String Matching
Chapter 34
(Skip Rabin-Karp for now, may return toit later!)

The string matching problem isto find if a pattern P{1..m] occurs within text T[1..n]. We have
dready examined the example of gpproximate string matching using dynamic programming. In
this lecture we will examine efficient ways to perform exact string matching. Note that string
matching is useful in more cases than just searching for words in text. String matching aso
appliesto other problems, for example, matching DNA paiternsin the human genome.

Naive Sring Matching Algorithm
Find dl vdid shifts of P using aloop:

Naive-Match(T,P)
n— length[T]
m= length[P]
fors— Otonm
doif P[1.m]=T[st1,stm] then PmatchesT at index s+1

Example
T = ILOVEALGORITHMS
P = ALGOR

O(n+m) in this case, not much duplication of Pin T

T = AAAAAAAAAAAAAA
P = AAAAAB
AAAAAB
etc.

O(mn) in this casg, for each of the n characters we have to go through dl m chars of P

The naive string matcher is dow in some cases, dthough in many cases it actudly works pretty
good and should not be ignored, especidly sinceit is easy to implement. For smdl n or cases
when the text and pattern differ, thisis one of the best methods to use.

Sring-Matching Automata

One way to improve string matching runtime is to congtruct a finite automaton that has
knowledge about what we should compare next. These run in O(n) time but may require a
large amount of time to construct the automaton.

Recdl that afinite automaton is just a set of states with trangtions between those States.
For example, the automaton below accepts any string ending with an “a’. bbbalis accepted, as
isbbaba. However, string bbbab would be rgjected sinceit does not end in afina date.

b
SO0,

Theideaisto build an automaton that can take the input string, and consider dl input
possibilities to determine whether or not the pattern has been found.

Asamore complex example, consider the automaton below that recognizes the string “ aab”
when the aphabet contains only aand b.

b (ﬁa
TO==@ @\)jL @

a

b

Example: abaabbasaaabaab resultsin 3 matches. This automaton recognizes the pattern “aab”.

We dart in sate 0, and feed it input characters from the text. 1f we ever end up in state 3, then
we have found ameatch. If we get an aab, then we end up in Sate three. However, if we have
aaa, even though there is no match, we should stay in State 2, since the previous two characters
were g, and if the next oneis b then we do have amatch. Consequently, the automaton
consders al possible inputs we may get, and movesto the correct state that is necessary to
determine a match.

Given such an automeaton, the agorithm to match the automaton is smple:

Finite- Automata- String-Matcher(T,d ,m) ; Text, trangtion function, m=fina Sate
n— length[T]
gqg- O
fori- 1ton do
q- d(qT[i])
if =mthens— i-m ; Pattern at location s
; find gateisthe ‘mth’ character in P

Hard part: Computing the automaton. We will only give a high level description of the dgorithm
here

Compute- Trandtion-Function(P, &)
m= length[P]
forg- Otom
do for each character ain &
k- state where aP;, isasuffix of P
d(ga - k

Construction of the automaton depends upon the size of the aphabet, and can be constructed in
time O(m|& [), where & isthe aphabet. Works good for asmall aphabet size.

Knuth-Morris-Pratt Algorithm

Thisisafamous linear-time running string matching agorithm that achievesa Q (m+n) running
time. Thisisdone with aauxiliary function pi[1..m] precomputed from P in time O(m).

The key isthis auxiliary function pi, which isthe prefix function. This function contains
knowledge about how the pattern matches shifts againgt itsdlf. If we know how the pattern
matches againg itsdf, we can dide the pattern more characters ahead than just one character as
in the naive dgorithm.

Congder thiscase:

P: ABABAB| AB
T. ..ABABAB| XZ ...

Suppose that the next character, X, does not match A. The naive method just moves P one
character ahead and triesagain. But we can move it farther ahead!

P: | ABAB| ABCB
T: ..AB| ABAB| X...

We can dide the pattern ahead so that the longest PREFIX of P that we have matched, matches
the longest SUFFIX of T that we have dready matched. Now we can just test the X to seeiif it
matches with the a, and continue on.

Another example:

P: BAAAAAA| A
T: ... BAAAAAA| XY...

The longest prefix of P that matches asuffix of T isnothing, so we can just dide the whole
pattern over:

P: BAAAAAAAA
T: L} XY...

