IP Routing, Format, Fragmentation

Chapters 20-21, 23

IP

- IP is connectionless in the end-to-end delivery
 - Data delivered in datagrams (packets / frames), each with a header
- Combines collection of physical networks into single, virtual network
- Transport protocols use this connectionless service to provide connectionless data delivery (UDP) and connection-oriented data delivery (TCP)
 - But this is all done on top of IP, which is connectionless, so we’ll need to implement quite a bit of extra logic in TCP to get the connection-oriented characteristics out of an underlying connectionless medium
Virtual Packets

- *Packets* serve same purpose in internet as frames on LAN
- *Routers* (or *gateways*) forward packets between physical networks
- Packets have a uniform, hardware-independent format
 - Includes header and data
 - Why are these “virtual?” Because we would like a packet to be capable of crossing multiple networks, where networks could use different types of technologies (e.g. Token Ring, Ethernet)
- The virtual packet is implemented by encapsulating it in hardware frames for delivery across each physical network
 - Ensures universal format across heterogenous networks

The IP Datagram

- Formally, the unit of IP data delivery is called a *datagram*
- Includes header area and data area
- Datagrams can have different sizes
 - Header area usually fixed (20 octets) but can have options
 - Data area can contain between 1 octet and 65,535 octets ($2^{16} - 1$)
 - Usually, data area much larger than header (why?)
Forwarding Datagrams

- The header contains all the information needed to deliver a datagram to a destination *computer*
 - Destination address
 - Source address
 - Identifier
 - Other delivery information
- Routers examine the header of each datagram and forwards the datagram along a path to the destination
 - Use routing table to compute next hop
 - Update routing tables using algorithms previously discussed
 - Link state, distance vector, manually

Routing Tables and Address Masks

- In practice, destination stored as *network address*
- Next hop stored as IP address of router
- *Address mask* defines how many bits of address are in prefix
 - Prefix defines how much of address used to identify network
 - E.g., class A mask is 255.0.0.0
 - Used for subnetting

![Routing Table for Center Router](image)
Address Masks

- To identify destination network, apply address mask to destination address and compare to network address in routing table
- Can use Boolean AND
 - if ((Mask[i] & D) == Dest[i]) forward to NextHop[i]
- Consider 128.1.15.26:

 \[
 \begin{array}{ccc}
 203.0.0.7 & 40.0.0.0 & 128.1.0.0 \\
 40.0.0.0/8 & 40.0.0.0/8 & 128.1.0.0/16 \\
 \end{array}
 \]

 \[
 \begin{array}{ccc}
 128.1.0.0 & 192.4.10.0/24 \\
 40.0.0.7 & 128.1.0.0 & 192.4.10.9 \\
 \end{array}
 \]

 \[
 \begin{array}{ccc}
 \text{Destination} & \text{Mask} & \text{Next Hop} \\
 30.0.0.0 & 255.0.0.0 & 40.0.0.7 \\
 40.0.0.0 & 255.0.0.0 & \text{deliver direct} \\
 128.1.0.0 & 255.255.0.0 & \text{deliver direct} \\
 192.4.10.0 & 255.255.255.0 & 128.1.0.0 \\
 \end{array}
 \]

Forwarding IP Packets

- Destination address in IP datagram is always ultimate destination
- Router looks up next-hop address and forwards datagram
- Network interface layer takes two parameters:
 - IP datagram
 - Next-hop address
- Next-hop address never appears in IP datagram
IP is Best Effort Delivery

- IP provides service equivalent to LAN
- Does not guarantee to prevent
 - Duplicate datagrams
 - Delayed or out-of-order delivery
 - Corruption of data
 - Datagram loss
- **Reliable delivery provided by transport layer**
- **Network layer - IP** - can detect and report errors without actually fixing them

