[SIZE];

for (i=0; i<1000; i++) {
x += m[i].val1 * m[i].val2;

}For some situations, array
splitting is better:

struct merge { val2 unused, getting in the way of

39

struct merge {
int val1, val2;

} m1[SIZE], m2[SIZE];

for (i=0; i<1000; i++) {
x += m1[i].val1 * m2[i].val1;

}

, g g y
spatial locality. First version could
actually be better!

Objects can be good
or bad, depending
on access pattern

Loop Interchange
for (i=0; i<100; i++) {

for (j=0; j< 5000; j++)
x[i][j]++;j

}

Say the cache is small, much less than 5000 numbers
We’ll have many misses in the inner loop due to replacement

Switch order:
for (i=0; i<5000; i++) {

40

for (j=0; j< 100; j++)
x[i][j]++;

}

With spatial locality, presumably we can operate on all
100 items in the inner loop without a cache miss

Access all words in the cache block before going on to the next one

21

Loop Fusion
for (i=0; i<100; i++) {

for (j=0; j< 5000; j++)
a[i][j]=1/b[i][j] * c[i][j];

}}
for (i=0; i<100; i++) {

for (j=0; j< 5000; j++)
d[i][j]=a[i][j] * c[i][j];

}

Merge loops:
for (i=0; i<100; i++) {

41

for (j=0; j< 5000; j++)

a[i][j]=1/b[i][j] * c[i][j];
d[i][j]=a[i][j] * c[i][j];

}

Freeload on cached value!

Reducing Miss Penalties

• So far we’ve been talking about ways to reduce
cache misses

• Let’s discuss now reducing access time (the
penalty) when we have a miss

• What we’ve seen so far
– #1: Write Buffer

• Most useful with write through cache

42

• Most useful with write-through cache
• no need for the CPU to wait on a write

– hence buffer the write and let the CPU proceed
– needs to be associative so it can respond to a read of a buffered

value

22

Problems with Write Buffers

• Consider this code sequence
– SW 512(R0), R3 Maps to cache index 0
– LW R1, 1024(R0) Maps to cache index 0
– LW R2, 512(R0) Maps to cache index 0

• There is a RAW data hazard
– Store is put into write buffer
– First load puts data from M[1024] into cache index 0

Second load results in a miss if the write buffer isn’t done

43

– Second load results in a miss, if the write buffer isn t done
writing, the read of M[512] could put the old value in the cache
and then R2

• Solutions
– Make the read wait for write to finish
– Check the write buffer for contents first

#2 Other Ways to Reduce Miss
Penalties

• Sub-Block Placement
– Large blocks reduce tag storage and increase spatialLarge blocks reduce tag storage and increase spatial

locality, but more collisions and a higher penalty in
transferring big chunks of data

– Compromise is Sub-Blocks
– Add a “valid” bit to units smaller than the full block,

called sub-blocks

44

• Allow a single sub-block to be read on a miss to reduce
transfer time

• In other modes of operation, we fetch a regular-sized block
to get the benefits of more spatial locality

23

#3 Early Restart & Critical Word
First

• CPU often needs just one word of a block at a time
– Idea : Don’t wait for full block to load, just pass on theIdea : Don t wait for full block to load, just pass on the

requested word to the CPU and finish filling up the block while
the CPU processes the data

• Early Start
– As soon as the requested word of the block arrives, send it to

the CPU

45

• Critical Word First
– Request the missed word first from memory and send it to the

CPU as soon as it arrives; let the CPU continue execution while
filling in the rest of the block

#4 Nonblocking Caches

• Scoreboarding or Tomasulo-based machines
Could continue executing something else while– Could continue executing something else while
waiting on a cache miss

– This requires the CPU to continue fetching
instructions or data while the cache retrieves the block
from memory

Called a nonblocking or lockup free cache

46

– Called a nonblocking or lockup-free cache

– Cache could actually lower the miss penalty if it can
overlap multiple misses and combine multiple memory
accesses

24

#5 Second Level Caches
• Probably the best miss-penalty reduction technique, but

does throw in a few extra complications on the analysis
side…

• L1 = Level 1 cache, L2 = Level 2 cache

• Combining gives:

)1(_)1(_)1(____ LPenaltyMissLRateMissLTimeHitTimeAccessMemoryAverage 

)2(_)2(_)2(_)1(_ LPenaltyMissLRateMissLTimeHitLPenaltyMiss 

)1()1(LRateMissLTimeHitTimeAccessMemoryAverage 

47

– little to be done for compulsory misses and the penalty goes up
– capacity misses in L1 end up with a significant penalty reduction since they

likely will get supplied from L2
– conflict misses in L1 will get supplied by L2 unless they also conflict in L2

