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Transport Layer: TCP/UDP

Chapter 24, 16

Transport Layer

• Purpose of transport layer services:
– multiplexing/demultiplexing
– reliable data transfer
– flow control
– congestion control

• Connection-less transport: UDP
• Connection-oriented transport: TCP

– reliable transfer
– flow control
– connection management
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Transport services and protocols
• provide logical

communication between
application processes
running on different hosts

• transport protocols run in
end systems via software

• transport vs network layer
services:

• network layer: data transfer
between end systems

• transport layer: data transfer
between processes
– relies on, enhances, network

layer services
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Transport-layer protocols

Internet transport services:

• reliable, in-order unicast
delivery (TCP)
– congestion

– flow control

– connection setup

• unreliable (“best-effort”),
unordered unicast or
multicast delivery: UDP

• services not available:
– real-time

– bandwidth guarantees

– reliable multicast
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Multiplexing/demultiplexing
Recall: segment - unit of data

exchanged between
transport layer entities
– aka TPDU: transport

protocol data unit or
“packet” receiver

Ht

Hn

Demultiplexing: delivering 
received segments to 
correct app layer processes

segment

segment M

application
transport
network

P1
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M M
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segment
header

application-layer
data

Multiplexing/demultiplexing

multiplexing/demultiplexing:

• based on sender, receiver port
numbers, IP addresses

– source, dest port #s in each
segment

– recall: well-known port numbers
for specific applications

gathering data from multiple
app processes, enveloping 
data with header (later used 
for demultiplexing)

source port # dest port #

32 bits

application
data 

(message)

other header fields

TCP/UDP segment format

Multiplexing:
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Multiplexing/demultiplexing: examples

host A server B
source port: x
dest. port: 23

source port:23
dest. port: x

port use: simple telnet app

Web client
host A

Web
server B

Web client
host C

Source IP: C
Dest IP: B

source port: x
dest. port: 80

Source IP: C
Dest IP: B

source port: y
dest. port: 80

port use: Web server

Source IP: A
Dest IP: B

source port: x
dest. port: 80

UDP: User Datagram Protocol [RFC 768]

• “no frills,” “bare bones”
Internet transport protocol

• “best effort” service, UDP
segments may be:

– lost

– delivered out of order to
app

• connectionless:

– no handshaking between
UDP sender, receiver

– each UDP segment handled
independently of others

Why is there a UDP?
• no connection establishment

(which can add delay)

• simple: no connection state
at sender, receiver

• small segment header

• no congestion control: UDP
can blast away as fast as
desired
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UDP: more

• often used for streaming
multimedia apps
– Controversial: no

congestion control

• other UDP uses
(why?):
– DNS
– SNMP

• reliable transfer over
UDP: add reliability at
application layer
– application-specific

error recover!

source port # dest port #

32 bits

Application
data 

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including
header

UDP checksum

Sender:
• treat segment contents as

sequence of 16-bit integers

• checksum: addition (1’s
complement sum) of
segment contents

• sender puts checksum value
into UDP checksum field

Receiver:
• compute checksum of received

segment

• check if computed checksum
equals checksum field value:

– NO - error detected
• Toss data OR

• Pass to app with warning

– YES - no error detected.

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment
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Connection Oriented Transport
Protocol Mechanisms

• Properties of connection-oriented Transport
Protocols:
– Logical connection

– Establishment

– Maintenance termination

– Reliable

– e.g. TCP

Connection-Oriented Transport
via Reliable Network Layer

• Transport Layer Services like TCP are complicated – to
start, let’s first assume we are working with a reliable
network layer service
– e.g. reliable packet switched network using X.25

– e.g. frame relay using LAPF control protocol

– e.g. IEEE 802.3 using connection oriented LLC service

– NOT IP! IP is unreliable

• Assume arbitrary length message

• Transport service is end to end protocol between two
systems on same network
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Issues in a Simple Transprot
Protocol

• If we have a reliable network layer, then the
transport layer must consider:
– Addressing

– Multiplexing

– Flow Control

– Connection establishment and termination

Addressing

• Target user specified by:
– User identification

• Usually host, port
– Called a socket in TCP/UDP

• Port represents a particular transport service (TS), e.g. HTTPD

– Transport protocol identification
• Generally only one per host

• If more than one, then usually one of each type
– Specify transport protocol (TCP, UDP)

