
Greedy Algorithms  
Chapter 17 
 
Elements of Greedy Algorithms 
 
What makes an algorithm greedy? 
1.  Greedy choice property 
2.  Optimal substructure (ideally) 
 
Greedy choice property:  Globally optimal solution can be arrived by making a locally optimal 
solution (greedy).  The greedy choice property is preferred since then the greedy algorithm will 
lead to the optimal, but this is not always the case – the greedy algorithm may lead to a 
suboptimal solution.  Similar to dynamic programming, but does not solve subproblems.  
Greedy strategy more top-down, making one greedy choice after another without regard to 
subsolutions. 
 
Optimal substructure:  Optimal solution to the problem contains within it optimal solutions to 
subproblems.  This implies we can solve subproblems and build up the solutions to solve larger 
problems. 
 
Activity Selection Problem 
 
Problem: Schedule an exclusive resource in competition with other entities.  For example, 
scheduling the use of a room (only one entity can use it at a time) when several groups want to 
use it.  Or, renting out some piece of equipment to different people. 
 
Definition:  Set S={1,2, … n} of activities.  Each activity has a start time si and a finish time fi, 
where si<fi.  Activities i and j are compatible if they do not overlap.  The activity selection 
problem is to select a maximum-size set of mutually compatible activities. 
 
A simple greedy algorithm solves this problem optimally: 
1.  Sort input activities in order by increasing finishing time 
2.  n← length[s] 
3.  A← 1 
4.  j← 1 
5.  for i← 2 to n 

6.  if si ≥ fj then  
7.  A← A∪ {i} 
8.  jß i 

9.  return A 
 
Just marches through each activity in terms of the finishing time, and schedules it if possible. 
 



 
Example: 
 
I start finish 
1 1 4 
2 3 5 
3 0 6 
4 5 7 
5 3 8 
6  5 9 
7 6 10 
8 8 11 
9 8 12 
 
Schedule job 1: 
 
 1111 
   222 
 
Job two does not fit, so don’t add it. Try job 3: 
 
 1111 
0000000 
  
Job three does not fit, don’t add it.  Try job 4: 
 
 1111 
     444 
 
Fits, so leave it in. Try job 5, 6 , 7: 
 
 1111 
     444 
   555555 
     66666 
       77777 
       
None of these fit, try job 8: 
 
 1111 
     444 
         8888     
  
Job 9 does not fit. 



This is the final, optimal schedule that maximizes the number of people that want to use of the 
room.  The runtime is simple O(nlgn) to sort, and then O(n) to run through the finishing times, 
making this algorithm O(nlgn) overall. 
 
 
Greedy Algorithms vs. Dynamic Programming 
 
Greedy algorithms and dynamic programming are similar; both generally work under the same 
circumstances although dynamic programming solves subproblems first.  Often both may be 
used to solve a problem although this is not always the case. 
 
Consider the 0-1 knapsack problem.  A thief is robbing a store that has items 1..n.  Each item is 
worth vi dollars and weighs wi pounds.  The thief wants to take the most amount of loot but his 
knapsack can only hold weight W.  What items should he take? 
 
This problem has optimal substructure.   
 
Dynamic programming: We showed that we can solve this in O(nW) time, gives optimal value. 
Greedy algorithm:  Take as much of the most valuable item first.   Does not necessarily give 
optimal value! (Homework problem to show this). 
 
A simpler version of the knapsack problem is solved optimally by this greedy algorithm: 
 
Consider the fractional knapsack problem.  This time the thief can take any fraction of the 
objects.  For example, the gold may be gold dust instead of gold bars.   In this case, it will 
behoove the thief to take as much of the most valuable item per weight (value/weight)  he can 
carry, then as much of the next valuable item, until he can carry no more weight. 
 
Total value using this strategy and the above example is 8 of item 1 and 2 of item 2, for a total 
of $124. 
 
Moral:  Greedy algorithm sometimes gives optimal solution, sometimes not, depending on the 
problem.  Dynamic programming, when applicable, will typically give optimal solutions, but are 
usually tricker to come up with and sometimes trickier to implement. 
 
