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Parallel Processor Organization 
 
As described earlier, the interconnection architecture among processors in a parallel 
machine has a large impact on how algorithms are implemented and also on how fast 
they will run.   There are a couple of factors to consider: 
 

• Degree.  The degree of a processor is the number of communication links attached 
to it.  It is desirable to have low degree from a cost standpoint and also from a 
scalability standpoint.   

 
• Diameter.  The diameter of a network is the maximum of the minimum distance 

between any pair of processors.  That is, it is the longest path between any two 
processors, assuming that a shortest path is always chosen.  A low diameter is 
desirable to allow efficient communication. 

 
• Bisection width.  The bisection width is the minimum number of wires that need 

to be removed in order to disconnect the network into two approximately equal 
sized subnetworks.  A high bisection width implies higher bandwidth if there is a 
lot of traffic, but is more costly to build. 

 
Linear Array 
 
Perhaps the simplest architecture we could have is a string of n processors, P[1] to P[n], 
where each processor is connected to its two neighbors.  P[I] is connected to P[I-1] and 
P[I+1].  P[1] and P[n] are only connected to one neighbor. 
 

P[1] ßà P[2] ßà P[3] ßà P[4] ßà …. P[n] 
 
The degree of this configuration is 2.  The diameter is n-2 or O(n) if P[1] has a message 
to send to P[n].   Note however, that the minimum time for a message to travel is n/2, if 
P[1] and P[n] both sent their messages to P[n/2] who matches the information together.  
However, this is still O(n) communication time. 
 
Although this architecture might seem rather limited, a related architecture, the ring, is 
sometimes employed (the Cray SV1 uses a type of ring).  The ring has the same basic 
properties as the linear array, except the diameter is halved.  Additionally, the linear array 
is a sub-component of other architectures we will see soon. 
 
Let’s look at a few simple problems we can apply to the linear array.  First, consider the 
problem of finding the minimum.  Assume that we have an array X[1..n] where X[I] is 
stored on P[I].  To determine the minimum, one method is for all data to march to the left 
in lockstep fashion.  P[1] on the left sets running-min = min(running-min, x[I+1]).  After 
n-1 steps, the minimum of X is stored in P[1]. 
 
 



 

 
This algorithm obviously takes O(n) time, no improvement over a sequential processor. 
 
Now consider a related problem, where initially each processor contains no data.  
However, input is given one element at a time on the left to P[1].  Given n input numbers, 
we would like the data to be sorted where P[1] has the minimum, P[2] has the second 
smallest value, etc.   
 
We can solve this problem by having each processor pass numbers to the right.  
However, each processor keeps the minimum data item that it has seen.  That is, 
processor P[2] would store the minimum of all items with the exception of the smallest 
item, because P[1] would not pass it along.  At the end of the algorithm, each processor 
has the values in ascending order: 
 
 
 
 
 

P1 P2 P3 P4 P5

3       4      2      6      1r=3

4      2      6      1r=3

2      6      1r=2

6      1r=2

1r=1



 
The runtime for this 2n, which is O(n).  This essentially gives us an O(n) sorting 
algorithm. 
 
Finally, consider the case where each processor has some data that it wants to send to 
every other processor.  We can use the tractor-tread algorithm, where each processor 
sends data to its neighbor.  The end processors ‘bounce’ data back in the other direction.  
In O(n) steps, each processor can get data from every other processor. 
 

 
Once again, note that the linear array architecture is basically identical to a ring 
architecture, except we now cut the diameter in half with the option of sending data the 
opposite direction. 

P1 P2 P3 P4 P5

3,2,4,1,5

5 3,2,4,1

1,5 3,2,4

1,4    5 3,2

1,2   4,5 3

1,3   4,2    5 

1      2,3   4,5 

1      2 4,3    5 

1      2 3    4,5 

1      2 3    4       5 

P1 P2 P3 P4 P5



Mesh Architecture  
 
A mesh architecture is quite common.  It is implemented in many parallel machines, such 
as the Connection Machine, because it is relatively simple, has better attributes than the 
linear array, and is scalable.   
 
The mesh is essentially a 2-dimensional, checkerboard arrangement.  Some meshes use 
hexagonal neighbors or a vertical component in addition to the North , South, East, West 
arrangement.  Processors can only communicate with their neighbors. 
 

 
The square mesh is referred to as a mesh of size N.  Note that there are n1/2 rows and 
columns.   The communication diameter is then 2n1/2-2 if we travel from the bottom left 
corner to the upper right corner.  This is just O(n1/2).  This is an improvement over the 
linear array. 
 
