
1 

1 

Instruction-Level Parallelism 

CS448 

2 

Instruction Level Parallelism 

(ILP) 
• Pipelining  

– Limited form of ILP 

– Overlapping instructions, these instructions can be evaluated in 

parallel (to some degree) 

– Pipeline CPI = Idea pipeline CPI + Structural Stalls + RAW 

stalls + WAR stalls + WAW stalls + Control Stalls 

• Focus now on the Control Stalls! 

– Methods to reduce the control stalls 

– Will use both hardware and software (i.e. compiler) methods 



2 

3 

Techniques 

4 

ILP and Basic Blocks 

• Basic Block 

– Straight line code without any branches except entry and exit 

– I.e. real code consists of multiple basic blocks connected via 
branches 

• Branch frequency was 15% 

– If evenly distributed, this means a branch every six or seven 
instructions 

– Means basic blocks are pretty small, not too much to exploit for 
parallelism 

– To get better performance we must exploit ILP across multiple 
basic blocks 

• Easiest target is the LOOP 



3 

5 

Loop Level Parallelism 

• Trivial Example 

– for (i=1; i<=1000; i++) 

     x[i] = x[i] + y[i]; 

• Note 

– No dependence between data values in iteration i and iteration 
i+1, so each loop iteration is truly independent 

– We could execute all 1000 of these in parallel if we could! 

– Since independent, No data hazards  No stalls 

– BUT 
• There is a branch to implement the loop, ruining all this nice parallelism 

• The prediction is pretty easy here, but in general it may be more difficult 

• Vector Processor Model 
– If we could execute four adds in parallel, we could have a loop up to 250 and 

simultaneously add x[i], x[i+1], x[i+2], x[i+3] 

 

6 

Assumptions - Latency 

Assume we need the following intervening cycles to avoid stalls 



4 

7 

Loop with a Scalar 

• Adding a scalar value within a loop: 

– for (i=1000; i>0; i--) 

     x[i] = x[i] + s; 

• Convert to MIPS 
– R2 precomputed to store last address of x to operate on 
– Loop:   L.D  F0, 0(R1) ; F0 gets x[i] 

    ADD.D  F4, F0, F2  

    S.D  0(R1), F4 

    DADDUI R1, R1, #-8 ;  doubleword 

    BNE  R1,R2, Loop ;  Repeat if R1!=R2 

• Let’s see how this loop executes without any 
special scheduling 

8 

No Scheduling – Loop w/ Scalar 

Loop:  L.D  F0,0(R1)  Cycle 1 

  stall     Cycle 2 

  ADD.D F4, F0, F2  Cycle 3 

  stall     Cycle 4 

  stall     Cycle 5 

  S.D  0(R1), F4  Cycle 6 

  DADDUI R1, R1, #-8  Cycle 7 

  stall     Cycle 8 

  BNE  R1, R2,Loop  Cycle 9 

  stall     Cycle 10 

 

Total of 10 clocks per iteration! 

For 1000 iterations, 10000 cycles 



5 

9 

Optimized, Scheduled Version 
Original: L.D  F0, 0(R1) ; F0 gets x[i] 

  ADD.D  F4, F0, F2  

  S.D  0(R1), F4 

  DADDUI  R1, R1, #-8     ;doubleword 

  BNE  R1, R2, Loop  ;Repeat 

Move S.D after BNE into the delay slot, move DADDUI up! 

New:  L.D  F0, 0(R1) ; F0 gets x[i] 

  stall 

  ADD.D  F4, F0, F2 

  DADDUI  R1, R1, #-8 

  stall 

  BNE  R1, R2, Loop ;  Repeat 

  SD  8(R1), F4 

Have to add 8 as SD’s offset because we already subtracted 8 off! 