 )2(_)2(_)2(_

)1(_)1(____

LPenaltyMissLRateMissLTimeHit

LRateMissLTimeHitTimeAccessMemoryAverage




Second Level Caches

• Terminology
– Local Miss Rate

• Number of misses in the cache divided by total accesses to the cache;
this is Miss Rate(L2) for the second level cache

– Global Miss Rate
• Number of misses in the cache divided by the total number of memory

accesses generated by the CPU; the global miss rate of the second-level
cache is

– Miss Rate(L1)*Miss Rate(L2)

48

• Indicates fraction of accesses that must go all the way to memory

– If L1 misses 40 times, L2 misses 20 times for 1000 references
• 40/1000 = 4% local miss rate for L1
• 20/40 = 50% local miss rate for L2
• 20/40 * 40/1000 = 2% = global miss rate for L2

25

Effects of L2 Cache

49

L2 cache with 32K L1 cache
Top: local miss rate of L2 cache
Middle: L1 cache miss rate
Bottom: Global miss rate

Takeaways:
Size of L2 should be > L1
Local miss rate not a good measure

Size of L2?

• L2 should be bigger than L1
– Everything in L1 likely to be in L2Everything in L1 likely to be in L2

– If L2 is just slightly bigger than L1, lots of misses

• Size matters for L2, then..
– Could use a large direct-mapped cache

• Large size means few capacity misses, compulsory or conflict misses
possible

50

– Set associativity make sense?
• Generally not, more expensive and can increase cycle time

– Most L2 caches made as big as possible, size of main memory
in older computers

26

L2 Cache Block Size

• Increased block size
– Big block size increases chances for conflicts (fewer blocks in

the cache), but not so much a problem in L2 if it’s already big
to start with

– Sizes of 64-256 bytes are popular

51

L2 Cache Inclusion

• Should data in L1 also be in L2?
– If yes, L2 has the multilevel inclusion propertyIf yes, L2 has the multilevel inclusion property

– This can be desirable to maintain consistency between caches
and I/O; we could just check the L2 cache

– Write through will support multilevel inclusion

• Drawback if yes:
– “Wasted” space in L2, since we’ll have a hit in L1

52

– Not a big factor if L2 >> L1

– Write back caches
• L2 will need to “snoop” for write activity in L1 if it wants to maintain

consistency in L2

27

Reducing Hit Time

• We’ve seen ways to reduce misses, and reduce the
penalty.. next is reducing the hit timep y g

• #1 Simplest technique: Small and Simple Cache
– Small  Faster, less to search
– Must be small enough to fit on-chip

• Some compromises to keep tags on chip, data off chip but
not used today with the shrinking manufacturing process

53

y g g

– Use direct-mapped cache
• Choice if we want an aggressive cycle time
• Trades off hit time for miss rate, since set-associative has a

better miss rate

#2 Virtual Caches
• Virtual Memory

– Map a virtual address to a physical address or to disk, allowing
a virtual memory to be larger than physical memorya virtual memory to be larger than physical memory

• Traditional caches or Physical caches
– Take a physical address and look it up in the cache

• Virtual caches
– Same idea as physical caches, but start with the virtual address

instead of the physical address

54

– If data is in the cache, it avoids the costly lookup to map from a
virtual address to a physical address

• Actually, we still need to the do the translation to make sure there is no
protection fault

• Too good to be true?

28

Virtual Cache Problems

• Process Switching
– When a process is switched, the same virtual addressWhen a process is switched, the same virtual address

from a previous process can now refer to a different
physical addresses

• Cache must be flushed
• Too expensive to save the whole cache and re-load it
• One solution: add PID’s to the cache tag so we know what

process goes with what cache entry

55

process goes with what cache entry

– Comparison of results and the penalty on the next slide

Miss Rates of Virtually
Addressed Cache

56

29

More Virtual Cache Problems…

• Aliasing
– Two processes might access different virtual addresses that are

really the same physical address
– Duplicate values in the virtual cache
– Anti-aliasing hardware guarantees every cache block has a

unique physical address

• Memory-Mapped I/O
– Would also need to map memory-mapped I/O devices to a

57

p y pp
virtual address to interact with them

• Despite these issues…
– Virtual caches used in some of today’s processors

• Alpha, HP…

#3 Pipelining Writes for Fast
Hits

• Write hits take longer than read hits
– Need to check the tags first before writing data to avoid writingNeed to check the tags first before writing data to avoid writing

to the wrong address

– To speed up the process we can pipeline the writes (Alpha)
• First, split up the tags and the data to address each independently

• On a write, cache compares the tag with the write address

• Writes to the data portion of the cache can occur in parallel with a
comparison of some other tag

58

– We just overlapped two stages

• Allows back-to-back writes to finish one per clock cycle

• Reads play no part in this pipeline, can already operate in
parallel with the tag check

30

Cache Improvement Summary

59

