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Fundamentals of Computer 
Design 

Rapid Pace of Development 

• IBM 7094 released in 1965 

– Featured interrupts 

– Could add floating point numbers at 350,000 
instructions per second 

– Standard 32K of core memory in 36 bit words 

– Occupied an entire air conditioned room 

– System cost of about $3.5 million 
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This laptop 

• Fujitsu Lifebook T4220 purchased in 2008 

– 16 GFLOPS (we’ll see later this is not a particularly 
good benchmark) 

– Standard 2GB of core memory in 64 bit words 

– Occupies 12” by 9” by 1.5” space 

– System cost of about $2,000 

 

 

  

• Transistors per inch square 
– Twice as many after ~1.5-2 years 

• Related trends 
– Processor performance 

Twice as fast after ~18 months 

– Memory capacity 
Twice as much in <2 years 

• Not a true law but an observation 
– We’re getting close to hitting the physical limits 

Moore’s Law 
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The Shrinking Chip 

• Human Hair: 100 microns wide 
– 1 micron is 1 millionth of a meter 

• Bacterium: 5 microns 
• Virus: 0.8 microns 
• Early microprocessors: 10-15 micron 

technology 
• 1997:  0.35 Micron 
• 1998:  0.25 Micron 
• 1999:  0.18 Micron 
• 2001:  0.13 Micron 
• 2003:  0.09 Micron 
• 2007:  0.065 Micron 
• 2009:  0.045 Micron 
• Physical limits believed to be around 

0.016 Microns, should reach it 
around 2018 

6 

Size 
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Performance Trend 

RISC vs. CISC 

• Big debate in the 80’s 

• Ideas from RISC won 

– Although you don’t think of it as RISC, today’s Intel 
Architecture adopted many RISC ideas internally 
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Terms for a Computer Designer 

• Instruction Set Architecture – The assembly 
instructions visible to a programmer 

 

• Organization – Mostly transparent to the programmer, 
but high-level design aspects such as how much cache, 
replacement policies, cache mapping algorithm, bus 
structure, internal CPU design. 

 

• Computer Architecture – We’ll refer to this as 
instruction set design, organization of the hardware 
design, and the actual hardware itself.  

ISA for this class 

• Mostly a MIPS-like ISA 

– 32 general purpose and 32 floating point registers 

– Load-store architecture 

• Memory Addressing 

– Byte addressing 

– Objects in MIPS must be byte aligned 

• Addressing Modes 

– Register, Immediate, Displacement 
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ISA for this class 

• Types and sizes of operands 

– 8-bit ASCII to 64 it double precision 

• Operations 

– Data transfer, arithmetic, logical, control, floating 
point 

• Control Flow instructions 

• Encoding on an ISA 

– Fixed length vs. Variable length 

Other Design Factors 

Power, Cooling, Logic, Fabrication

CPU, Memory, Interconnect, Buses

Operating System, Programming Lang

Instruction Set Architecture

Utilities, User Applications

Market Forces
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Conflicting Requirements 

• To minimize cost implies a simple design 

• To maximize performance implies complex 
design or sophisticated technology 

• Time to market matters!  Implies simple 
design and great secrecy 

• Time to productivity!  Implies need complete 
vertical solutions in place 

• Don’t mess up – requires simulation, QA, 
quantification 

 

Technology Trends 

• In 1943, Thomas Watson predicted “I think 
there is a world market for maybe five 
computers."   
– (The IBM PC was an “undercover” project and 

saved the company) 

• In the 70’s and 80’s IBM pursued the high-
speed Josephson Junction, spending $2 billion, 
before scrapping it and using CMOS like 
everyone else. 
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Current Trends 

• Memory use by programs growing by a factor of 1.5 to 2 per 
year.   
– Lesson: don’t make your word size or address space too small! 

•  Replacement of assembly by HLL’s 
– Lesson: compilers are critical! 

•  Growing demand on multimedia 
– Lesson:  Design for high-speed graphic interfaces. 

•  Growing demand for networking.  
– Lesson:  Also design for high-speed I/O 

•  Growing demand for simplicity in attaching I/O devices 
– Lesson: Rise of USB, perhaps Firewire next? 

• Growing demand for mobile computing 
– Lesson: Need ability to adapt to low power scenarios 

 

Implementation Trends 

• IC density is increasing at close to 35% per year, 
while the die size is also increasing at close to 
15% per year.  This results in transistor count 
increasing at 40-55% per year.  Factors into a 
lower future cost for developing the same chip! 

•  Semiconductor DRAM density increasing around 
40% per year, bandwidth and latency also 
improving. 