IPv4 Datagram Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version number</td>
<td>IP protocol version number (32 bits)</td>
</tr>
<tr>
<td>Header length</td>
<td>“Type” of data (32 bits)</td>
</tr>
<tr>
<td>Identifier</td>
<td>16-bit identifier</td>
</tr>
<tr>
<td>Time to live</td>
<td>32-bit source IP address</td>
</tr>
<tr>
<td>Upper layer checksum</td>
<td>Options (if any), plus padding data</td>
</tr>
<tr>
<td>Total length</td>
<td>E.g. timestamp, record route taken, specify list of routers to visit.</td>
</tr>
<tr>
<td>Type of service</td>
<td>Data (variable length, typically a TCP or UDP segment)</td>
</tr>
<tr>
<td>Flags</td>
<td>For fragmentation/reassembly</td>
</tr>
<tr>
<td>Offset</td>
<td>Total datagram length (bytes)</td>
</tr>
<tr>
<td>Max number of hops</td>
<td>IP protocol version number (32 bits)</td>
</tr>
<tr>
<td>Remaining hops</td>
<td>“Type” of data (32 bits)</td>
</tr>
<tr>
<td>Upper layer length</td>
<td>32-bit destination IP address</td>
</tr>
<tr>
<td>Data</td>
<td>Options (if any), plus padding data</td>
</tr>
</tbody>
</table>
Parameters (1)

- Source address
- Destination address
- Upper Layer Protocol
 - Recipient e.g. TCP
- Type of Service
 - Specify treatment of data unit during transmission through networks
 - Ignored by many routers
- Identifier
 - Uniquely identifies PDU for a particular sender/receiver
 - Needed for re-assembly and error reporting
 - “Send” only; i.e. in sending a data packet, not used for Deliver or “ACK” mode
 - Fragmentation dropped in IP6

Parameters (2)

- Flags (3 bits)
 - First: Is this data fragmented?
 - Second: Are we allowed to fragment the data?
 - If not, may not be possible to deliver
 - Third: not used
- Time to live
 - Prevent datagram from traveling forever by decrementing each hop
- Header length
 - In groups of 4 bytes
- Total length
 - In bytes, includes header and data
- Option data
- User data
Type of Service

- Might be useful to differentiate traffic, e.g. ICMP vs. data, or real-time data vs. non-real time
- Precedence
 - 8 levels
- Reliability
 - Normal or high
- Delay
 - Normal or low
- Throughput
 - Normal or high

- These are often ignored by routers

Options

- Meant to be used rarely. Way to extend the IP protocol with a variable number of options. Dropped in IPv6.
 - Security
 - Source routing
 - Route recording
 - Stream identification
 - Timestamping

- Since this is optional, it means headers can be of variable length
 - This is why we need the Header Length field
 - If an IP datagram has no options, H-LEN = 5
 - Header with 96 bits of options has H-LEN = 8
 - If options don’t end on a 32-bit boundary, padding (all zero’s) added to make this a multiple of 32 bits

- See why H-LEN is in groups of 32 bits?
Datagram Lifetime

- Datagrams could loop indefinitely
 - Consumes resources
 - Transport protocol may need upper bound on datagram life
- Datagram marked with lifetime
 - Time To Live field in IP
 - Once lifetime expires, datagram discarded (not forwarded)
 - Hop count
 - Decrement time to live on passing through a each router
 - Time count
 - Need to know how long since last router

Data Field

- Carries user data from next layer up
 - Likely UDP/TCP packet
- Integer multiple of 8 bits long (octet)
- Max length of datagram (header plus data) 65,535 octets
Datagram Transmission and Frames

- IP internet layer
 - Constructs datagram
 - Determines next hop
 - Hands to network interface layer
- Network interface layer
 - Binds next hop address to hardware address
 - Prepares datagram for transmission
- But ... hardware frame doesn't understand IP; how is datagram transmitted?

Encapsulation

- Network interface layer *encapsulates* IP datagram as data area in hardware frame
 - Hardware ignores IP datagram format
 - Standards for encapsulation describe details
- Standard defines data type for IP datagram, as well as others (e.g., ARP)
- Receiving protocol stack interprets data area based on frame type
Encapsulation Across Multiple Hops

- Each router in the path from the source to the destination:
 - *Unencapsulates* incoming datagram from frame
 - Processes datagram - determines next hop
 - *Encapsulates* datagram in outgoing frame
 - Datagram may be encapsulated in different hardware format at each hop
 - Datagram itself is (almost!) unchanged

Ethernet
Token Ring
Wireless

IP Fragmentation & Reassembly

- Network links have MTU (max.transfer size) - largest possible link-level frame.
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments
Fragmentation and Re-assembly

- Different packet sizes
- When to re-assemble
 - At destination **only**
 - Results in packets getting smaller as data traverses internet
 - Why not re-assemble at intermediate routers?
 - Need large buffers at routers
 - Buffers may fill with fragments
 - All fragments must go through same router
 - Inhibits dynamic routing
 - Routers have enough work to do already without having to reassemble stuff

