
8/25/2010

1

Brief Review of the MIPS
Instruction Set Architecture

RISC Instruction Set Basics

• All operations on data apply to data in registers
and typically change the entire register

• The only operations that affect memory are load
and store operations

• The instruction formats are few in number with
all instructions typically one size

• Text uses MIPS64
– Instructions generally have a D at the start or end of

the mnemonic, e.g. DADD is 64 bit ADD

8/25/2010

2

MIPS ISA

• 32 registers
– Register 0 always has the value 0

• Three classes of instructions
– ALU instructions

• Register to register or immediate to register
• Signed or unsigned
• Floating point or Integer
• NOT to memory

– Load/Store instructions
• Base register added to signed offset to get an effective address

– Branches and Jumps
• Branch based on condition bit or comparison between pair of

registers

MIPS arithmetic

• Most instructions have 3 operands
• Operand order is fixed (destination first)

Example:

 HLL code: A = B + C;

 MIPS code: DADD $s0, $s1, $s2

($s0, $s1 and $s2 are associated with variables by
compiler)

8/25/2010

3

MIPS arithmetic
 HLL code: A = B + C + D;

 E = F - A;

 MIPS code: DADD $t0, $s1, $s2

 DADD $s0, $t0, $s3

 DSUB $s4, $s5, $s0
Operands must be registers
– Compiler tries to keep as many variables in registers as possible

– Some variables can not be allocated
• large arrays

• aliased variables (variables accessible through pointers)

• dynamically allocated variables on the heap or stack

– Compiler may run out of registers; this is called spilling

Memory layout: Alignment

• Words are aligned (32 bit in this example)
• Big-endian or Little-endian depending on the

OS

this word is aligned; the others are not

ad
d

re
ss

0

4

8

12

16

31 0 7 15 23

8/25/2010

4

Instructions: load and store
Example:

 HLL code: A[3] = h + A[3];

 MIPS code: LW $t0, 24($s3)
 DADD $t0, $s2, $t0
 SW $t0, 24($s3)

• 8 bytes per word offset to 3rd word 24 byte
displacement

• h already in register $s2
• Store word operation has no destination (reg) operand

Swap example
C MIPS32

swap(int v[], int k)
{
 int temp;
 temp = v[k]
 v[k] = v[k+1];
 v[k+1] = temp;
}

swap:
 MULI $2, $5, 4
 ADD $2, $4, $2
 LW $15, 0($2)
 LW $16, 4($2)
 SW $16, 0($2)
 SW $15, 4($2)
 JR $31

Explanation:
 index k : $5
 base address of v: $4
 address of v[k] is $4 + 4*$5

8/25/2010

5

MIPS32 Instruction Formats

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS unconditional branch
 J Label

• MIPS conditional branch instructions:

 BNE $t0, $t1, Label
 BEQ $t0, $t1, Label

• Example: if (X==Y)
 A = B + C;

 BNE $s4, $s5, Label
 DADD $s3, $s0, $s1
 Label:

Control

Assembler
calculates offset
amount for us

8/25/2010

6

• We have: BEQ, BNE, what about Branch-if-less-than?

• New instruction:
 meaning:
 if $s1 < $s2 then

 $t0 = 1

 SLT $t0, $s1, $s2 else

 $t0 = 0

• Can follow this with BNE $t0, $zero, Label

 to get branch if less than

Control Flow

MIPS compiler conventions

Name Register number Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results and expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved (by callee)

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

8/25/2010

7

What’s this do? 32 bits

 LI $3, 4 # load immediate
Foo:
 MULI $2, $3, 4
 ADD $2, $1, $2
 LW $15, 0($2)
 ADDI $15, $15, 1
 SW $15, 0($2)
 ADDI $3, $3, -1
 BNE $3, $zero, Foo

Brief look at the 80x86
• Textbook appendix has more details

• Complexity:

– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

 e.g., “base or scaled index with 8 or 32 bit displacement”

• Saving grace:
– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

• Implementation on later processors translates x86 instructions
into RISC-like instructions internally, allowing it to adopt many of
the RISC innovations

