
1

Transport Layer: TCP/UDP

Chapter 24, 16

Transport Layer

• Purpose of transport layer services:
– multiplexing/demultiplexing
– reliable data transfer
– flow control
– congestion control

• Connection-less transport: UDP
• Connection-oriented transport: TCP

– reliable transfer
– flow control
– connection management

2

Transport services and protocols
• provide logical

communication between
application processes
running on different hosts

• transport protocols run in
end systems via software

• transport vs network layer
services:

• network layer: data transfer
between end systems

• transport layer: data transfer
between processes
– relies on, enhances, network

layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

Transport-layer protocols

Internet transport services:

• reliable, in-order unicast
delivery (TCP)
– congestion

– flow control

– connection setup

• unreliable (“best-effort”),
unordered unicast or
multicast delivery: UDP

• services not available:
– real-time

– bandwidth guarantees

– reliable multicast

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

3

application
transport
network

M
P2

application
transport
network

Multiplexing/demultiplexing
Recall: segment - unit of data

exchanged between
transport layer entities
– aka TPDU: transport

protocol data unit or
“packet” receiver

Ht

Hn

Demultiplexing: delivering
received segments to
correct app layer processes

segment

segment M

application
transport
network

P1
M

M M

P3 P4

segment
header

application-layer
data

Multiplexing/demultiplexing

multiplexing/demultiplexing:

• based on sender, receiver port
numbers, IP addresses

– source, dest port #s in each
segment

– recall: well-known port numbers
for specific applications

gathering data from multiple
app processes, enveloping
data with header (later used
for demultiplexing)

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Multiplexing:

4

Multiplexing/demultiplexing: examples

host A server B
source port: x
dest. port: 23

source port:23
dest. port: x

port use: simple telnet app

Web client
host A

Web
server B

Web client
host C

Source IP: C
Dest IP: B

source port: x
dest. port: 80

Source IP: C
Dest IP: B

source port: y
dest. port: 80

port use: Web server

Source IP: A
Dest IP: B

source port: x
dest. port: 80

UDP: User Datagram Protocol [RFC 768]

• “no frills,” “bare bones”
Internet transport protocol

• “best effort” service, UDP
segments may be:

– lost

– delivered out of order to
app

• connectionless:

– no handshaking between
UDP sender, receiver

– each UDP segment handled
independently of others

Why is there a UDP?
• no connection establishment

(which can add delay)

• simple: no connection state
at sender, receiver

• small segment header

• no congestion control: UDP
can blast away as fast as
desired

5

UDP: more

• often used for streaming
multimedia apps
– Controversial: no

congestion control

• other UDP uses
(why?):
– DNS
– SNMP

• reliable transfer over
UDP: add reliability at
application layer
– application-specific

error recover!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including
header

UDP checksum

Sender:
• treat segment contents as

sequence of 16-bit integers

• checksum: addition (1’s
complement sum) of
segment contents

• sender puts checksum value
into UDP checksum field

Receiver:
• compute checksum of received

segment

• check if computed checksum
equals checksum field value:

– NO - error detected
• Toss data OR

• Pass to app with warning

– YES - no error detected.

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

6

Connection Oriented Transport
Protocol Mechanisms

• Properties of connection-oriented Transport
Protocols:
– Logical connection

– Establishment

– Maintenance termination

– Reliable

– e.g. TCP

Connection-Oriented Transport
via Reliable Network Layer

• Transport Layer Services like TCP are complicated – to
start, let’s first assume we are working with a reliable
network layer service
– e.g. reliable packet switched network using X.25

– e.g. frame relay using LAPF control protocol

– e.g. IEEE 802.3 using connection oriented LLC service

– NOT IP! IP is unreliable

• Assume arbitrary length message

• Transport service is end to end protocol between two
systems on same network

7

Issues in a Simple Transprot
Protocol

• If we have a reliable network layer, then the
transport layer must consider:
– Addressing

– Multiplexing

– Flow Control

– Connection establishment and termination

Addressing

• Target user specified by:
– User identification

• Usually host, port
– Called a socket in TCP/UDP

• Port represents a particular transport service (TS), e.g. HTTPD

– Transport protocol identification
• Generally only one per host

• If more than one, then usually one of each type
– Specify transport protocol (TCP, UDP)

