
8/23/2010

1

Fundamentals of Computer
Design

Rapid Pace of Development

• IBM 7094 released in 1965

– Featured interrupts

– Could add floating point numbers at 350,000
instructions per second

– Standard 32K of core memory in 36 bit words

– Occupied an entire air conditioned room

– System cost of about $3.5 million

8/23/2010

2

This laptop

• Fujitsu Lifebook T4220 purchased in 2008

– 16 GFLOPS (we’ll see later this is not a particularly
good benchmark)

– Standard 2GB of core memory in 64 bit words

– Occupies 12” by 9” by 1.5” space

– System cost of about $2,000

• Transistors per inch square
– Twice as many after ~1.5-2 years

• Related trends
– Processor performance

Twice as fast after ~18 months

– Memory capacity
Twice as much in <2 years

• Not a true law but an observation
– We’re getting close to hitting the physical limits

Moore’s Law

8/23/2010

3

The Shrinking Chip

• Human Hair: 100 microns wide
– 1 micron is 1 millionth of a meter

• Bacterium: 5 microns
• Virus: 0.8 microns
• Early microprocessors: 10-15 micron

technology
• 1997: 0.35 Micron
• 1998: 0.25 Micron
• 1999: 0.18 Micron
• 2001: 0.13 Micron
• 2003: 0.09 Micron
• 2007: 0.065 Micron
• 2009: 0.045 Micron
• Physical limits believed to be around

0.016 Microns, should reach it
around 2018

6

Size

8/23/2010

4

Performance Trend

RISC vs. CISC

• Big debate in the 80’s

• Ideas from RISC won

– Although you don’t think of it as RISC, today’s Intel
Architecture adopted many RISC ideas internally

8/23/2010

5

Terms for a Computer Designer

• Instruction Set Architecture – The assembly
instructions visible to a programmer

• Organization – Mostly transparent to the programmer,
but high-level design aspects such as how much cache,
replacement policies, cache mapping algorithm, bus
structure, internal CPU design.

• Computer Architecture – We’ll refer to this as
instruction set design, organization of the hardware
design, and the actual hardware itself.

ISA for this class

• Mostly a MIPS-like ISA

– 32 general purpose and 32 floating point registers

– Load-store architecture

• Memory Addressing

– Byte addressing

– Objects in MIPS must be byte aligned

• Addressing Modes

– Register, Immediate, Displacement

8/23/2010

6

ISA for this class

• Types and sizes of operands

– 8-bit ASCII to 64 it double precision

• Operations

– Data transfer, arithmetic, logical, control, floating
point

• Control Flow instructions

• Encoding on an ISA

– Fixed length vs. Variable length

Other Design Factors

Power, Cooling, Logic, Fabrication

CPU, Memory, Interconnect, Buses

Operating System, Programming Lang

Instruction Set Architecture

Utilities, User Applications

Market Forces

8/23/2010

7

Conflicting Requirements

• To minimize cost implies a simple design

• To maximize performance implies complex
design or sophisticated technology

• Time to market matters! Implies simple
design and great secrecy

• Time to productivity! Implies need complete
vertical solutions in place

• Don’t mess up – requires simulation, QA,
quantification

Technology Trends

• In 1943, Thomas Watson predicted “I think
there is a world market for maybe five
computers."
– (The IBM PC was an “undercover” project and

saved the company)

• In the 70’s and 80’s IBM pursued the high-
speed Josephson Junction, spending $2 billion,
before scrapping it and using CMOS like
everyone else.

8/23/2010

8

Current Trends

• Memory use by programs growing by a factor of 1.5 to 2 per
year.
– Lesson: don’t make your word size or address space too small!

• Replacement of assembly by HLL’s
– Lesson: compilers are critical!

• Growing demand on multimedia
– Lesson: Design for high-speed graphic interfaces.

• Growing demand for networking.
– Lesson: Also design for high-speed I/O

• Growing demand for simplicity in attaching I/O devices
– Lesson: Rise of USB, perhaps Firewire next?

• Growing demand for mobile computing
– Lesson: Need ability to adapt to low power scenarios

Implementation Trends

• IC density is increasing at close to 35% per year,
while the die size is also increasing at close to
15% per year. This results in transistor count
increasing at 40-55% per year. Factors into a
lower future cost for developing the same chip!

• Semiconductor DRAM density increasing around
40% per year, bandwidth and latency also
improving.