 
Huffman Codes 
 
Huffman codes are frequently used for data compression.  Huffman encoding is one of the 
earliest data compression algorithms; popular programs like Pkzip and Stuffit use their own 
techniques but are based on the original schemes such as Huffman or LZW.  Compression is 
useful for archival purposes and for data transmission, when not much bandwidth is available. 
 



Idea: Let’s say you want to compress your file, and your file only contains 6 characters, 
ABCDEF.  If you store these using an 8-bit ascii code, you will need space 8N bits, where n is 
the numbers of characters in your file.  If n=1000, this is 8000 bits. 
 
One way to do better: Since you only have six characters, you can represent these in fewer bits.  
You really only need three bits to represent these characters: 
 
000 A 
001 B 
010 C 
011 D 
100 E 
101 F 
 
Immediately, we can reduce the storage necessary to 3N bits.  If n=1000, this is 3000 bits. 
 
What if we count the frequency of each letter and have something like the following? 
 
A: 45%  B:10%  C:10%  D:20%  E:10%  F:5% 
 
Now if we assign the following codes: 
 
0 A  45% 
100 B  10% 
101 C  10% 
111 D  20% 
1100 E  10% 
1101 F  5% 
 
 
Notice we need 4 bits to represent F now, but the most common character, A, is represented 
by just 1 bit.   
Also note that since we are using a variable number of bits, this messes up the counting 
somewhat.  I can’t use 110 to represent D, since then if a 110 popped up we can’t tell if this is 
referring to D or E, since both start with 110 – we need unique prefixes. 
 
For example to store ABFA is:  010011010 
 
Now, to store 1000 characters with this frequency and encoding scheme requires: 
 450*1 + 3*100 + 3*100 + 3*200 + 4*100 + 4*50 = 2250 bits.  25% improvement 
over before. 
 



Question: We can find frequencies easily in O(n) time by linearly scanning and counting up the 
number of occurences of each token.  How do we determine what codes should be assigned 
each character? 
 
Idea: Count up frequencies, and build up trees by extracting minimum. 
 
 
 Huffman(S,f)  ; S = string of characters to encode.   

; F=frequences of each char 
  n← |S|  ; Make each character a ‘node’ 
  Q ← S  ; Priority queue using the frequency as key 
  for j← 1 to n-1 do 
   z← Allocate-Node() 
   x← left[z] ← Extract-Min(Q) 
   y← right[z] ← Extract-Min(Q) 
   f[z] ← f[x]+f[y]   ; update frequencies 
   Insert(Q,z) 
  return Extract-Min(Q) 
    
Example: 
 
First make each character a node by itself. 
 
A: 45%  B:10%  C:10%  D:20%  E:10%  F:5% 
 

C:10 D:20B:10 E:10 F:5A:45
 

 
Extract the minimum and join together.  These will end up as leaves farther down the tree. 
Mins=F and E.   Put sum as the new frequency.  Put minimum to the left. 
 

C:10 D:20B:10

F:5 E:10

A:45 15

 
 
Repeat process:  Extract min, B and C, and put sum as new frequency: 
 



C:10

D:20

B:10 F:5 E:10

A:45 1520

 
 
Repeat process: Extract D and 15 as min, put sum as new frequency: 
 

C:10 D:20B:10

F:5 E:10

A:45

15

20 35

 
 
Repeat process: Extract 20 and 35 as min, put sum as new frequency: 
 

C:10 D:20B:10

F:5 E:10

A:45

15

20 35

55

 
 
Finally, combine with A and assign 0,1 to edges: 
 



C:10 D:20B:10

F:5 E:10

A:45

15

20 35

55

100
0 1

0

0 0

0

1

1 1

1

 
 
 
 
 
Travel down tree to get the code: 
A 0 
B 100 
C 101 
D 111 
E 1100 
F 1101 
 
We’re done! 
 
Correctness: This we will not prove, but the idea is to put the rarest characters at the bottom of 
the tree, and build the tree so we will not have any prefixes that are identical (guaranteed in tree 
merging step).  By putting the rarest characters at the bottom, they will have the longest codes 
and the most frequent codes will be at the top.  This algorithm produces an optimal prefix code, 
but not necessarily the most optimal compression possible. 
 
Runtime of Huffman’s algorithm:  If Q implemented as a binary heap then the extract operation 
takes lgn time.  This is inside a for-loop that loops n times, resulting in O(nlgn) runtime. 
 
 