– Host address
• An attached network device

• In an internet, a global internet address (IP Address)

• A well-known address or lookup via name server

8

Multiplexing

• Multiple users employ same transport protocol

• User identified by port number or service access
point (SAP)

• Described previously

Flow Control

• Can be difficult than flow control at the data link layer –
data is likely traveling across many networks, not one
network. Some potential problems:
– Longer transmission delay between transport entities compared

with actual transmission time
• Delay in communication of flow control info

– Variable transmission delay
• Difficult to use timeouts

• Flow may be controlled because:
– The receiving user cannot keep up
– The receiving transport entity cannot keep up
– If either happens, the results is a buffer that can get full and

eventually lose data

9

Model of Frame Transmission
Diagram for Frame/Packet Transmission

We’ll use this model to discuss flow control issues

Coping with Flow Control
Requirements (1)

• Do nothing
– Segments that overflow are discarded
– Sending transport entity will fail to get ACK and will

retransmit
• Thus further adding to incoming data and could exacerbate

the flow control problem

• Refuse further segments from network layer
– Clumsy
– Multiplexed connections are controlled on aggregate

flow

10

Coping with Flow Control
Requirements (2)

• One protocol: Stop-and-Wait
– Sender must wait for recipient to send ACK before

sending the next packet
• Not very efficient usage of the network, only one

outstanding message can be in transit at a time

– Works well on reliable network
• Failure to receive ACK is taken as flow control indication

– Does not work well on unreliable network
• Cannot distinguish between lost segment and flow control

Coping with Flow Control
• Credit-Based Scheme

– Credit = How much data sender can transmit
• Sliding window idea, sender can send a number of frames up to the

window size
• Receiver sends single ACK that acknowledges all previous frames
• Window size varies based on credit available
• Receiver can control credit of the sender

– In acknowledgement, receiver could change the window size

– Advantages
• Better network usage, allows outstanding messages to be in transit

than Stop-And-Wait
• More effective on unreliable network

– Decouples flow control from ACK

• May ACK without granting credit and vice versa

– Each octet has sequence number
– Each transport segment has a sequence number,

acknowledgement number and window size in header

11

Sliding Window Enhancements

• Receiver can acknowledge frames without permitting
further transmission (Receive Not Ready)

• Must send a normal acknowledge to resume

• If full duplex two-way communications, we need two
windows: one for transmit and one for receive
– Piggybacking – if sending data and acknowledgement frame,

combine together

• More efficient than stop-and-wait since many frames may
be in the pipeline

Example Sliding Window

RR N=Receive Ready on N

Fixed Window Size

12

Use of Header Fields

• For credit-based window size
– When sending, Sequence Number is that of first octet

in segment

– ACK includes AN=i (Acknowledgement Number),
W=j (Window Size)

– All octets through SN=i-1 acknowledged
• Next expected octet is i

– Permission to send additional window of W=j octets
• i.e. octets through i+j-1

Credit Allocation Example

200 octets per segment

A, B initially “synched”

13

Establishment and Termination

• Even with a reliable network service, both ends
need to “set up” the connection:
– Allow each end to know the other exists and is

listening

– Negotiation of optional parameters
• Maximum Segment Size

• Maximum Window Size

– Triggers allocation of transport entity resources
• Buffer space allocated

• Entry in connection tables

Connection State Diagram –
Reliable Network Service

Start State

SYN=Sync
FIN=Finish

14

Connection Establishment

Setting up the connection

• What if a SYN received while not in the Listen
state?
– Reject with RST (Reset)

– Queue request until matching open issued

– Signal TS user to notify of pending request

15

Termination

• Connection can be terminated by sending FIN

• Graceful termination
– CLOSE_WAIT state and FIN_WAIT must accept

incoming data until FIN received

– Ensures both sides have received all outstanding data
and that both sides agree to connection termination
before actual termination

Unreliable Network Service

• Now let’s look at the more general case if we are building
our transport service on top of an unreliable network
layer

• An unreliable network service makes the transport layer
much more complicated if we want to ensure reliability

• Examples of unreliable network services:
– Internet using IP,
– Frame Relay using LAPF
– IEEE 802.3 using unacknowledged connectionless LLC