– Host address
• An attached network device

• In an internet, a global internet address (IP Address)

• A well-known address or lookup via name server
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Multiplexing

• Multiple users employ same transport protocol

• User identified by port number or service access
point (SAP)

• Described previously

Flow Control

• Can be difficult than flow control at the data link layer –
data is likely traveling across many networks, not one
network. Some potential problems:
– Longer transmission delay between transport entities compared

with actual transmission time
• Delay in communication of flow control info

– Variable transmission delay
• Difficult to use timeouts

• Flow may be controlled because:
– The receiving user cannot keep up
– The receiving transport entity cannot keep up
– If either happens, the results is a buffer that can get full and

eventually lose data
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Model of Frame Transmission
Diagram for Frame/Packet Transmission

We’ll use this model to discuss flow control issues

Coping with Flow Control
Requirements (1)

• Do nothing
– Segments that overflow are discarded
– Sending transport entity will fail to get ACK and will

retransmit
• Thus further adding to incoming data and could exacerbate

the flow control problem

• Refuse further segments from network layer
– Clumsy
– Multiplexed connections are controlled on aggregate

flow
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Coping with Flow Control
Requirements (2)

• One protocol: Stop-and-Wait
– Sender must wait for recipient to send ACK before

sending the next packet
• Not very efficient usage of the network, only one

outstanding message can be in transit at a time

– Works well on reliable network
• Failure to receive ACK is taken as flow control indication

– Does not work well on unreliable network
• Cannot distinguish between lost segment and flow control

Coping with Flow Control
• Credit-Based Scheme

– Credit = How much data sender can transmit
• Sliding window idea, sender can send a number of frames up to the

window size
• Receiver sends single ACK that acknowledges all previous frames
• Window size varies based on credit available
• Receiver can control credit of the sender

– In acknowledgement, receiver could change the window size

– Advantages
• Better network usage, allows outstanding messages to be in transit

than Stop-And-Wait
• More effective on unreliable network

– Decouples flow control from ACK

• May ACK without granting credit and vice versa

– Each octet has sequence number
– Each transport segment has a sequence number,

acknowledgement number and window size in header
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Sliding Window Enhancements

• Receiver can acknowledge frames without permitting
further transmission (Receive Not Ready)

• Must send a normal acknowledge to resume

• If full duplex two-way communications, we need two
windows: one for transmit and one for receive
– Piggybacking – if sending data and acknowledgement frame,

combine together

• More efficient than stop-and-wait since many frames may
be in the pipeline

Example Sliding Window

RR N=Receive Ready on N

Fixed Window Size
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Use of Header Fields

• For credit-based window size
– When sending, Sequence Number is that of first octet

in segment

– ACK includes AN=i (Acknowledgement Number),
W=j (Window Size)

– All octets through SN=i-1 acknowledged
• Next expected octet is i

– Permission to send additional window of W=j octets
• i.e. octets through i+j-1

Credit Allocation Example

200 octets per segment

A, B initially “synched”
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Establishment and Termination

• Even with a reliable network service, both ends
need to “set up” the connection:
– Allow each end to know the other exists and is

listening

– Negotiation of optional parameters
• Maximum Segment Size

• Maximum Window Size

– Triggers allocation of transport entity resources
• Buffer space allocated

• Entry in connection tables

Connection State Diagram –
Reliable Network Service

Start State

SYN=Sync
FIN=Finish
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Connection Establishment

Setting up the connection

• What if a SYN received while not in the Listen
state?
– Reject with RST (Reset)

– Queue request until matching open issued

– Signal TS user to notify of pending request
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Termination

• Connection can be terminated by sending FIN

• Graceful termination
– CLOSE_WAIT state and FIN_WAIT must accept

incoming data until FIN received

– Ensures both sides have received all outstanding data
and that both sides agree to connection termination
before actual termination

Unreliable Network Service

• Now let’s look at the more general case if we are building
our transport service on top of an unreliable network
layer

• An unreliable network service makes the transport layer
much more complicated if we want to ensure reliability

• Examples of unreliable network services:
– Internet using IP,
– Frame Relay using LAPF
– IEEE 802.3 using unacknowledged connectionless LLC