From 10 to 7 cycles per iteration (7000 cycles total) 

Not a trivial computation, many compilers won’t do this 

10 

Loop Unrolling 

• In the previous example, there were 3 cycles that did 

work in the loop (LD, SW, ADD) and 3 cycles that were 

just overhead to control the loop (SUB, BNE, stall) 

• To get more instructions doing work relative to control 

instructions 

– We need to make our loop body larger 

– Can do this be replicating the loop body multiple times, and 

adjusting the loop termination code 

• Obviously can’t do it for the entire loop, if the loop iteration is high 

– Called loop unrolling 

• Tradeoff:  Longer code, but higher ILP 

 



6 

11 

Loop Unrolling Example 
Four copies of the loop body per iteration 

Loop: L.D  F0, 0(R1) 

 ADD.D  F4, F0, F2 

 S.D  0(R1), F4 ; Drop DADDUI and BNEZ 

 L.D  F6, -8(R1) 

 ADD.D  F8, F6, F2 

 S.D  -8(R1), F8 ; Drop DADDUI and BNEZ 

 L.D  F10, -16(R1) 

 ADD.D  F12, F10, F2 

 S.D  -16(R1), F12 ; Drop DADDUI and BNEZ 

 LD  F14, -24(R1) 

 ADDD  F16, F14, F2 

 SD  -24(R1), F16 

 DADDUI R1, R1, #-32 

 BNE  R1, R2, Loop 

Without scheduling, a stall 

after every instruction, 28 

cycles per iteration, 

28*250 = 7000 cycles total 

12 

Scheduling the Unrolled Loop 

Loop: L.D  F0, 0(R1) 

 L.D  F6, -8(R1) 

 L.D  F10,-16(R1) 

 L.D  F14,-24(R1) 

 ADD.D  F4, F0, F2 

 ADD.D  F8, F6, F2 

 ADD.D  F12, F10, F2 

 ADD.D  F16, F14, F2 

 S.D  0(R1), F4 

 S.D  -8(R1), F8 

 DADDUI R1, R1, #-32 

 S.D  16(R1), F12 

 BNE  R1, R2, Loop 

 S.D  8(R1), F16 ; -24=8-32 

Shuffle unrolled loop instead 

of concatenating 

 

No stalls!  Must incorporate 

previous tricks of filling the 

delay slot 

 

14 instructions, 14*250 = 

3500 cycles total 



7 

13 

Stuff to Notice 

• Eight unused registers 

– Could have unrolled 8 instead of 4 loop iterations 

without any register conflicts 

– What if we have a remainder?  E.g. our loop was 1002, 

not evenly divisible by 4 

– Just compute the extra N mod L blocks independently 

before or after the unrolled loop 

• Tricky to unroll the loop, even this simple one 

– 3 types of dependence: data, name, and control 

14 

Data Dependence 

• Occurs when either 

– Instruction I produces a result used by instruction J 

– Instruction J is data dependent on instruction K, and instruction 
K is data dependent on instruction I 

• L.D  F0, 0 (R1) 

• ADD.D F4, F0, F2 

• S.D  0(R1), F4 

– or 
• DADDUI R1, R1, #-8 

• BNE  R1, R2, Loop 

• Introduces possible RAW hazards 

– Whether there is an actual hazard depends on the pipeline, 
forwarding mechanisms, split cycle, etc. 

 

Compiler 

identifies these 

with static 

dataflow analysis 



8 

15 

Name Dependence 

• Occurs when 

– 2 instructions use the same register name without a data 
dependence 

• If I precedes J 

– I is antidependent on J when J writes a register that I reads 
• a WAR hazard 

• ordering must be preserved to avoid the hazard 

– I is output dependent on J if both I and J write to the same 
register 

• WAW hazard 

• E.g. occurs if we unroll a loop but don’t changing the 
register names 

– This can be solved by renaming registers via the compiler, or 
we can also do this dynamically 

 

16 

Name Dependence Example 

Loop: L.D   F0, 0(R1) 

 

 ADD.D F4, F0, F2 

 

 S.D 0(R1), F4  

 

 L.D F0, -8(R1) 

 

 ADD.D F4, F0, F2 

 

 S.D -8(R1), F4  

  

  

Part of unrolled loop, always going to F0: 

Name dependencies 

force execution 

stalls to avoid 

potential WAW or 

WAR problems 

 

Eliminated by 

renaming the 

registers as in 

earlier example 



9 

17 

Control Dependences 

• Occurs when 

– Conditional branch exists and we have instructions after the 

branch that may or may not be executed 

• Constraints to maintain dependencies 

– instructions controlled by the branch cannot be moved before 

the branch (e.g. put part of a “then” before the “if”) 

– an instruction not controlled by the branch cannot be moved 

after the branch (e.g. put a statement before the “if” and put it 

into the “then”) 

• Once in a while we can violate these constraints and get 

away with it… 

18 

Preserving Control Dependence 

• Should preserve the exception behavior 

– Assume no delay branches 

– No data dependence in the following: 

• BEQZ  R2, SomeLabel 

• LW    R1,0(R2) 

– Safe to move this to the following? 

