8/25/2010

Brief Review of the MIPS
Instruction Set Architecture

RISC Instruction Set Basics

All operations on data apply to data in registers
and typically change the entire register

The only operations that affect memory are load
and store operations

The instruction formats are few in number with
all instructions typically one size

Text uses MIPS64

— Instructions generally have a D at the start or end of
the mnemonic, e.g. DADD is 64 bit ADD



8/25/2010

MIPS ISA

* 32 registers
— Register 0 always has the value 0
* Three classes of instructions

— ALU instructions
* Register to register or immediate to register
* Signed or unsigned
* Floating point or Integer
* NOT to memory

— Load/Store instructions
* Base register added to signed offset to get an effective address

— Branches and Jumps

* Branch based on condition bit or comparison between pair of
registers

MIPS arithmetic

* Most instructions have 3 operands
* Operand order is fixed (destination first)

Example:
HLLcode: A = B + C;
MIPS code: DADD $s0, $sl1, $s2

(Ss0, Ss1 and S$s2 are associated with variables by
compiler)



8/25/2010

MIPS arithmetic

HLL code: A =B+ C + D;
E=F - A;

MIPS code: DADD $t0, $sl, $s2
DADD $s0, $t0O, $s3
DSUB $s4, $s5, $s0
Operands must be registers
— Compiler tries to keep as many variables in registers as possible

— Some variables can not be allocated
* large arrays
* aliased variables (variables accessible through pointers)
* dynamically allocated variables on the heap or stack

— Compiler may run out of registers; this is called spilling

Memory layout: Alignment

23 15 7 0
this word is aligned; the others are not

o
oo
ey

H

12

address

16

* Words are aligned (32 bit in this example)

* Big-endian or Little-endian depending on the
0sS



8/25/2010

Instructions: load and store

Example:
HLLcode: A[3] = h + A[3];

MIPS code: LW St0, 24($s3)
DADD $t0, $s2, StO
SW St0, 24($s3)

* 8 bytes per word = offset to 3" word 2 24 byte
displacement

* halready in register $s2
* Store word operation has no destination (reg) operand

Swap example

C MIPS32
swap (int v[1, int k) SYeRoLT 2, 34,
_ . ADD ,
1152:;-_1 t:mg,k] LW 15, 0(sS2
teme 2 Ve, o Ie 5132
} v[k+l] = temp; SW 15, 4(%2)
JR 31
Explanation:
index k : $5

base address of v: $4
address of v[k] is $4 + 4*S5



8/25/2010

MIPS32 Instruction Formats

Register-Register
31 26 25 2120 16 15 1110 65 Q
| op JRrst | Rs2 f rRd | sA | opx

Register-Immediate

31 26 25 2120 16 15 o

[[0p [ Rst | Rd |  immediate |
Branch

31 26 25 2120 16 15 o

[op [ rsi Rez/op]  immediate |
Jump / Call

31 26 25 o

L op | Target (offset added to PC) |

Control

*  Decision making instructions
— alter the control flow,
— i.e,, change the "next" instruction to be executed

¢ MIPS unconditional branch
J Label

*  MIPS conditional branch instructions:

BNE $t0, $tl, Label
BEQ $t0, $tl, Label

Assembler
calculates offset
amount for us

*  Example: if (X==Y)
A=B+C;
BNE $s4, $s5, Label

DADD $s3, $s0, $sl
Label:



8/25/2010

Control Flow

¢ We have: BEQ, BNE, what about Branch-if-less-than?
* New instruction:

meaning:
if $sl < $s2 then
St = 1
SLT $t0, $sl1, $s2 else
$t0 = 0

e Can follow this with BNE $t0, $zero, Label
to get branch if less than

MIPS compiler conventions

Name |Register number Usage
$zero 0 the constant value 0
$v0-$vil 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-5t7 8-15 temporaries
$s0-5$s7 16-23 saved (by callee)
$t8-5t9 24-25 more temporaries
$Sgp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
Sra 31 return address




8/25/2010

What's this do? 32 bits

LI $3,
Foo:

MULI  $2

ADD $2

W $1

ADDI $1

S1

$3

$3

# load immediate

SW
ADDI
BNE

Brief look at the 80x86

* Textbook appendix has more details

* Complexity:

Instructions from 1 to 17 bytes long

one operand must act as both a source and destination
one operand can come from memory

complex addressing modes
e.g., “base or scaled index with 8 or 32 bit displacement”

e Saving grace:
— the most frequently used instructions are not too difficult to build
— compilers avoid the portions of the architecture that are slow

* Implementation on later processors translates x86 instructions
into RISC-like instructions internally, allowing it to adopt many of
the RISC innovations