•  Disk technology increasing at an astounding rate, 
about 30-100% per year 
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PC Hard Drive Capacity 

Bandwidth vs. Latency 
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Chip Production 

• Ingot of purified silicon – 1 meter 
long, sliced into thin wafers 

• Chips are etched – much like 
photography 

– UV light through multiple masks 

– Circuits laid down through mask 

• Process takes about 3 months 

 

 View of 
Cross-Section 

Yield 

13/16 working chips 

81.25% yield 

1/4 working chips 

25.0% yield 

 

 

 

 

Manufacturing 

Defects 

 

 

 

 

Size Matters!  (of the die, anyway) 
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Costs 
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Complexity of manufacturing; a 
typical  = 4 

Wafers completely bad so no 
testing. Assume 100% 

0.4/cm2 in 2006 

Some Sizes 

• 0.25u Pentium II = 105 mm2 
• 0.25u PPC 604e = 47.3 mm2 
• 0.18u Pentium 4: 217 mm2 
• 0.18u Transmeta TM5600 88 mm2 
• 0.90u VIA C7M 30mm2 
• 0.065u Athlon X2 (Brisbane) 118 mm2 
• 0.065u Core 2 Due (Conroe) 143 mm2 
• 0.045u Atom 230: 26 mm2 

 

• The diameter of wafers has increased from 200mm (8 inch) 
in 1993 to 300mm today (12 inch) with some resistance 
going to 450 mm 
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Cost per die 

• The book has some examples of computing the die 
yield for various wafer and die sizes.  

• For a designer, the wafer yield, cost, and defects are all 
determined by the manufacturing process.  

• The designer has control over the die area.   
– If alpha is typically 4, then this means that the die_yield is 

proportional to (Die_Area)-4.    Plugging this in to the 
equation for die cost gives us: 

  
 

• Size matters! 
 

)_(_ 4AreaDiefCostDie 

Optimization Problem 

• Optimize price/performance ratio 

• Conflicting goals due to interactions between 
components 

– If adding a new feature, die size goes up, number 
of defects goes up and fewer dies per wafer, may 
need more testing, power usage may increase 
requiring larger battery or heat sink, etc… 
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Measuring Performance 

• What does it mean to say one computer is 
faster than another? 
– Historically, advertisers and consumers have used 

clock speed.  2Ghz vs. 1Ghz means the first is 
twice as fast as the second? 

– Pentium 4E in 2004 
• Whopping 3.6 Ghz! 

• 31 stage integer pipeline! 

– Core i5 750 in 2010 
• Only 2.66 Ghz 

Execution Time – A Better Metric 

• Compare two machines, X and Y, on the same 
task: 

 

 

• Another metric sometimes used is 
performance, which is just the reciprocal of 
execution time: 
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Measuring Execution Time 

• More difficult than it seems to measure execution time 
– Wall-clock time, response time, or elapsed time -  Total 

time to complete a task.  Note the system might be waiting 
on I/O, performing multiple tasks, OS activities, etc. 

– CPU time – Only the time spent computing in the CPU, not 
waiting for I/O.  This includes time spent in the OS and 
time spent in user processes. 

– System CPU Time – Portion of CPU time spent performing 
OS related tasks. 

– User CPU Time – Portion of CPU time spent performing 
user related tasks. 

 

What programs should we run? 

• Real Programs – Run the programs users will use.  
Examples are compilers, office tools, etc.  
– Unfortunately there is a porting problem among 

different architectures, so it might not be a fair 
comparison if the same software is coded differently. 

•  Kernels – These are small, intensive, key pieces 
from real programs that are run repeatedly to 
evaluate performance. 
– Examples include Livermore Loops and Linpack.  Here 

is a code fragment from Livermore Loops: 

 
for (l=1; l<=loop; l++) { 

 for (k=0; k<n; k++) { 

   x[k] = q + y[k] * (r*z[k+10]+t*z[k+11]); 

 } 

} 
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Benchmarks 

• Toy benchmarks  - this includes small problems 
like quicksort, sieve of eratosthenes, etc. 
– They are best saved for CS201 programming 

assignments! 

• Synthetic benchmarks -  These are similar to 
kernels, but try to match the average frequency 
of operations and operands of a large set or 
programs. 
– Examples: Whetstone and Dhrystone 
– The problem is no user really runs these either.  

Programs typically reside entirely in cache and don’t 
test the entire system performance! 

 

Benchmarks 

• Benchmark Suites -  These are a collection of 
benchmarks together in an attempt to measure 
the performance of processors with a variety of 
applications. 
– Suffers from problems of OS support, compiler quality, 

system components, etc. 