• Disk technology increasing at an astounding rate,
about 30-100% per year

8/23/2010

9

PC Hard Drive Capacity

Bandwidth vs. Latency

8/23/2010

10

Chip Production

• Ingot of purified silicon – 1 meter
long, sliced into thin wafers

• Chips are etched – much like
photography

– UV light through multiple masks

– Circuits laid down through mask

• Process takes about 3 months

 View of
Cross-Section

Yield

13/16 working chips

81.25% yield

1/4 working chips

25.0% yield









Manufacturing

Defects









Size Matters! (of the die, anyway)

8/23/2010

11

Costs

Yield

PackagingCostTestCostDieCost
CostIC

_




YieldDieWaferperDies

WaferCost
DieCost

_
_




DiesTestNum
AreaDie

DiameterWafer

AreaDie

RadiusWafer
WaferperDies __

)_(2

)_(

_

)_(
__

2

















 


AreaDieareaunitperDefects
YieldWaferYieldDie

1__

Complexity of manufacturing; a
typical  = 4

Wafers completely bad so no
testing. Assume 100%

0.4/cm2 in 2006

Some Sizes

• 0.25u Pentium II = 105 mm2
• 0.25u PPC 604e = 47.3 mm2
• 0.18u Pentium 4: 217 mm2
• 0.18u Transmeta TM5600 88 mm2
• 0.90u VIA C7M 30mm2
• 0.065u Athlon X2 (Brisbane) 118 mm2
• 0.065u Core 2 Due (Conroe) 143 mm2
• 0.045u Atom 230: 26 mm2

• The diameter of wafers has increased from 200mm (8 inch)
in 1993 to 300mm today (12 inch) with some resistance
going to 450 mm

8/23/2010

12

Cost per die

• The book has some examples of computing the die
yield for various wafer and die sizes.

• For a designer, the wafer yield, cost, and defects are all
determined by the manufacturing process.

• The designer has control over the die area.
– If alpha is typically 4, then this means that the die_yield is

proportional to (Die_Area)-4. Plugging this in to the
equation for die cost gives us:

• Size matters!

)_(_ 4AreaDiefCostDie 

Optimization Problem

• Optimize price/performance ratio

• Conflicting goals due to interactions between
components

– If adding a new feature, die size goes up, number
of defects goes up and fewer dies per wafer, may
need more testing, power usage may increase
requiring larger battery or heat sink, etc…

8/23/2010

13

Measuring Performance

• What does it mean to say one computer is
faster than another?
– Historically, advertisers and consumers have used

clock speed. 2Ghz vs. 1Ghz means the first is
twice as fast as the second?

– Pentium 4E in 2004
• Whopping 3.6 Ghz!

• 31 stage integer pipeline!

– Core i5 750 in 2010
• Only 2.66 Ghz

Execution Time – A Better Metric

• Compare two machines, X and Y, on the same
task:

• Another metric sometimes used is
performance, which is just the reciprocal of
execution time:

)(

)(

XTimeExecution

YTimeExecution
n






)(

1
)(

XTimeExecution
XePerformanc




8/23/2010

14

Measuring Execution Time

• More difficult than it seems to measure execution time
– Wall-clock time, response time, or elapsed time - Total

time to complete a task. Note the system might be waiting
on I/O, performing multiple tasks, OS activities, etc.

– CPU time – Only the time spent computing in the CPU, not
waiting for I/O. This includes time spent in the OS and
time spent in user processes.

– System CPU Time – Portion of CPU time spent performing
OS related tasks.

– User CPU Time – Portion of CPU time spent performing
user related tasks.

What programs should we run?

• Real Programs – Run the programs users will use.
Examples are compilers, office tools, etc.
– Unfortunately there is a porting problem among

different architectures, so it might not be a fair
comparison if the same software is coded differently.

• Kernels – These are small, intensive, key pieces
from real programs that are run repeatedly to
evaluate performance.
– Examples include Livermore Loops and Linpack. Here

is a code fragment from Livermore Loops:

for (l=1; l<=loop; l++) {

 for (k=0; k<n; k++) {

 x[k] = q + y[k] * (r*z[k+10]+t*z[k+11]);

 }

}

8/23/2010

15

Benchmarks

• Toy benchmarks - this includes small problems
like quicksort, sieve of eratosthenes, etc.
– They are best saved for CS201 programming

assignments!

• Synthetic benchmarks - These are similar to
kernels, but try to match the average frequency
of operations and operands of a large set or
programs.
– Examples: Whetstone and Dhrystone
– The problem is no user really runs these either.

Programs typically reside entirely in cache and don’t
test the entire system performance!

Benchmarks

• Benchmark Suites - These are a collection of
benchmarks together in an attempt to measure
the performance of processors with a variety of
applications.
– Suffers from problems of OS support, compiler quality,

system components, etc.

– Suites such as CrystalMark or the SPEC
(www.spec.org) benchmark seem to be required for
the industry today, even if the results may be
somewhat meaningless.