• Segments may get lost
• Segments may arrive out of order

16

Problems

• Ordered Delivery

• Retransmission strategy

• Duplication detection

• Flow control

• Connection establishment

• Connection termination

• Crash recovery

Ordered Delivery

• Segments may arrive out of order
• Number segments sequentially
• TCP numbers each octet sequentially
• Segments are numbered by the first octet number in

the segment

• TCP actually numbers segments starting at a random
value!
– Minimizes possibility that a segment still in the network

from an earlier, terminated connection between the same
hosts is mistaken for a valid segment in a later connection
(who would also have to happen to use the same port
numbers)

17

Retransmission Strategy

• Need to re-transmit when
– Segment damaged in transit
– Segment fails to arrive

• Receiver must acknowledge successful receipt
• Use cumulative acknowledgement
• Time out waiting for ACK triggers

re-transmission

• How long to wait until re-transmitting?
– Too short: duplicate data
– Too long: Unnecessary delay delivering data

Timer Value

• Fixed timer
– Based on understanding of network behavior
– Can not adapt to changing network conditions
– Too small leads to unnecessary re-transmissions
– Too large and response to lost segments is slow
– Should be a bit longer than Round Trip Time (RTT)

• Adaptive scheme
– E.g. set timer to average of previous ACKs
– Problems:

• Sender may not ACK immediately
• Cannot distinguish between ACK of original segment and re-

transmitted segment
• Conditions may change suddenly

18

Duplication Detection

• If ACK lost, segment is re-transmitted

• Receiver must recognize duplicates

• Duplicate received prior to closing connection
– Receiver assumes ACK lost and ACKs duplicate

– Sender must not get confused with multiple ACKs

– Sequence number space large enough to not cycle within
maximum life of segment

• Also possible to receive a duplicate after closing the
connection!

Incorrect
Duplicate
Detection

Illustrates need for the sequence
number space to be larger than
the maximum possible segment

lifetime

Note: cycle back to SN=1

19

Flow Control

• Can use credit allocation described earlier

• Generally little harm if a single ACK/Credit segment is
lost, will resynchronize the next time

• Problem if B sends AN=i, W=0 closing window
• Later, B sends AN=i, W=j to reopen, but this is lost
• Sender thinks window is closed, receiver thinks it is open
• Solution: use window timer
• If timer expires, send something to break the deadlock

– Could be re-transmission of previous segment

Connection Establishment

• Two way handshake
– A send SYN, B replies with SYN

– Lost SYN handled by re-transmission
• Can lead to duplicate SYNs

– Ignore duplicate SYNs once connected

• Lost or delayed data segments can cause
connection problems
– Segment from old connections

20

Two Way
Handshake:

Obsolete
Data

Segment

Two Way Handshake:
Obsolete SYN Segment

B expects SN j
A wants new
connection,
picks SN k

21

Connection Establishment –
Three Way Handshake

• Solution: Explicitly acknowledge each other’s
SYN and sequence number
– Use SYN i

– Need ACK to include i

• Called the Three Way Handshake

Three Way
Handshake:
Examples

22

Three Way
Handshake:

State
Diagram

Connection Termination

• Same problems we had with connection
establishment can also occur with connection
termination
– Lost or obsolete FIN segment
– Can lose last data segment if FIN arrives before last

data segment

• Solution: associate sequence number with FIN
• Receiver waits for all segments before FIN

sequence number
• Must explicitly ACK FIN

23

Graceful Close

• Send FIN i and receive AN i

• Receive FIN j and send AN j

• Wait twice maximum expected segment lifetime

Crash Recovery

• If the transport service crashes and restarts, after restart
all state info is lost

• Connection is half open
– Side that did not crash still thinks it is connected

• Close connection using persistence timer
– Wait for ACK for (time out) * (number of retries)

– When expired, close connection and inform user

• Send RST i in response to any i segment arriving

• User must decide whether to reconnect
– Problems with lost or duplicate data

24

TCP:Overview RFCs: 793, 1122, 1323, 2018, 2581

• full duplex data:
– bi-directional data flow in

same connection
– MSS: maximum segment

size

• connection-oriented:
– handshaking (exchange of

control msgs) init’s sender,
receiver state before data
exchange

• flow controlled:
– sender will not overwhelm

receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte
stream:
– no “message boundaries”

