L ecture Notes
Kenrick Mock
CH11

Non-Comparison Based Sorting

How fast can we sort?
Insertion-Sort O(n?)
Merge-Sort, Quicksort (expected), Hegpsort :Q(nlgn)

Canwedo fager? What is the theoretica best we can do?

So far we have done comparison sorts. A sort based only on comparisons between input
dements. E1<E2, E1=E2, E1>E2. We will show that any comparison-based sort MUST
make W(nlgn) comparisons. This means that merge sort and hegp sort are optima. Thisis
important because it is not always possible that you can prove that your algorithm is
the best one possiblefor a problem!

A decison treeis usad to represent the comparisons of a sorting agorithm. Assume that all
inputs are digtinct. A decision tree compares dl possible inputs to each other to determine the
sequence of outputs.

Decison Treefor three lementsal,a2,a3 : If a theroot, al£ a2 go left and compare a2 to
a3, otherwise go right and compare al to a3. Each path represents a different ordering on
al,a?,a3.

<= | >

i

Thistype of decison tree will have n! leaves— one for each permutation of the input.
Any comparison-based sorting agorithm will have to go through the stepsin the decision tree as
aminimum (can do more comparisons if we want to, of course!)

Exampleof 9,26 :

<=

ala3a2 a3ala2 269

a3,a2,al

i i

feee e e e e i

The sorted e ements are 2,6,9, in order of a2,a3,al.

Decision trees can model comparison sorts. For any sorting agorithm:

1. Onetreefor each input length n

2. Andgorithm “gplits’ a each decison/comparison unwinding the actual execution into atree
path

3. Thetreeisal possble execution traces

Whét isthe height of the decison tree? This gives us the minimum number of comparisons
necessary to sort the input.

For ninputs, the tree must have n! leaves. A binary tree of height h has no more than 2" leaves:
nig 2"
Takelog:

lg(n!) £ h

Siirling’s gpproximation saysthat n!>+/2np(n/e)" >(n/e)"
Ig(n/e)" £h

-~ nig(n/e) £ h
n(gn- lge) £h
nign- nilge£h

Thismeansh=W(nlgn) and we are DONE! We need to do at least nlgn comparisons to
reach the bottom of the tree,

Does this mean that we can’t do any better?? NO! (well, in some cases)
We can actudly do some types of sorting in LINEAR TIME.

Counting Sort

Thismay work in O(n) time. How? Becauseit uses no comparisons But we have to make
assumptions about the Size and nature of the input.

Input: A[1..n] where A[l]={1...k}
Output: B[1..n], sorted
Uses C[1.K] auxiliary storage

Idea: Using random access array, count up number of times each input eement appears and
then collect them together.

Algorithm:
Count- Sort(A,n)
forl- 1tokdoC[l] = O ; Initidizeto O
forj= 1tondo C[A[j]] ++ ; Count
j- 1
forl- 1tokdo
if (C[1]>0) then

forz- 1to C[l] do
B[j]=l
j++

Ex A=[1532249]
C=[000000000]
C=[121110001]
B=[1223459

Thisworks How long doesit take? O(n+k). If k=n, then thisrunsin O(n) time.
However, a bad example would be ainput list like A[1,2,99999999].

One disadvantage of the current agorithm: it isnot stable

An dgorithm is stable if the occurrences of avaue | gppear in the same order in the output as
they dointheinput. That is, ties between two numbers are broken by the rule that whichever
number appearsfird in the input array appearsfirg in the output array.

Why do we want a stable agorithm? If the thing we are sorting is just akey of arecord
(perhaps azip code, or ajob indicating priority where we want the first one in to have
precedence) then stability may be important.

Bx A[35a9245b6]
Sortsto A[2345a5b 6 9]
and notto A[2345b5a6 9]
Can modify dgorithm to make it gable:

Stable-Count- Sort(A,n)

forl- 1tokdoC[l] = O ; Initidizeto O
forj= 1tondo C[A[j]] ++ ; Count
forl- 2tok do

C[I] = C[I]+C[I-1] ; Sum dements o far

; C[1] contains num eements <= |
forj— ndownto 1 do
BICIALII —~ Alil
CIALIl = C[A[i]]-1

Example: A=[1532249]
C=[000000000Q]
C=[121110001]]
C=[134566667]

= 9

[134566666]

[

B
C
B=[....4.9]

B=[1223459]

Thisverson is gable, ance we fetch from the origind array.

Radix Sort

Works like the punchcard readers of the early 1900's. Only works on input items with digits!
|dea somewhat counterintuitive: Sort on the least Sgnificant digit first.

Radix-Sort(A,d,n) ; A isan n ement array, each dement d digitslong
fori- 1tod
do Useadable sort to sort array A on digit i
Example
A
492 031 102 031

299 492 204 102

102 102 031 204
031 ® 204 ® 83% ® 299

996 835 492 492
204 996 996 835
835 299 299 996

Sort must be stable so numbers chosen in the correct order! Assumesthat lower order digits
are dready sorted to work.