– http://www.spec.org/cpu2006/results/cpu2006.html

http://www.spec.org/
http://www.spec.org/cpu2006/results/cpu2006.html

8/23/2010

16

Programs in SPECint92 and SPECfp92
Benchmark Source Lines of Code Description

Espresso C 13500 Minimize
Boolean
functions.

Li C 7413 Lisp interpreter
that solves 8
queens problem

Compress C 1503 LZ compression
on a 1Mb file

Gcc C 83589 GNU C Compiler

Benchmark Source Lines of Code Description

Spice2g6 FORTRAN 18476 Circuit simulation

Alvinn C 272 Neural network
training
simulation

Ear C 4483 Inner ear model
that filters and
detects various
sounds

Su2cor FORTRAN 2514 Compute masses
of elementary
particles from
Quark-Gluon
theory

8/23/2010

17

Benchmark Problems

• Benchmark mistakes
– Only average behavior represented in test workload
– Loading level controlled inappropriately
– Caching effects ignored
– Ignoring monitoring overhead
– Not ensuring same initial conditions
– Collecting too much data but doing too little analysis

• Benchmark tricks
– Compiler (soft)wired to optimize the workload
– Very small benchmarks used
– Benchmarks manually translated to optimize performance

Benchmark Trick Example

• Certain flags during compilation can have a huge
effect on final execution time for some tests
– The Whetstone loop contains the following expression:

• SQRT(EXP(X))

– A brief analysis yields:

• It would be surprising to see such an optimization
automatically performed by a compiler due to the
expected rarity of encountering SQRT(EXP(X)).
Nevertheless, several compilers did perform this
optimization!

)2/(2/ XEXPee xx 

8/23/2010

18

Comparing Performance

• The table lists the time in seconds that each
computer requires to run a particular
program.

 Computer A Computer B Computer C

Program P1 1 10 20

Program P2 1000 100 20

Total Time 1001 110 40

Which computer is better? For P1, A is 10 times faster than B, but
for P2 B is 10 times faster than A.

Total Execution Time
A consistent summary measure

• Simplest approach: compare relative
performance in total execution time

• So then B is 9.1 times faster than A
(1001/110), while C is 2.75 times faster than
B. Of course this is all relative to the programs
that are selected.

8/23/2010

19

Other Total Execution Time Metrics

• Arithmetic mean

• Weighted arithmetic mean

• Normalize the execution time with respect to
some reference machine.

– Geometric mean




n

i

iTime
n 1

1





n

i

ii TimeWeight
1

 nn

i iimeRatioExecutionT

1

1 

Geometric Mean

• For the previous example referenced to A:

• For A

• For B

• For C

1
1000

1000
*

1

1 2

1










1
1000

100
*

1

10 2

1










63.0
1000

20
*

1

20 2

1









This says that the execution
time of these programs on C is
0.63 of A and B.

8/23/2010

20

Quantitative Principles of Computer
Design

• Take Advantage of Parallelism
– Instruction level, application level, system level

• Principle of Locality
– Temporal and spatial

• Focus on the Common Case
– In design, favor the frequent case over the infrequent

case
• E.g. if adding two numbers rarely results in overflow, can

improve performance by optimizing the more common case
of no overflow
– Will be slower when overflow occurs, but rare so overall

performance will be improved

Amdahl’s Law

• The performance improvement to be gained from
using some faster mode of execution is limited by
the fraction of time the faster mode can be used.

• Speedup = (Performance for entire task using
enhancement) / (Performance for entire task
without enhancement)

• Another variant is based on the ratio of Execution
times, where Execution time = 1/speedup.

8/23/2010

21

Speedup

 
enhanced

enhanced
enhanced

new

old

Speedup

Fraction
Fraction

imeExecutionT

imeExecutionT
edupOverallSpe







1

1

Fraction(enhanced) is just the fraction of time the enhancement can be used. For
example, if a new enhancement is 20 times faster but can only be used 5% of the time:

 
049.1

20

05.0
05.01

1




edupOverallSpe

Example

• Consider a critical benchmark. Floating Point Square
Root is responsible for 20% of the execution time. You
could increase this operation by a factor of 10 via
hardware. Or at the same cost, you could make all FP
instructions run 2 times faster, which accounts for 50%
of the execution time. Which is better?

 
enhanced

enhanced
enhanced

Speedup

Fraction
Fraction



1

1

8/23/2010

22

CPU Performance

• All commercial computers are synchronous – they have a
clock that “ticks” once per cycle.
– Usually the cycle time is a constant, but it may vary (e.g.

SpeedStep).

– Duration is usually on the order of nanoseconds, or more
commonly the rate is expressed instead , e.g. 100 Mhz.