• LW    R1,0(R2) 

• BEQZ  R2, SomeLabel 

– If we ignore the control dependence, if the load 
instruction generates an exception (e.g. memory 
protection fault) we get a different behavior  



10 

19 

Preserving Control Dependence 

• Should preserve the data flow 

– Assume no delay branches 

•      ADD   R1, R2, R3 

•      BEQZ  R4, L 

•      SUB     R1, R5, R6 

• L:  OR       R7, R1, R8 

– R1 in the OR depends on if we took the branch or not 

– OR is also data dependent on the ADD, SUB 

– Must preserve the control dependence of the SUB on 

the branch to prevent an illegal change to the data flow 

 

20 

Some Examples 

for (i=1; i<=100; i++) { 

 A[i+1]=A[i]+C[i];  // S1 

 B[i+1]=B[i]+A[i+1];  // S2 

} 

Observations of dependencies: 

   S1 uses S1 value produced in an earlier iteration 

   S2 uses S2 value produced in an earlier iteration 

   S2 uses an S1 value produced in the same iteration 

 

Implications: 

    Values dependent on the earlier iteration are called 

     loop carried dependent; order must be preserved 

  

     non- loop carried dependences we can try and execute in 

     parallel (but not in this case, due to other dependency) 

Can usually find 

dependences via 

source code 



11 

21 

One More Example 
for (i=1; i<=100; i++) { 

 A[i]=A[i]+B[i];  // S1 

 B[i+1]=C[i]+D[i];  // S2 

} 

S1 uses previous value of S2, but despite the loop-carried 

dependence this is not circular, since neither statement depends on 

itself 

 

S2 doesn’t depend on S1 

   Implies S2 can be moved! 

A[1]=A[1]+B[1] 

for (i=1; i<=99; i++) { 

 B[i+1]=C[i]+D[i]; 

 A[i+1]=A[i+1]+B[i+1]; 

} 

B[101]=C[100]+D[100] 

No more loop carried 

dependence so we can 

unroll the loop and expect 

good performance gains! 

A variety of these 

transformations possible, 

but tricky 

22 

Instruction-Level Parallelism 

Dynamic Branch Prediction 



12 

23 

Reducing Branch Penalties 

• Previously discussed – static schemes 

– Move branch calculation earlier in pipeline 

– Static branch prediction 
• Always taken, not taken 

– Delayed branch 

– Loop unrolling 
• Good, but limited to loops 

• This section – dynamic schemes 

• A more general dynamic scheme that can be used with all 
branches 

– Dynamic branch prediction 

 

24 

Dynamic Branch Prediction 

• Becomes crucial to any processor that tries to issue more 
than one instruction per cycle 

– Scoreboard, Tomasulo’s algorithm we will see later operate on 
a basic block (no branches) 

• Possible to extend Tomasulo’s algorithm to include branches 

– Just not enough instructions in a basic block to get the 
superscalar performance 

• Result 

– Control dependencies can become the limiting factor 
• Hard for compilers to deal with, so may be ignored, resulting in a higher 

frequency of branches 

– Amdahl’s Law too 
• As CPI decreases the impact of control stalls increases 



13 

25 

Branch Prediction Buffer 

• Simplest Scheme – one bit Branch Prediction 

Buffer (BPB) aka Branch History Table (BHT) 

• Idea 

– Take low order bits of the address of branch 

instruction, and store a branch prediction in the BHT  

– Can be implemented in a fashion very similar to cache 

 Instruction Stream 

10F00:  LD R1, 1000(R0) 

10F04:  BEQZ L1 

BHT 

00          Taken 

… 

04       Not Taken 

.. 