– Suites such as CrystalMark or the SPEC 
(www.spec.org) benchmark seem to be required for 
the industry today, even if the results may be 
somewhat meaningless. 

– http://www.spec.org/cpu2006/results/cpu2006.html 

 

http://www.spec.org/
http://www.spec.org/cpu2006/results/cpu2006.html
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Programs in SPECint92 and SPECfp92 
Benchmark Source Lines of Code Description 

Espresso C 13500 Minimize 
Boolean 
functions. 

Li C 7413 Lisp interpreter 
that solves 8 
queens problem 

Compress C 1503 LZ compression 
on a 1Mb file 

Gcc C 83589 GNU C Compiler 

Benchmark Source Lines of Code Description 

Spice2g6 FORTRAN 18476 Circuit simulation 

Alvinn C 272 Neural network 
training 
simulation 

Ear C 4483 Inner ear model 
that filters and 
detects various 
sounds 

Su2cor FORTRAN 2514 Compute masses 
of elementary 
particles from 
Quark-Gluon 
theory 
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Benchmark Problems 

• Benchmark mistakes 
– Only average behavior represented in test workload 
– Loading level controlled inappropriately 
– Caching effects ignored 
– Ignoring monitoring overhead 
– Not ensuring same initial conditions 
– Collecting too much data but doing too little analysis 

 

• Benchmark tricks 
– Compiler (soft)wired to optimize the workload 
– Very small benchmarks used 
– Benchmarks manually translated to optimize performance 

 

Benchmark Trick Example 

• Certain flags during compilation can have a huge 
effect on final execution time for some tests 
– The Whetstone loop contains the following expression: 

• SQRT(EXP(X)) 

– A brief analysis yields:    

 

• It would be surprising to see such an optimization 
automatically performed by a compiler due to the 
expected rarity of encountering SQRT(EXP(X)).  
Nevertheless, several compilers did perform this 
optimization! 

)2/(2/ XEXPee xx 
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Comparing Performance 

• The table lists the time in seconds that each 
computer requires to run a particular 
program. 

 
  Computer A Computer B Computer C 

Program P1 1 10 20 

Program P2 1000 100 20 

Total Time 1001 110 40 

Which computer is better?  For P1, A is 10 times faster than B, but 
for P2 B is 10 times faster than A.   

Total Execution Time 
A consistent summary measure 

• Simplest approach: compare relative 
performance in total execution time 

• So then B is 9.1 times faster than A 
(1001/110), while C is 2.75 times faster than 
B.  Of course this is all relative to the programs 
that are selected. 
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Other Total Execution Time Metrics 

• Arithmetic mean 

 

• Weighted arithmetic mean 

 

• Normalize the execution time with respect to 
some reference machine.  

– Geometric mean 
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• For the previous example referenced to A: 
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This says that the execution 
time of these programs on C is 
0.63 of A and B. 
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Quantitative Principles of Computer 
Design 

• Take Advantage of Parallelism 
– Instruction level, application level, system level 

• Principle of Locality 
– Temporal and spatial 

• Focus on the Common Case 
– In design, favor the frequent case over the infrequent 

case 
• E.g. if adding two numbers rarely results in overflow, can 

improve performance by optimizing the more common case 
of no overflow 
– Will be slower when overflow occurs, but rare so overall 

performance will be improved 

Amdahl’s Law 

• The performance improvement to be gained from 
using some faster mode of execution is limited by 
the fraction of time the faster mode can be used. 
 

• Speedup = (Performance for entire task using 
enhancement) / (Performance for entire task 
without enhancement) 
 

• Another variant is based on the ratio of Execution 
times, where Execution time = 1/speedup. 
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Speedup 
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Example 

• Consider a critical benchmark.  Floating Point Square 
Root is responsible for 20% of the execution time.  You 
could increase this operation by a factor of 10 via 
hardware.  Or at the same cost, you could make all FP 
instructions run 2 times faster, which accounts for 50% 
of the execution time.  Which is better? 
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CPU Performance 

• All commercial computers are synchronous – they have a 
clock that “ticks” once per cycle. 
– Usually the cycle time is a constant, but it may vary (e.g. 

SpeedStep). 

– Duration is usually on the order of nanoseconds, or more 
commonly the rate is expressed instead , e.g. 100 Mhz.   

• CPU time for a program can then be expressed two ways: 
– CPU Time = CPU clock cycles for a program * Clock cycle time 

  or 
– CPU Time = CPU clock cycles for a program / Clock Rate 

 

Cycles Per Instruction 

• We can count the number of instructions executed – the 
instruction path length or Instruction Count (IC).  Given IC and 
the number of clock cycles we can calculate the average 
number of clock cycles per instruction, or CPI: 
– CPI (Ave # clock cycles per instr) = CPU clock cycles for a program / IC 

 

• With a little algebraic manipulation we can use CPI to compute 
CPU Time: 
– CPU clock cycles for a program = CPI * IC 

  Substitute this in for CPU Time.. 