• CPU time for a program can then be expressed two ways:
– CPU Time = CPU clock cycles for a program * Clock cycle time

 or
– CPU Time = CPU clock cycles for a program / Clock Rate

Cycles Per Instruction

• We can count the number of instructions executed – the
instruction path length or Instruction Count (IC). Given IC and
the number of clock cycles we can calculate the average
number of clock cycles per instruction, or CPI:
– CPI (Ave # clock cycles per instr) = CPU clock cycles for a program / IC

• With a little algebraic manipulation we can use CPI to compute
CPU Time:
– CPU clock cycles for a program = CPI * IC

 Substitute this in for CPU Time..

– CPU Time = CPI * IC * Clock Cycle Time

 Or

– CPU Time = CPI * IC / ClockRate

8/23/2010

23

CPI

• Unfortunately, CPI, IC, and the Clock Cycle Time are
all subtly inter-related.

– CPI and cycle time depend on the instruction set

– The instruction set depends on the hardware

– The hardware impacts the cycle time, etc.

• Sometimes CPI is more useful to deal with in terms
of all individual instructions. We can denote this by:

– CPU Time =

and

CPI Total=

TimeClockCycleICCPI
n

i

ii 


)(
1

)(
1 nCountInstructio

IC
CPI i

n

i

i 


CPI Example

• CPI is useful because it is measurable, unlike the
nebulous “fraction of execution” in Amdahl’s equation.
Consider the previous example to compute the
speedup of Floating Point Square Root:

• Suppose you run your program and as it runs collect
the following data:
– 100 total instructions
– 25 of these instructions are floating point instructions
– 2 of these instructions are floating point square root
– 100 clock cycles were spent on floating point instructions

• 40 of these 100 cycles were spent on floating point square root
• 100 clock cycles were spent on non-floating point instructions

8/23/2010

24

CPI Example

• Frequency of FP operations = 25/100 = 0.25
• Frequency of FPSQ operations = 2/100 = 0.02
• Ave CPI of FP operations = 100 / 25 = 4
• Ave CPI of FPSQ operations = 40 / 2 = 20
• Ave CPI of non-FP operations = 100 / 75 = 1.33

• If we could reduce the CPI of FPSQ by 10 (down

to 2), or reduce the CPI of all FP operations by 2,
which is better?
– Will calculate in class

Measuring Components of CPU
Performance

• Cycle Time is easy to measure for an existing CPU
(whatever frequency it is running at).

• Cycle Time is hard to measure for a CPU in design! The
logic design, VLSI process, simulations, and timing analysis
need to be done.

• IC – This is one thing that is relatively easy to measure, just
count up the instructions. This can be done with
instruction trace, logging, or simulation tools.

• CPI – This can be difficult to measure exactly because it
depends on the processor organization as well as the
instruction stream. Pipelining and caching will affect the
CPI, but it is possible to simulate the system in design and
estimate the CPI.

8/23/2010

25

Example on effect of locality

Common Fallacies, Pitfalls

• Falling prey to Amdahl’s Law

– Should measure speedup before spending effort
to enhance it

• Single point of failure

– E.g. single fan may limit reliability of the disk
subsystem

• Fallacy: The cost of the processor dominates
the cost of the system

8/23/2010

26

Common Fallacies, Pitfalls

• Fallacy: Benchmarks remain valid indefinitely
– Benchmark reverse engineering in compilers

• Fallacy: The rated mean time to failure of X is
1,200,000 hours or almost 140 years, so X will
practically never fail
– More useful measure would be % of disks that fail

• Fallacy: Peak performance tracks observed
performance
– Example: Alpha in 1994 announced as being capable

of executing 1.2 billion instructions per second at its
300 Mhz clock rate.

Common Fallacies, Pitfalls

• Fault detection can lower availability

– Hardware has a lot of state that is not always
critical to proper operation

• E.g. if cache prefetch fails, program will still work, but a
fault detection mechanism could crash the program or
raise errors that take time to process

• Less than 30% of operations on the critical path for
Itanium 2

8/23/2010

27

Common Fallacies, Pitfalls

• Fallacy: MIPS is a useful benchmark

• Example: Say multiply FP instruction requires 4 clock cycles. However, instead of
executing the FP multiply instruction, we could instead use a software floating
point routine that used only Integer instructions.

• Since the integer instructions are simpler, they will require fewer clock cycles. For
simplicity say that each integer instruction requires 2 clock cycles and it takes 20 of
them to implement the FP multiply. Then for a 1 Mhz machine:

– FP Multiply has a CPI of 4
– MIPS = 1 / 4 = 0.25

• The software FP Multiply using integer instructions has a CPI of 2

– MIPS = 1 / 2 = 0.50

• The software version has higher MIPS! Lost in the analysis is that it takes many

more integer instructions than floating point instructions to do the same thing.