If each digit is not large, counting sort is a good choice to use for the sort method.
If k is the maximum vaue of the digit, then counting sort takes Q(k + n) time for one pass. We

have to make d passes, o thetotd runtimeis Q(dk + dn).

If disacongtant and k is smdler than O(n), Radix-Sort runsin O(n) linear timel

Radix or Counting sorts are Smple to code and the method of choice if the input is of the right
form.

Bucket Sort

Similar to count sort, but uses a“bucket” to hold arange of inputs. Worksfor rea numbers!
Like the other sorts, bucket sort isfast because it assumes something about the input:

1. Input israndomly generated

2. Input dements randomly distributed over the interva [0..1]. In many cases we can divide
by some “max” vaue to force the input key for comparison to be between O and 1. This
assumption means that e ements are generated with uniform probability over [0..1] or that
esch dement has the same likelihood of being generated.

|deax

1. Divide[0..1] into n equa sized parts or “buckets’

2. Put each of the n inputsinto one of the buckets. Some buckets may be empty and some
may have more than 1 dement.

3. Sort each bucket.

4. To produce output, go through the bucketsin order, lising the dementsin each.

Linked Ligtsis agood mechanism for storing the buckets.

Bucket- Sort(A,n)
fori= 1tondo

Insart A[1] into list B[nA[I]]
fori= Oton-1do

sort list B[1] with insertion sort
concatenate the lists B[0], B[1], ... B[n-1] together in order

Buckets are automatically numbered in this case from 0..n-1

All the lines but line 5 take O(n) time in the worst case.

Line 5 isinsertion sort which takes O(rf) time but since the input is generated uniformly we dont
expect any bucket to have many eementsin it so InsertionSort should be caled on very smal
lidts.

Example

A=[0.440.12 0.73 0.29 0.67 0.49]
Bucket | will get the values between I/n and (1+1)/n since buckets are numbered from O to n-1.

B

0..0.16 ® 0.12
0.16..0.33 ® 0.29
0.33..0.50 ® 044 ® 0.49

0.50..0.66 ®
0.66..0.83 ® 0.73 ® 0.67
0.83.1 ®

Sort the buckets with insertion sort and then combine buckets to get:
0.120.29 0.44 0.49 0.67 0.73
Informa Argument on the average time:

Since any dement in A comes from [0..1] with an equa probakility then the probability that an
element eisin bucket B[1] is1/n (each bucket covers 1/n of [0..1].

This means that the average number of dementsthat end up in bucket B[l] is1. Thereisalittle
more to the analyss than this, but the basic ideais that the didtribution of the input will cause the
cdlsto InsertionSort to be on very short lists and so the other steps in the agorithm will use
moretime. The average running time of Bucket- Sort isthen T(n)=0(n).

Postman Sort

There are many other sorting agorithms that have been proposed. Robert Ramey proposed the
Postman Sort in the August 1992 issue of the C Programming journa. We will briefly discussit
here, asit will bethe basisfor alater exercise. Thefull aticleisavailable at
http:/Awww.rrsd.conmvpsort/cuj/cuj.htm .- Although the article makes the sorting agorithm sound
revolutionary, it isredly just avariant on bucket sort.

To quote Ramey’ s article regarding a generdized digtributed sorting agorithm:

When a postd clerk receives a huge bag of letters he didtributes them into other
bags by state. Each bag gets sent to the indicated state. Upon arriva, another
clerk digtributes the letters in his bag into other bags by city. So the process
continues until the bags are the Sze one man can carry and ddiver. This is the
bass for my sorting method which | cdl the postman's sort.

Suppose we are given a large list of records to be ordered adphabeticadly on a
particular field. Make one pass through the file. Each record read is added to
one of 26 ligts depending on thefirdt letter in the fidd. Thefird list contains dl the
records with fields sarting with the letter "A" while the last contains dl the
records with fields starting with the letter "Z"'. Now we have divided the problem
down to 26 smaller subproblems. Now we address subproblem of sorting al the
records in the sublist corresponding to key fields starting with the letter "A". If
there are no records in the "A" sublist we can proceed to ded with the "B"
sublig. If the"A" sublist contains only one record it can be written to output and
we are done with that subligt. If the A" sublist contains more that one record, it
must be sorted then output. Only when the "A" list has been disposed of we can
move on to each of the other sublists in sequence. The records will be written to
the output in dphabetical order. When the"A" list contains more than one record
it has to be sorted before it is output. What sorting agorithm should be used?
Just like areal postman, we use the postman's sort. Of course we just apply the
method to the second letter of the field. This is done to greater and greater
depths until eventudly al the words starting with "A" are written to the output.
We can then proceed to ded with sublists "B" through "Z" in the same manner.