• pipelined:
– TCP congestion and flow

control set window size

• send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

TCP Properties

• stream orientation. stream of OCTETS (bytes) passed
between send/ recv

• byte stream is full duplex
– think of it as two independent streams joined with a

piggybacking mechanism
– piggybacking - one data stream has control info for the other

data stream (going the other way)

• unstructured stream
– TCP doesn’t show packet boundaries to applications
– But you can still structure your message if you want
– Recall usage with sockets:

• One write() call to send data
• May require multiple read() calls

25

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent datachecksum

FSRPAU
head

len

not

used

Options (variable length)

URG: urgent data

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

TCP Fields

• Source, Destination Port: 16 bits each

• Sequence Number: 32 bits
– Sequence # of first data octet in the segment, initialized

randomly as described earlier

• ACK Number: 32 bits
– Piggybacked ACK, contains sequence number of the next data

octet the receiver expects

• Header Len: 4 bits
– Number of 32 bit words in the header

• Not Used: 6 bits for future use

26

TCP Fields
• Flags – 6 bits

– URG – Urgent Pointer field significant
– ACK – Ack field significant
– PSH – Push (flush or “push” buffer now, send data to app)
– RST – Reset connection
– SYN – Synchronize sequence numbers
– FIN – No more data

• Window – 16 bits
– Flow control credit allocation

• Checksum – 16 bits
– One’s complement sum as in UDP

• Urgent Pointer – 16 bits
– Last octet in a seq of “urgent” data. Sometimes not interpreted. Urgent

data should be processed now, even before any data sitting in the buffer
(e.g. send control-c to terminate)

• Options – Variable
– Support for timestamping, negotiating MSS

TCP seq. #’s and ACKs

Seq. #’s:
– byte stream “number”

of first byte in
segment’s data

ACKs:
– seq # of next byte

expected from other
side

– cumulative ACK
Q: How does the receiver

handles out-of-order
segments?
– A: TCP spec doesn’t

say, - up to
implementer

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt
of echoed

‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

time
simple telnet scenario

Note piggybacking!

27

TCP: retransmission scenarios

Host A

Seq=92, 8 bytes data

ACK=100

loss
t
im
e
o
u
t

time lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

Host A

Seq=100, 20 bytes data

ACK=100

S
e
q
=
9
2
 t
im
e
o
u
t

time premature timeout,
cumulative ACKs

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
e
q
=
1
0
0
 t
im
e
o
u
t

ACK=120

Sender must be smart enough to ignore duplicate ACK

TCP Flow Control

receiver: explicitly
informs sender of
(dynamically
changing) amount of
free buffer space
– RcvWindow field

in TCP segment
sender: keeps the amount

of transmitted,
unACKed data less
than most recently
received RcvWindow

sender won’t overrun
receiver’s buffers by
transmitting too much,

too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

28

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

• longer than RTT

– note: RTT will vary

• too short: premature
timeout

– unnecessary
retransmissions

• too long: slow reaction
to segment loss

Q: how to estimate RTT?
• SampleRTT: measured time

from segment transmission until
ACK receipt
– ignore retransmissions,

cumulatively ACKed
segments

• SampleRTT will vary, want
estimated RTT “smoother”
– use several recent

measurements, not just
current SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

• Exponential weighted moving average

• influence of given sample decreases exponentially
fast

• typical value of x: 0.1

Setting the timeout
• EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

Timeout = EstimatedRTT + 4*Deviation

29

TCP Connection Management

Three way handshake:

Step 1: client end system sends TCP SYN control segment
to server
– specifies initial seq #

Step 2: server end system receives SYN, replies with
SYNACK control segment

– ACKs received SYN
– allocates buffers
– specifies server-> receiver initial seq. #

TCP Connection Management (cont.)
Closing a connection:

Step 1: client end system sends TCP
FIN control segment to server

Step 2: server receives FIN, replies
with ACK. Closes connection,
sends FIN.

Step 3: client receives FIN, replies with
ACK.