FF          Taken 
Get from PC 

Set bit to 

actual result 

of the branch 

26 

Simple and Effective, But… 

• Aliasing Problem 

– branches with same lower order bits will reference the same 
entry if we get unlucky, causing mutual prediction 

– Counter-argument: there’s no guarantee that a prediction is 
right so it might not matter 

– Avoidance 
• Same ideas as in caching 

• Make the table bigger 

– Not much of a problem since it’s only a single bit we are storing 

• Can try other cache strategies as well, like set-associative mapping 

• Shortcomings with loops 

– always mispredict twice for every loop 
• Mispredict upon exiting a loop, since this is a surprise 

• If we repeat the loop, we’ll miss again since we’ll predict to not take the 
branch 

• Book example: branch taken 90% of time predicted 80% accuracy 



14 

27 

Solution to Loops – N bit 

Prediction 
• Use a finite state automata with 2n states 

• Called an n-bit prediction 

• Most common is to use 2 bits, giving 4 states 

– Example below will only miss on exit 

Predict taken Predict taken 

Predict not taken Predict not taken 

11 

01 

10 

00 

T 

NT 

T 

NT 

T 

T NT 

NT 

28 

Implementation 
• Separate Branch History Cache Buffer 

– associated with the IF stage (using the PC) but we don’t know if 
this is a branch until the ID stage 

• but IF stage knows the target address and hence the index 

• at ID if it’s a branch then the prediction goes into effect 

• This is still useful for most pipelines 

– Not useful for pipeline in our improved MIPS example 
• branch resolution happens in ID stage for improved MIPS (in EX for 

original MIPS) 

• so this model doesn’t improve anything for the improved MIPS, we 
would need the predicted branch by the ID stage so we could be fetching 
it while decoding!  Possible to always fetch or decode branches in IF but 
then this makes the IF stage longer 

• Instruction cache extension 
– hold the bits with the instruction in the Instruction Cache as an early branch 

indicator  

– Increased cost since the bits will take up space for non- branch instructions 
as well 

 



15 

29 

Does It Work? 

SPEC89 

Prediction accuracy for 4K two-bit prediction buffer 

Somewhat misleading for the scientific programs (top three) 

30 

Increased Table Size 
Increasing the table size helps 

with caching, does it help 

here? 

 

We can simulate branch 

prediction quite easily.  The 

answer is NO compared to an 

unlimited size table! 

 

Performance bottleneck is the 

actual goodness of our 

prediction algorithm 



16 

31 

Improving Branch Prediction 
• Let’s look at an example of the types of branches that our 

scheme performed poorly on 

– if (aa==2) aa=0; 

– if (bb==2) bb=0; 

– if (aa!=bb) { …. } 

• If the first two branches are not taken, then we will 
always take the third 

– But our branch prediction scheme for the third branch is based 
on the prior history of the third branch only, not on the behavior 
of other branches! 

– Will never capture this behavior with the existing model 

• Solution 

– Use a correlating predictor, or what happened on the previous 
(in a dynamic sense, not static sense) branch 

– Not necessarily a good predictor (consider spaghetti code) 

32 

Example – Correlating Predictor 

• Consider the following code fragment 

– if (d==0) d=1; 

– if (d==1) { … } 

• Typical code generated by this fragment 

–       BNEZ  R1, L1                 ;  check if d==0           B1 

–       ADDI  R1, R0, #1           ;  d1 

– L1: SEQI   R3, R1, #1           ;  Set R3 if R1==1 

–        BNEZ R3, L2                 ;  Skip if d!=1              B2 

– L2: … 

• Let’s look at all the possible outcomes based on the value 
of d going into this code 



17 

33 

Example – Correlating Predictor 

Any value not 0 or 1 

If b1 not taken, then b2 not taken, all the time! 

 

Worst-case sequence: all predictions fail! 

34 

Solution – Use correlator 

• Use a predictor with one bit of correlation 

– i.e. we remember what happened with the last branch to predict the current 

branch 

– Think of this as the last branch has two separate prediction bits 

• One bit assuming the last branch was taken 

• One bit assuming the last branch was not taken 

• Pair the prediction bits:  first bit is the prediction if the last branch 

is not taken, second bit is the prediction if the last branch is taken 

• Leads to 4 possibilities: which way the last one went chooses the 

prediction 

– (Last-taken, last-not-taken) X (predict-taken, predict-not-taken) 



18 

35 

Single Correlator 

Notation a bit confusing since we have two interpretations 

taken/not-taken :  for what really happened last branch, and prediction 

Behavior using one-bit of correlation : every branch correct except first 

Start in NT/NT state for both branches; prediction in bold 

36 

Predictors in General 

• Previous example a (1,1) predictor 

– Used last 1 branches, with a 1 bit predictor 

• Can generalize to a (m, n) predictor 

– M = number of previous last branches to consider 
• Results in 2m branch predictors, each using n bits 

– Total number of bits needed 
• 2m * n * Number_of_entries_selected_in_table 

• E.g. (2, 2) with 16 entries = 128 bits   

– Shown on next slide 

– Can implement in hardware without too much difficulty 
• Some shifters needed to select entries 

– (1,1) and (2,2) and (0,2) the most interesting/common 
selections 



19 

37 

(2,2) buffer with 2 bit history 

38 

Performance of 

Predictors? 