– CPU Time =  CPI * IC * Clock Cycle Time 

  Or 

– CPU Time = CPI * IC / ClockRate 
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CPI 

• Unfortunately, CPI, IC, and the Clock Cycle Time are 
all subtly inter-related.  

– CPI and cycle time depend on the instruction set 

– The instruction set depends on the hardware 

– The hardware impacts the cycle time, etc.   

•  Sometimes CPI is more useful to deal with in terms 
of all individual instructions.  We can denote this by: 

– CPU Time =  

and 

CPI Total= 
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CPI Example 

• CPI is useful because it is measurable, unlike the 
nebulous “fraction of execution” in Amdahl’s equation.  
Consider the previous example to compute the 
speedup of Floating Point Square Root: 

•  Suppose you run your program and as it runs collect 
the following data: 
– 100 total instructions 
– 25 of these instructions are floating point instructions 
– 2 of these instructions are floating point square root 
– 100 clock cycles were spent on floating point instructions 

• 40 of these 100 cycles were spent on floating point square root 
• 100 clock cycles were spent on non-floating point instructions 

 



8/23/2010 

24 

CPI Example 

• Frequency of FP operations = 25/100 = 0.25 
• Frequency of FPSQ operations = 2/100 = 0.02 
• Ave CPI of FP operations = 100 / 25 = 4 
• Ave CPI of FPSQ operations = 40 / 2 = 20 
• Ave CPI of non-FP operations = 100 / 75 = 1.33 
  
• If we could reduce the CPI of FPSQ by 10 (down 

to 2), or reduce the CPI of all FP operations by 2, 
which is better? 
– Will calculate in class 

 

Measuring Components of CPU 
Performance 

• Cycle Time is easy to measure for an existing CPU 
(whatever frequency it is running at). 

• Cycle Time is hard to measure for a CPU in design!  The 
logic design, VLSI process, simulations, and timing analysis 
need to be done.   

• IC – This is one thing that is relatively easy to measure, just 
count up the instructions.  This can be done with 
instruction trace, logging, or simulation tools. 

• CPI – This can be difficult to measure exactly because it 
depends on the processor organization as well as the 
instruction stream.  Pipelining and caching will affect the 
CPI, but it is possible to simulate the system in design and 
estimate the CPI. 
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Example on effect of locality 

Common Fallacies, Pitfalls 

• Falling prey to Amdahl’s Law 

– Should measure speedup before spending effort 
to enhance it 

• Single point of failure 

– E.g. single fan may limit reliability of the disk 
subsystem 

• Fallacy: The cost of the processor dominates 
the cost of the system 
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Common Fallacies, Pitfalls 

• Fallacy: Benchmarks remain valid indefinitely 
– Benchmark reverse engineering in compilers 

• Fallacy: The rated mean time to failure of X is 
1,200,000 hours or almost 140 years, so X will 
practically never fail 
– More useful measure would be % of disks that fail 

• Fallacy: Peak performance tracks observed 
performance 
– Example: Alpha in 1994 announced as being capable 

of executing 1.2 billion instructions per second at its 
300 Mhz clock rate. 
 

 

Common Fallacies, Pitfalls 

• Fault detection can lower availability 

– Hardware has a lot of state that is not always 
critical to proper operation 

• E.g. if cache prefetch fails, program will still work, but a 
fault detection mechanism could crash the program or 
raise errors that take time to process 

• Less than 30% of operations on the critical path for 
Itanium 2 
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Common Fallacies, Pitfalls 

• Fallacy: MIPS is a useful benchmark 
 

• Example: Say multiply FP instruction requires 4 clock cycles.  However, instead of 
executing the FP multiply instruction, we could instead use a software floating 
point routine that used only Integer instructions.  

• Since the integer instructions are simpler, they will require fewer clock cycles.  For 
simplicity say that each integer instruction requires 2 clock cycles and it takes 20 of 
them to implement the FP multiply.  Then for a 1 Mhz machine: 
 
– FP Multiply  has a CPI of 4  
– MIPS = 1 / 4 = 0.25 

 
• The software FP Multiply using integer instructions has a CPI of 2 

– MIPS = 1 / 2 = 0.50 

 
• The software version has higher MIPS!   Lost in the analysis is that it takes many 

more integer instructions than floating point instructions to do the same thing. 
 