• Segments may get lost
• Segments may arrive out of order
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Problems

• Ordered Delivery

• Retransmission strategy

• Duplication detection

• Flow control

• Connection establishment

• Connection termination

• Crash recovery

Ordered Delivery

• Segments may arrive out of order
• Number segments sequentially
• TCP numbers each octet sequentially
• Segments are numbered by the first octet number in

the segment

• TCP actually numbers segments starting at a random
value!
– Minimizes possibility that a segment still in the network

from an earlier, terminated connection between the same
hosts is mistaken for a valid segment in a later connection
(who would also have to happen to use the same port
numbers)
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Retransmission Strategy

• Need to re-transmit when
– Segment damaged in transit
– Segment fails to arrive

• Receiver must acknowledge successful receipt
• Use cumulative acknowledgement
• Time out waiting for ACK triggers

re-transmission

• How long to wait until re-transmitting?
– Too short: duplicate data
– Too long: Unnecessary delay delivering data

Timer Value

• Fixed timer
– Based on understanding of network behavior
– Can not adapt to changing network conditions
– Too small leads to unnecessary re-transmissions
– Too large and response to lost segments is slow
– Should be a bit longer than Round Trip Time (RTT)

• Adaptive scheme
– E.g. set timer to average of previous ACKs
– Problems:

• Sender may not ACK immediately
• Cannot distinguish between ACK of original segment and re-

transmitted segment
• Conditions may change suddenly
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Duplication Detection

• If ACK lost, segment is re-transmitted

• Receiver must recognize duplicates

• Duplicate received prior to closing connection
– Receiver assumes ACK lost and ACKs duplicate

– Sender must not get confused with multiple ACKs

– Sequence number space large enough to not cycle within
maximum life of segment

• Also possible to receive a duplicate after closing the
connection!

Incorrect
Duplicate
Detection

Illustrates need for the sequence
number space to be larger than
the maximum possible segment

lifetime

Note: cycle back to SN=1
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Flow Control

• Can use credit allocation described earlier

• Generally little harm if a single ACK/Credit segment is
lost, will resynchronize the next time

• Problem if B sends AN=i, W=0 closing window
• Later, B sends AN=i, W=j to reopen, but this is lost
• Sender thinks window is closed, receiver thinks it is open
• Solution: use window timer
• If timer expires, send something to break the deadlock

– Could be re-transmission of previous segment

Connection Establishment

• Two way handshake
– A send SYN, B replies with SYN

– Lost SYN handled by re-transmission
• Can lead to duplicate SYNs

– Ignore duplicate SYNs once connected

• Lost or delayed data segments can cause
connection problems
– Segment from old connections
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Two Way
Handshake:

Obsolete
Data

Segment

Two Way Handshake:
Obsolete SYN Segment

B expects SN j
A wants new
connection,
picks SN k
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Connection Establishment –
Three Way Handshake

• Solution: Explicitly acknowledge each other’s
SYN and sequence number
– Use SYN i

– Need ACK to include i

• Called the Three Way Handshake

Three Way
Handshake:
Examples
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Three Way
Handshake:

State
Diagram

Connection Termination

• Same problems we had with connection
establishment can also occur with connection
termination
– Lost or obsolete FIN segment
– Can lose last data segment if FIN arrives before last

data segment

• Solution: associate sequence number with FIN
• Receiver waits for all segments before FIN

sequence number
• Must explicitly ACK FIN
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Graceful Close

• Send FIN i and receive AN i

• Receive FIN j and send AN j

• Wait twice maximum expected segment lifetime

Crash Recovery

• If the transport service crashes and restarts, after restart
all state info is lost

• Connection is half open
– Side that did not crash still thinks it is connected

• Close connection using persistence timer
– Wait for ACK for (time out) * (number of retries)

– When expired, close connection and inform user

• Send RST i in response to any i segment arriving

• User must decide whether to reconnect
– Problems with lost or duplicate data
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TCP:Overview RFCs: 793, 1122, 1323, 2018, 2581

• full duplex data:
– bi-directional data flow in

same connection
– MSS: maximum segment

size

• connection-oriented:
– handshaking (exchange of

control msgs) init’s sender,
receiver state before data
exchange

• flow controlled:
– sender will not overwhelm

receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte
stream:
– no “message boundaries”