• SPEC 89 Benchmark 

• Improves performance, 
but of course with the 
extra cost 

• Note no improvement in 
first few cases, but no 
decrease in performance 
either 

Big win here! 



20 

39 

Branch Target Buffers 
• How can we use branch prediction on improved MIPS? 

– As indicated earlier, we need the branch target during 

the IF stage 

– But we don’t know it’s a branch until ID …  stuck? 

– Solution 

• Use the address of the current instruction to determine if it is 

a branch!   Recall we have the Branch History Buffer 

 

00          Taken 

… 

04       Not Taken 

.. 

FF          Taken 
Get from PC 

Instruction Stream 

10F04:  BEQZ L1 

BHT 

Will change and 

rename to 

Branch Target 

Buffer/Cache 

40 

Branch Target Buffer 

• Need to change a bit from Branch History Table 

– Store the actual Predicted PC with the branch prediction for 

each entry 

– If an entry exists in the BTB, this lets us look up the Predicted 

PC during the IF stage, and then use this Predicted PC for the IF 

of the next instruction during the ID of the branch instruction 



21 

41 

BTB Diagram 

42 

Steps in 

our MIPS 

Arch 

This really means 

correct prediction 



22 

43 

Penalties 

• Branch penalties for incorrect predictions are shown 
below 

– No delay if prediction correct 

– Two cycle penalty if incorrect 
• One to discover the wrong branch was taken 

• One to update the buffer (might be able to overlap this with other stages) 

 

 

 

• Penalty not too bad here, but much worse for many other 
machines (e.g. with longer pipelines) 

44 

Other Improvements 
• Branch Folding 

– Store the target instruction in the cache, not the address 

– We can then start executing this instruction directly instead of having to 
fetch it!  

• Branch “disappears” for unconditional branches 

• Will then update the PC during the EX stage 

• Used with some VLIW architectures (e.g. CRISP) 

• Increases buffer size, but removes an IF stage 

• Complicates hardware 

• Predict Indirect Jumps 
– Dynamic Jumps, target changes 

– Used most frequently for Returns  

– Implies a stack, so we could try a stack-based prediction scheme, caching the 
recent return addresses 

– Can combine with folding to get Indirect Jump Folding 

• Predication 
– Do the If and Else at the same time, select correct one later 



23 

45 

Branch Prediction Summary 

• Active Research Topic  

– Tons of papers and ideas coming out on branch prediction 

• Easy to simulate 

• Easy to forget about costs 

– Motivation is real though 

• Mispredicted branches are a large bottleneck and a small percent 

improvement in prediction can lead to larger overall speedup 

• Intel has claimed that up to 30% of processor performance gets tossed 

out the window because of those 5-10% wrong branches 

• Basic concepts presented here used in one form or 

another in most systems today 

 

46 

Example – Intel Pentium Branch 

Prediction 
• Two level branch prediction scheme 

– 1. Four bit shift register,  indicates last 4 branches 

– 2. Sixteen 2-bit counters (the FSA we saw earlier) 

– The shift register selects which of the 16 counters to 

use 

Advantage: remembers history and 

can learn patterns of branches 

Consider 1010   (T/NT) 

  History shifts: 

  1010  0101  1010  0101 

Update 5th and 10th counters  



24 

47 

ILP Summary 

Software Solution Hardware Solution 

Data Hazards Pipeline Scheduling 

Register Renaming 

Scoreboarding 

Tomasulo’s Algo 

Structural 

Hazards 

Pipeline Scheduling 

 

More Functional 

Units 

Control 

Hazards 

Static Branch Prediction  

Pipeline Scheduling – 

Delayed Branch 

Loop Unrolling 

Dynamic Branch 

Prediction / 

Correlation 

Branch Folding 

Predication 