Let’s look at some simple algorithms on the mesh. 
 
Broadcast:  Broadcast the data value x, initially stored in processor P[I,J] where I=row 
and J=column, to all processors in the mesh. 

1. Rotate the value to all processors in P’s row in O(n1/2) time. 
2. Each processor in P’s row now rotates the value to each processor in its 

column in O(n1/2) time. 
The overall runtime is then O(2n1/2) or just O(n1/2). 
 
Minimum:  Each processor has a value, and we want the minimum value contained in all 
processors to be stored in processor P[1,1]. 

1. Each processor performs the linear array minimum algorithm within its column, 
with the minimum being stored in P[ 1, _]. 

2. Each processor in row 1 now has the minimum of each processor in their column.  
The processors in row 1 now perform the linear array minimum algorithm within 
row 1.   The absolute minimum is now in P[1,1]. 

The overall runtime is also O(2n1/2) or just O(n1/2). 
 
In general, we can perform the linear array algorithm on the mesh twice, once for the 
columns and once for the rows. 
  
 



Hypercube Architecture 
 
Let’s look at one final architecture, the hypercube.  This arrangement is used in the 
nCube, Paragon, CM I-II, Mark II-III, and several other machines.  It is an attractive 
topology because it provides a low communication diameter and a high bisection width.  
The communication diameter is logarithmic in the number of processors, which allows 
for many fast operations.  The main disadvantage is that it becomes expensive to scale up 
to a large number of processors. 
 
Formally, a hypercube of size n consists of n processors indexed by the integers {0, 1, … 
n-1} where n is an integral power of 2.  Processors A and B are connected iff their nique 
log2 n-bit strings differ in exactly one position.   
 
The easiest way to construct a hypercube is in a recursive fashion.  First, start with a 1-
cube: 

 
To connect a 2-cube, we connect two 1-cubes.  We connect the duplicate 1-cube by their 
corresponding nodes: 

 
Next, we construct a 3-cube by connection two 2-cubes: 

 
 
 

0 1

00 01

10 11

000 001

010 011

100 101

110 111



Based on this construction scheme, note that the number of communication links 
affiliated with each processor must increase as the size of the network increases.  So 
unlike the mesh and linear array, this is a variable-degree network.  The degree of a 
hypercube of size n is log2n.   In similar fashion, the communication diameter is also 
O(lgn).  This is because each processor number differs by one bit.  To send a message to 
the most distant processors, we would have to send it to an intermediate processor that 
differs by one bit.  For example P0 to P7 traverses 000 à 001 à 011 à 111 
 
This is an appealing property of the hypercube, because it has the promise of avoiding 
some of the communication bottlenecks that occur with the other architectures. 
 
As an example algorithm, let’s consider again the problem of finding the minimum in a 
hypercube of n=16.  Each processor contains a single value, and we want the min of all 
these values.   
 
In the first step, we send entries from all processors with a 1 in the most significant bit to 
their neighbors that have a 0 in the most significant bit.   The processors that receive 
information compute the minimum of the received value and their element and store this 
result as a running minimum.  In the next step, we send running minima from all 
processors with a 1 in their next most significant bit that received data from the previous 
step, to their neighbors with a 0 in that bit position.  These processors also compute the 
running minima.  The process continues until processor 0001 sends to processor 0000 
which computes the final result.   This requires a total of O(lgn) steps. 
 
We can use the same process if we want to broadcast the result to all processors.  The 
first processor sends data to its neighbor on the least significant bit, then both processors 
send data to their neighbors using the next significant bit, and so on, in another total of 
O(lgn) steps to broadcast the data to all processors. 
 
 
Other Architectures 
 
There are many other architectures out there.  One is the pyramid architecture, which is 
essentially a tree on top of a mesh.  This has the benefit of performing tree-like 
operations in lg time using the hierarchical portion, and mesh-like operations using the 
base of the pyramid.   
 
Another scheme is the torus.  A torus is formed by starting with a 2D mesh.  If the 
leftmost and rightmost processors in a row are connected, and the topmost and 
bottommost processors are also connected, then this is called a torus architecture.  This is 
even better connected than the mesh, but not quite as well connected as the hypercube.  
However, it is easier to scale up than a hypercube.  The Intel Paragon used a 2D torus, 
and the Cray T3D is a 3D torus, hence its name.  The Arctic Region Supercomputing 
Center has a Cray T3D with 272 processors and 69.6 GB of distributed memory. The 
memory is distributed with 256 MB of memory at each processor but is globally 
addressable. 