– Enters “timed wait” - will
respond with ACK to received
FINs

Step 4: server, receives ACK.
Connection closed.

client

FIN

server

ACK

ACK

FIN

close

close

closed

t
im
e
d
 w
a
it

30

Principles of Congestion Control

Congestion:
• informally: “too many sources sending too much data too

fast for network to handle”

• different from flow control!

• manifestations:

– lost packets (buffer overflow at routers)

– long delays (queueing in router buffers)

• A top-10 problem!

Causes/costs of congestion: scenario 1

• two senders, two
receivers

• one router,
infinite buffers

• no retransmission

• large delays when
congested

• maximum
achievable
throughput

31

Causes/costs of congestion: scenario 2

• one router, finite buffers

• sender retransmission of lost packet

“offered load”

Causes/costs of congestion: scenario 2

• if: (goodput)

• retransmission only when loss:

• Even worse: retransmission of delayed (not lost) packet makes

larger than the previous case for the same

λ
in

λ
in’

=

λ
in

λ
out

>

“costs” of congestion:

• more work (retrans) for given “goodput”

• unneeded retransmissions: link carries multiple copies of pkt

λ
in λ

out

32

Causes/costs of congestion: scenario 3

• four senders
• multihop paths
• timeout/retransmit

λ
inQ: what happens as

and increase ?λ
in

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
• when packet dropped, any “upstream transmission capacity used for

that packet was wasted!

• Throughput goes to 0 as the heavy traffic approaches infinity

• In everyone’s best interest to “back off” on transmission

33

Approaches towards congestion control

End-end congestion control:
• no explicit feedback from

network

• congestion inferred from end-
system observed loss, delay

• approach taken by TCP

Network-assisted congestion
control:

• routers provide feedback to
end systems

– single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)

– explicit rate sender should
send at

Two broad approaches towards congestion control:

TCP Congestion Control

• end-end control (no network assistance)
• transmission rate limited by congestion window size, Congwin,

over segments:

• w segments, each with MSS bytes sent in one RTT:

throughput =
w * MSS

RTT
Bytes/sec

Congwin

34

TCP congestion control:

• two “phases”
– slow start

– congestion avoidance

• important variables:
– Congwin

– threshold: defines
threshold between two
slow start phase,
congestion control phase

• “probing” for usable
bandwidth:
– ideally: transmit as fast as

possible (Congwin as
large as possible) without
loss

– Reality:
– increase Congwin until

loss (congestion)
– loss: decrease Congwin,

then begin probing
(increasing) again

TCP Slowstart

• exponential increase (per RTT) in
window size (not so slow!)

• loss event: timeout (Tahoe TCP)
and/or or three duplicate ACKs
(Reno TCP)

• (What causes duplicate ACKs?)

initialize: Congwin = 1
for (each segment ACKed)

Congwin++
until (loss event OR

CongWin > threshold)

Slowstart algorithm
Host A

one segment

R
T
T

Host B

time

two segments

four segments

35

TCP Congestion Avoidance

/* slowstart is over */
/* Congwin > threshold */
Until (loss event) {
every w segments ACKed:

Congwin++
}

threshold = Congwin/2
Congwin = 1
perform slowstart

Congestion avoidance

1

TCP Fairness

Fairness goal: if N TCP
sessions share same
bottleneck link, each
should get 1/N of link
capacity

TCP congestion
avoidance:

• AIMD: additive
increase,
multiplicative
decrease
– increase window by

1 per RTT
– decrease window by

factor of 2 on loss
event

AIMD

TCP connection 1

bottleneck
router

capacity C

TCP
connection 2

36

Why is TCP fair?

Two competing sessions:
• Additive increase gives slope of 1, as throughput increases

• multiplicative decrease decreases throughput proportionally

C

C

equal bandwidth share

Connection 1 throughput
C
o
n
n
e
c
t
io
n

2

t
h
r
o
u
g
h
p
u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Eventually the two connections fluctuate along equal bandwidth line

TCP vs. UDP

• When to use TCP
– Need reliable network service

– Want flow, congestion control

• When to use UDP
– Don’t want overhead of TCP

– Don’t want congestion control! I.e. we don’t want to be
“fair”

• Multimedia apps

• Don’t want data rate throttled, but ironically this can lead to unfair
transmission rate and could actually bring all traffic to a halt

• Could also be unfair using TCP by opening multiple parallel
connections (often done with web data)