• pipelined:
– TCP congestion and flow

control set window size

• send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

TCP Properties

• stream orientation. stream of OCTETS (bytes) passed
between send/ recv

• byte stream is full duplex
– think of it as two independent streams joined with a

piggybacking mechanism
– piggybacking - one data stream has control info for the other

data stream (going the other way)

• unstructured stream
– TCP doesn’t show packet boundaries to applications
– But you can still structure your message if you want
– Recall usage with sockets:

• One write() call to send data
• May require multiple read() calls
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent datachecksum

FSRPAU
head

len

not

used

Options (variable length)

URG: urgent data 

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)

TCP Fields

• Source, Destination Port: 16 bits each

• Sequence Number: 32 bits
– Sequence # of first data octet in the segment, initialized

randomly as described earlier

• ACK Number: 32 bits
– Piggybacked ACK, contains sequence number of the next data

octet the receiver expects

• Header Len: 4 bits
– Number of 32 bit words in the header

• Not Used: 6 bits for future use
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TCP Fields
• Flags – 6 bits

– URG – Urgent Pointer field significant
– ACK – Ack field significant
– PSH – Push (flush or “push” buffer now, send data to app)
– RST – Reset connection
– SYN – Synchronize sequence numbers
– FIN – No more data

• Window – 16 bits
– Flow control credit allocation

• Checksum – 16 bits
– One’s complement sum as in UDP

• Urgent Pointer – 16 bits
– Last octet in a seq of “urgent” data. Sometimes not interpreted. Urgent

data should be processed now, even before any data sitting in the buffer
(e.g. send control-c to terminate)

• Options – Variable
– Support for timestamping, negotiating MSS

TCP seq. #’s and ACKs

Seq. #’s:
– byte stream “number”

of first byte in
segment’s data

ACKs:
– seq # of next byte

expected from other
side

– cumulative ACK
Q: How does the receiver

handles out-of-order
segments?
– A: TCP spec doesn’t

say, - up to
implementer

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt 
of echoed

‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

time
simple telnet scenario

Note piggybacking!
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TCP: retransmission scenarios

Host A

Seq=92, 8 bytes data

ACK=100

loss
t
im
e
o
u
t

time lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

Host A

Seq=100, 20 bytes data

ACK=100

S
e
q
=
9
2
 t
im
e
o
u
t

time premature timeout,
cumulative ACKs

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
e
q
=
1
0
0
 t
im
e
o
u
t

ACK=120

Sender must be smart enough to ignore duplicate ACK

TCP Flow Control

receiver: explicitly
informs sender of
(dynamically
changing) amount of
free buffer space
– RcvWindow field

in TCP segment
sender: keeps the amount

of transmitted,
unACKed data less
than most recently
received RcvWindow

sender won’t overrun
receiver’s buffers by
transmitting too much,

too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer
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TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

• longer than RTT

– note: RTT will vary

• too short: premature
timeout

– unnecessary
retransmissions

• too long: slow reaction
to segment loss

Q: how to estimate RTT?
• SampleRTT: measured time

from segment transmission until
ACK receipt
– ignore retransmissions,

cumulatively ACKed
segments

• SampleRTT will vary, want
estimated RTT “smoother”
– use several recent

measurements, not just
current SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

• Exponential weighted moving average

• influence of given sample decreases exponentially
fast

• typical value of x: 0.1

Setting the timeout
• EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

Timeout = EstimatedRTT + 4*Deviation
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TCP Connection Management

Three way handshake:

Step 1: client end system sends TCP SYN control segment
to server
– specifies initial seq #

Step 2: server end system receives SYN, replies with
SYNACK control segment

– ACKs received SYN
– allocates buffers
– specifies server-> receiver initial seq. #

TCP Connection Management (cont.)
Closing a connection:

Step 1: client end system sends TCP
FIN control segment to server

Step 2: server receives FIN, replies
with ACK. Closes connection,
sends FIN.

Step 3: client receives FIN, replies with
ACK.