IP Fragmentation

- IP re-assembles at destination only
- Uses fields in header
 - Data Unit Identifier (ID)
 - Identifies end system originated datagram if coupled with:
 - Source and destination address
 - Protocol layer generating data (e.g. TCP)
 - Identification supplied by that layer
 - Data length
 - Length of user data in octets
 - Offset
 - Position of fragment of user data in original datagram
 - In multiples of 64 bits (8 octets)
 - **More** flag
 - Indicates that this is not the last fragment
IP Fragmentation and Reassembly

One large datagram becomes several smaller datagrams

Fragmenting Fragments

- A fragment may encounter a subsequent network with even smaller MTU
 - Router fragments the fragment to fit
 - Resulting (sub)fragments look just like original fragments (except for size)
 - No need to reassemble hierarchically; (sub)fragments include position in original datagram
Dealing with Failure

- Re-assembly may fail if some fragments get lost
- Need to detect failure
- Re-assembly time out
 - Assigned to first fragment to arrive
 - If timeout expires before all fragments arrive, discard partial data

Error Control

- Not guaranteed delivery
- Router should attempt to inform source if packet discarded
 - e.g. for time to live expiring
- Source may modify transmission strategy
- May inform high layer protocol
- Datagram identification needed

- Destination doesn’t ACK or NAK if checksum fails, no retries, best-effort like Ethernet
Flow Control

- Allows routers and/or stations to limit rate of incoming data
- Limited in connectionless systems
- Send flow control packets
 - Requesting reduced flow
- e.g. ICMP

ICMP

- Internet Control Message Protocol
- RFC 792
- Transfer of (control) messages from routers and hosts to hosts
- Feedback about problems
 - e.g. time to live expired, destination unreachable (e.g. no ARP reply), checksum fails (header only!), no route to destination, etc.
- Considered “part” of IP, but it is really a user of IP
 - Encapsulated in IP datagram
 - Not reliable
 - ICMP messages sent in response to incoming datagrams with problems
 - ICMP message not sent for ICMP message
ICMP: Internet Control Message Protocol

- Used by hosts, routers, gateways to communication network-level information
 - error reporting:
 unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>echo reply (ping)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>dest. network unreachable</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>dest host unreachable</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>dest protocol unreachable</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>dest port unreachable</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>dest network unknown</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>dest host unknown</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>source quench (congestion control - not used)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>echo request (ping)</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>route advertisement</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>router discovery</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>TTL expired</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>bad IP header</td>
</tr>
</tbody>
</table>

ICMP and Ping

- An internet host, A, is reachable from another host, B, if datagrams can be delivered from A to B
- ping program tests reachability - sends datagram from B to A that A echoes back to B
- Uses ICMP echo request and echo reply messages
- Internet layer includes code to reply to incoming ICMP echo request messages
ICMP and Traceroute

- List of all routers on path from A to B is called the route from A to B
- *traceroute* uses UDP to non-existent port and TTL field to find route via *expanding ring search*
- Sends ICMP echo messages with increasing TTL
 - Router that decrements TTL to 0 sends *ICMP time exceeded* message, with router's address as source address
 - First, with TTL 1, gets to first router, which discards and sends time exceeded message
 - Next, with TTL 1, gets through first router to second router
 - Continue until message from destination received
- *traceroute* must accommodate varying network delays
- Must also accommodate dynamically changing routes

ICMP and MTU Discovery

- Fragmentation should be avoided for optimal performance
- How can source configure outgoing datagrams to avoid fragmentation?
- Source determines *path MTU* - smallest network MTU on path from source to destination
- Source *probes* path using IP datagrams with *don't fragment* flag
- Router responds with *ICMP fragmentation required* message
- Source sends smaller probes until destination reached
ICMP and Redirect

- Default route may cause *extra hop*
 - Host A is sending a packet to Host B. Host A's default IP router is router R1. Host A forwards the packet destined for Host B to its default router R1.
 - R1 checks its routing table and finds that the next hop for the route to the network for Host B is router R2.
 - If Host A and R2 are on the same network that is also directly attached to R1, an ICMP Redirect message is sent to Host A informing it that R2 is the better route when sending to Host B.
 - Router R1 then forwards the IP datagram to R2.
 - Host A adds a host route to its routing table for Host B's IP address with router R2's IP address as the forwarding address. Subsequent datagrams from Host A to Host B are forwarded by means of router R2.