
9/19/2010

1

Limits on ILP

Achieving Parallelism

• Techniques
– Scoreboarding / Tomasulo’s Algorithm

– Pipelining

– Speculation

– Branch Prediction

• But how much more performance could we
theoretically get? How much ILP exists?

• How much more performance could we
realistically get?

9/19/2010

2

Methodology

• Assume an ideal (and impractical) processor

• Add limitations one at a time to measure
individual impact

• Consider ILP limits on a hypothetically
practical processor

• Analysis performed on benchmark programs
with varying characteristics

Hardware Model – Ideal Machine

• Remove all limitations on ILP
– Register renaming

• Infinite number of registers available, eliminating all WAW and
WAR hazards

– Branch prediction
• Perfect, including targets for jumps

– Memory address alias analysis
• All addresses known exactly, a load can be moved before a store

provided that the addresses are not identical

– Perfect caches
• All memory accesses take 1 clock cycle

– Infinite resources
• No limit on number of functional units, buses, etc.

9/19/2010

3

Ideal Machine

• All control dependencies removed by perfect branch
prediction

• All structural hazards removed by infinite resources

• All that remains are true data dependencies (RAW)
hazards

• All functional unit latencies: one clock cycle
– Any dynamic instruction can execute in the cycle after its

predecessor executes

• Initially we assume the processor can issue an
unlimited number of instructions at once looking
arbitrarily far ahead in the computation

Experimental Method

• Programs compiled and optimized with
standard MIPS optimizing compiler

• The programs were instrumented to produce
a trace of instruction and data references over
the entire execution

• Each instruction was subsequently re-
scheduled as early as the true data
dependencies would allow
– No control dependence

9/19/2010

4

Benchmark Programs – SPECINT92

ILP on the Ideal Processor

9/19/2010

5

How close could we get to the ideal?

• The perfect processor must do the following:
1. Look arbitrarily far ahead to find a set of

instructions to issue, predicting all branches
perfectly

2. Rename all registers to avoid WAR and WAW
hazards

3. Resolve data dependencies

4. Resolve memory dependencies

5. Have enough functional units for all ready
instructions

Limiting the Instruction Window

• Limit window size to n (no longer arbitrary)
– Window = number of instructions that are candidates

for concurrent execution in a cycle

• Window size determines
– Instruction storage needed within the pipeline

– Maximum issue rate

– Number of operand comparisons needed for
dependence checking is O(n2)
• To try and detect dependences among 2000 instructions

would require some 4 million comparisons

• Issuing 50 instructions requires 2450 comparisons

9/19/2010

6

Effect of Reduced Window Size

Effect of Reduced Window Size

9/19/2010

7

Effect of Reduced Window Size

• Integer programs do not have as much
parallelism as floating point programs
– Scientific nature of the program

• Highly dependent on loop-level parallelism
– Instructions that can execute in parallel across loop

iterations cannot be found with small window sizes
without compiler help

• From now on, assume:
– Window size of 2000

– Maximum of 64 instructions issued per cycle

Effects of Branch Prediction

• So far, all branch outcomes are known before the first
instruction executes
– This is difficult to achieve in hardware or software

• Consider 5 alternatives
1. Perfect
2. Tournament predictor

• (2,2) prediction scheme with 8K entries

3. Standard (non-correlating) 2-bit predictor
4. Static (profile-based)
5. None (parallelism limited to within current basic block)

• No penalty for mispredicted branches except for
unseen parallelism

9/19/2010

8

Branch Prediction Accuracy

Effects of Branch Prediction

9/19/2010

9

Effects of Branch Prediction

Branch Prediction

• Accurate prediction is critical to finding ILP

• Loops are easy to predict

• Independent instructions are separated by
many branches in the integer programs and
doduc

• From now on, assume tournament predictor

– Also assume 2K jump and return predictors

9/19/2010

10

Effect of Finite Registers

• What if we no longer have infinite registers?
Might have WAW or WAR hazards

• Alpha 21264 had 41 gp and integer renaming
registers

• IBM Power5 has 88 fp and integer renaming
registers

Effect of Renaming Registers

9/19/2010

11

Effects of Renaming Registers

Renaming Registers

• Not a big difference in integer programs

– Already limited by branch prediction and window size,
not that many speculative paths where we run into
renaming problems

• Many registers needed to hold live variables for
the more predictable floating point programs

• Significant jump at 64

• We will assume 256 integer and FP registers
available for renaming

9/19/2010

12

Imperfect Alias Analysis

• Memory can have dependencies too, so far
assumed they can be eliminated

• So far, memory alias analysis has been perfect

• Consider 3 models
– Global/stack perfect: idealized static program analysis

(heap references are assumed to conflict)

– Inspection: a simpler, realizable compiler technique
limited to inspecting base registers and constant
offsets

– None: all memory references are assumed to conflict

Effects of Imperfect Alias Analysis

9/19/2010

13

Effects of Imperfect Alias Analysis

Memory Disambiguation

• Fpppp and tomcatv use no heap so perfect with
global/stack perfect assumption
– Perfect analysis here better by a factor of 2, implies there

are compiler analysis or dynamic analysis to obtain more
parallelism

• Has big impact on amount of parallelism
• Dynamic memory disambiguation constrained by

– Each load address must be compared with all in-flight
stores

– The number of references that can be analyzed each clock
cycle

– The amount of load/store buffering determines how far a
load/store instruction can be moved

9/19/2010

14

What is realizable?

• If our hardware improves, what may be
realizable in the near future?
– Up to 64 instruction issues per clock (roughly 10

times the issue width in 2005)

– A tournament predictor with 1K entries and a 16
entry return predictor

– Perfect disambiguation of memory references
done dynamically (ambitious but possible if
window size is small)

– Register renaming with 64 int and 64 fp registers

Performance on Hypothetical CPU

9/19/2010

15

Performance on Hypothetical CPU

Hypothetical CPU

• Ambitious/impractical hardware assumptions
– Unrestricted issue (particularly memory ops)
– Single cycle operations
– Perfect caches

• Other directions
– Data value prediction and speculation

• Address value prediction and speculation

– Speculation on multiple paths
– Simpler processor with larger cache and higher clock

rate vs. more emphasis on ILP with a slower clock and
smaller cache