– Enters “timed wait” - will
respond with ACK to received
FINs

Step 4: server, receives ACK.
Connection closed.

client

FIN

server

ACK

ACK

FIN

close

close

closed

t
im
e
d
 w
a
it
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Principles of Congestion Control

Congestion:
• informally: “too many sources sending too much data too

fast for network to handle”

• different from flow control!

• manifestations:

– lost packets (buffer overflow at routers)

– long delays (queueing in router buffers)

• A top-10 problem!

Causes/costs of congestion: scenario 1

• two senders, two
receivers

• one router,
infinite buffers

• no retransmission

• large delays when
congested

• maximum
achievable
throughput
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Causes/costs of congestion: scenario 2

• one router, finite buffers

• sender retransmission of lost packet

“offered load”

Causes/costs of congestion: scenario 2

• if: (goodput)

• retransmission only when loss:

• Even worse: retransmission of delayed (not lost) packet makes

larger than the previous case for the same

λ
in

λ
in’

=

λ
in

λ
out

>

“costs” of congestion:

• more work (retrans) for given “goodput”

• unneeded retransmissions: link carries multiple copies of pkt

λ
in λ

out
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Causes/costs of congestion: scenario 3

• four senders
• multihop paths
• timeout/retransmit

λ
inQ: what happens as

and increase ?λ
in

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
• when packet dropped, any “upstream transmission capacity used for

that packet was wasted!

• Throughput goes to 0 as the heavy traffic approaches infinity

• In everyone’s best interest to “back off” on transmission
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Approaches towards congestion control

End-end congestion control:
• no explicit feedback from

network

• congestion inferred from end-
system observed loss, delay

• approach taken by TCP

Network-assisted congestion
control:

• routers provide feedback to
end systems

– single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)

– explicit rate sender should
send at

Two broad approaches towards congestion control:

TCP Congestion Control

• end-end control (no network assistance)
• transmission rate limited by congestion window size, Congwin,

over segments:

• w segments, each with MSS bytes sent in one RTT:

throughput =
w * MSS

RTT
Bytes/sec

Congwin
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TCP congestion control:

• two “phases”
– slow start

– congestion avoidance

• important variables:
– Congwin

– threshold: defines
threshold between two
slow start phase,
congestion control phase

• “probing” for usable
bandwidth:
– ideally: transmit as fast as

possible (Congwin as
large as possible) without
loss

– Reality:
– increase Congwin until

loss (congestion)
– loss: decrease Congwin,

then begin probing
(increasing) again

TCP Slowstart

• exponential increase (per RTT) in
window size (not so slow!)

• loss event: timeout (Tahoe TCP)
and/or or three duplicate ACKs
(Reno TCP)

• (What causes duplicate ACKs?)

initialize: Congwin = 1
for (each segment ACKed)

Congwin++
until (loss event OR

CongWin > threshold)

Slowstart algorithm
Host A

one segment

R
T
T

Host B

time

two segments

four segments
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TCP Congestion Avoidance

/* slowstart is over */
/* Congwin > threshold */
Until (loss event) {
every w segments ACKed:

Congwin++
}

threshold = Congwin/2
Congwin = 1
perform slowstart

Congestion avoidance

1

TCP Fairness

Fairness goal: if N TCP
sessions share same
bottleneck link, each
should get 1/N of link
capacity

TCP congestion
avoidance:

• AIMD: additive
increase,
multiplicative
decrease
– increase window by

1 per RTT
– decrease window by

factor of 2 on loss
event

AIMD

TCP connection 1

bottleneck
router

capacity C

TCP 
connection 2
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Why is TCP fair?

Two competing sessions:
• Additive increase gives slope of 1, as throughput increases

• multiplicative decrease decreases throughput proportionally

C

C

equal bandwidth share

Connection 1 throughput
C
o
n
n
e
c
t
io
n
 
2
 
t
h
r
o
u
g
h
p
u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Eventually the two connections fluctuate along equal bandwidth line

TCP vs. UDP

• When to use TCP
– Need reliable network service

– Want flow, congestion control

• When to use UDP
– Don’t want overhead of TCP

– Don’t want congestion control! I.e. we don’t want to be
“fair”

• Multimedia apps

• Don’t want data rate throttled, but ironically this can lead to unfair
transmission rate and could actually bring all traffic to a halt

• Could also be unfair using TCP by opening multiple parallel
connections (often done with web data)