How can we precompuite the pattern shifts against some text T, when we don’t know what T
is? We can precompute the pattern shifts, because we know that a some point in P, we have
matched T with P, so we redly just need to compute prefixes and suffixes within P.

How to compute shifts (later we will store an index to the correct pattern character to compare
inpi[]) Given P=ABABACA:

Set shift[1] to 1. If the second character mismatches, it means we should use as the shift the
prefix that matches a suffix of the stuff we ve dready matched. Thisisonly one character, 0
we should shift the pattern over by one.

Look at first 2 charactersin P. AB
Find longest prefix that isa suffix. Thereisn't one, so sat shift[2] to the length of P so far, which

is2. We should shift the pattern by two if the character after B mismatches.
Ex: P= AB| A

T= .AB|C
Shift by two:

P= ABA

T= .JC ...

Look at first 3 charactersin P: ABA

Find longest prefix that isasuffix. Itis“A”, so set shift[3] to 2. We should shift the pattern by
two to line up the first A with thelast A if the next character doesn’t match.

Ex P= ABAC

T=... ABA| B
Shift by two:
P= A| BAC

T=... ABA/B

Look &t first 4 charactersin P. ABAB

Find longest prefix that isasuffix. Itis“AB”, so set shift[4] to 2. We should shift the pattern by
two to line up the first AB with the last AB if the next character doesn’t match.

Exx. P= ABAB| A

T=... ABAB|B
Shift by two:

P= AB| ABA

T=... ABAB|B

Look at first 5 charactersin P ABABA

Find longest prefix that isa suffix. Itis“ABA”, so st shift[5] to 2. We should shift the pattern
by two to line up the first ABA with the last ABA if the next character doesn’t match.

Ex P: ABABA| B

T: ..ABABA| A
Shift by two:

P: ABA| BAB

T: ... AB|ABAlA

Skiptofirst 7 charactersin P. ABABACA
Find longest prefix that isa suffix. 1tis“A”, so sat shift[7] to 6. We should shift the pattern by
gx to line up thefirst A with thelast A if the next character doesn’t match.
Ex: P: ABABACA| D
T. ... ABABACA| B ...
Shift by six:
P: A| BABACAD
T. ... ABABACA| B ...

Overview of dgorithm to congtruct pi values.

pi[1] - O
k- 0
m- length[F]
Fori- 2tom
Find longest prefix P, that is a suffix within P{1..i]
st pifi] = i- shiftfor P, ; Index to last char in pattern

; that matches text.
; If zero, nothing left to shift.

Thisdgorithm runsin O(m) amortized time.

Once we have the pi vaues, we can write an agorithm to do the string matching fairly easily:

KMP(T,P)
n- length[T]
m- length[F]
pi- Compute-Pi-Vaues
gq- 0
fori- 1tondo
while g>0 and P[g+1]<>T[i] dog- pi[q]
if g+1]=T[i] theng—~ g+1
if =mthen
pattern has matched at shift i-m
q- pild]

KMP top leve dgorithm runsin time O(n), and the call to compute R is O(m) o the total
runtime is O(m+n).

Other example: P= aaaa
T= 8888888889228,
Shift Paong with T to get O(n+m) runtime,

Boyer-Moore Algorithm

Boyer and Moore s dgorithms work pretty well for patterns that are long and alphabets that are
big. Theideaisto compare the pattern from the right to the left, ingead of |€eft to the right.

Example

P= nmust
= if you wish to understand others you nust

I
compare starting here, work backwards

sgncethereisno “y” indde P, we can shift it by dl 4 characters.

T= if you wish to understand others you nust
nmust
must
nmust
must
must
must
must
must

must
must

When the bad character in T is contained within P, we can only shift up to the point where the
bad character matches up with the corresponding character in P. Thisis called the “bad
character” heurigtic. When we are comparing backwards within P, if we ever runinto a
mismatch then we just shift the pattern over to compare the leftmost charactersin P with the
characterswe aready examinedin T.

In this example we only used 18 comparisons! Thetext is actudly 41 characterslong, so we
can do matching in sublinear timein the best case. Wordt caseis O(nm+|a |): requires
O(m+|a |) to compute the last-bad character, and we could run into same worst case as the
naive algorithm (consider P=aaaa, T=aaaaasaa...). However, on average, Boyer-Mooreis
often the dgorithm of choice.

See implementation in book.