Example: Consder sorting “BOB”, “BILL”, BOY”, “COW”, “DOG"

How fast isit? (Exercisefor the reader)

Binary Search Trees
Chapter 13

Skip section 13.4

Usudly we think of binary trees as having two children a each node and the height h of the tree
asbeing Ign. Thisisaspecific case of abinary tree. Wewill look a more generd trees. In
fact, the height of abinary tree can be nif dl children are to the left.

Basic Operationson aBST:

Traversal
Search
Minimum
Maximum
Insert
Ddete
Predecessor
Successor

Claim: The basic operations on a binary tree take time proportiond to the height of the tree.

A BST isabinary tree ordered such that the binary search property for anodeI: All childrenin
left subtree£ | £ dl children in right subtree

Examples of valid binary trees

8

V—‘ﬁ

4 92

91J
90J

Doesn't have to be baanced, just support the binary search property. If sorted, we could have
asngletree of length n!

There are 3 waysto traver se abinary search tree:

1. Inorder tree wak : left child, root, right child (gives asorted list)

Inorder(x)
If X<>NIL
INOrder(left[X])
Print key(x)
INOrder(right[x])

2. Preorder treewak: root, left child, right child
3. Postorder tree walk: left child, right child, root

Each takes O(n) since every nodein the treeis vidted.

Sear ch in abinary search tree takes O(h) time, where histhe height of the tree.
A search for x is done viaarecursve agorithm that a node n looks down the left subtree of n if
x<n and otherwisg, if x>n, looks down the right subtree of n.

The binary-search tree property implies that no e ements smaler than n are to the right of n, and
no eements larger than n areto theleft. Thetimeto just travel down the root to the node which
in the worst case will be aleaf, so O(h) time where histhe height of the tree.

Tree-Search(x,k)
if x=NIL or k=key[X] return x
if k<key[x] then return(Tree- Search(left[x],K))
else return(Tree-Search(right[x] ,K))

Min can be found by aways taking the left child until we reach aleaf. Thistakes O(h) time.
M ax can be found by aways taking the right child until we reech alesaf. Thistake O(h) time.

The Successor of an dement X isthe next largest demen.

This can be found via 2 cases.

1. If x hasaright subtree, then the successor of x isthe leftmaost node in the right subtree.

2. If x has no right subtree then the successor of X is the lowest ancestor of x whose left child is
aso an ancestor of x (go up parents until find a node whose left child is an ancestor of x)

15
6 18
3 7 17 20
2 4 \—13
EJ
Succ of 15is 17, Succ of 13is 15, Succ of 9is 13, Succ of 4
iS6

This works from the structure of the binary tree!

Finding Predecessor isthe opposite of Successor. Thetime for both is O(h) since we only
move up or down thetree. In fact, no comparisons are necessary!

Tree-Insertion: Start a the root and move down the tree according to the binary search
property. When at aleaf, add anew lesf in the correct position.

Hightlevel pseudocode:

Use Search dgorithm until reach NIL; aleaf that does not yet exis.
Add new element here and create pointer to it.

[i |
14 g
= F

The dotted path indicates the path taken to insert the eement “14” into the tree.

This operation takes O(h) time, asin search. What order of insertions ends up in a poorly
balanced tree?

Tree-Deletion: To perform deletion we may need to rearrange the tree so that it is till a
binary tree and maintains the binary search property.

Tree-Delete(T X)

Search until find node with x

if X hasno children ;casel
then remove x

if x has one child ; case 2
then make Parent[X] point to child of x

if X hastwo children ; case 3
then swap x with its successor
perform case 1 or case 2 to delete it

Case 1:

(o)}
IR
(e}

To delete the node with 20, just remove it.

Case 2:
15
—
6| (18
17J
Removing node 18 becomes:
15
—
6| (17
Case 3:
15
V_‘—\
6 18
— 3
3 71 (17 |20
el
2 4 13

EJ

Deleting node 15 becomes

R

6 18
3 71 420
2 4 \— 13

gl

How do we know that we can do case 1 or case 2 with the successor’ s old node? Because
when a node has two children, the successor is the leftmost node of the right subtree. The
leftmost node is guaranteed to have no left child, so it will fal incase 1 or 2.

Time O(h) to perform deletion since just a Find- Successor operation and swap.
This delete operation may unbaance a balanced tree!

Themord of binary trees. Creating and maintaining abinary tree is O(h) time which will be fast
if thetreeisevenly baanced (Ig n). If building the tree out of input data that is random, on
average you will get balanced trees. It is possible to ensure the tree will be balanced on all
operations without incurring extra cost (Ch 14, red-black trees. Still O(Ign) for al tree
operations). Wewon't cover these, but you should be aware that they exis.

