C411, Mock
More Graph Algorithms- Minimum Spanning Trees

Definition: A spanning tree of agraph G isatree (acyclic) that connects all of the vertices of G once. It
“spans’ the graph G.

A minimum spanning tree is a spanning tree on aweighted graph that has the minimum total weight:

W(T)= & w(u, v) such that w(T) isminimum

uviT

i.e. the sum of all the edgesin the treeisminimum. (Where might this be useful? Can be used to
approximate some NP-Compl ete problems)

We will assume that the graph Gis connected and undirected.

Example of MST:

. O,
0= > g

14‘

2

O 10 O
X /8 15 :

(Shadein linksto make thisaMST)

Note: MST Problem has “ Optimal Substructure.” This essentially meansthat a subtree of the MST must in
turn beaM ST of the nodes that composesit. Wewill use the idea of optimal substructurein dynamic
programming.

Claim: Say remove any edge (u,v) inaMST, e.g., edge with weight “2" in abovetree. Thisresultsintwo
trees, TLand T2. T1isaMST of itssubgraph, while T2isaMST of itssubgraph. Thenthe MST of T is
T1+T2+edge“2". Thisedgeisthe smallest linking the two together, and there can’t be a better tree than
T1lor T2 or T would be suboptimal.

Algorithm to find MST: Greedy Algorithm

At each step a greedy agorithm will always make a choice that is best at that moment. For problemsin
general, sometimes this works but sometimesit does not! It happensto work for finding the MST.

Concept of the cut:

A cut of agraph G isapartition of Ginto two sets, Sand V-S. The cut crosses an edge only once, but does
not have to go through all edges. A cut respectsan edgeif it does not crossthat edge. It turns out that for
aMST, “safe” edges to add are those minimum edges that cross a cut that respects the edges we have
included in our MST.

Sample Cut: Respects edges we have built up so farinour MST. Prevents adding edge to form aloop.

8

Idea: Greedy MST: Go through thelist of edges and make aforest that isaMST

1. Ateachvertex, sort the edges

2. Edgeswith smallest weights examined and possibly added to M ST before edges with higher weights
3. Edgesadded must be “safe edges” that do not ruin the tree property.

Kruskal’s MST Algorithm:

Kruskal (G,w) ; Graph G, with weightsw
A- {} ; Our MST starts empty
for eachvertex VI V[G] doMake-Set(v) ; Make each vertex aset
Sort edges of E by increasing weight
for each edge (u,v) 1 Einorder

; Find-Set returns arepresentative (first vertex) in the set
do if Find-Set(u) * Find-Set(v)
thenA = AE{(u,v)}

Union(u,v) ; Combines two trees
return A

Example:

A={}, Make each element itsown set. {a} {b} {c} {d} {€} {f} {qg} {h}
Look at smallest edge first: {c} and {f} not in same set, add it to A, union together.

e

14‘ Pr
N, L O

Now get {a} {b} {cf} {d} {€} {g} {h}

Keep going, checking next smallest edge. {€} <>{h}, add edge.

©

®

IS

y@
EN

Now get {a} {b} {cf} {d} {eh} {g}

Keep going, checking next smallest edge. {a} <>{cf}, add edge.

®

O%
©

IS

@
/
o

1

Now get {b} {acf} {d} {eh} {g}

Keep going, checking next smallest edge. {b} <>{acf}, add edge.
6

\| o
©®

IS

@
/
o

1

(@]

Now get {abcf} {d} {eh} {g}

Keep going, checking next smallest edge. {abcf} ={abcf}, dont add it!

®

il
©

IS

@
/
o

1

Keep going, checking next smallestedge. {abcf} ={eh}, addit.

®

IS

@
78
\O\EN

Now get {abcfeh} {d}{g}

Keep going, checking next smallest edge. {d} <>{abcef h}, addit.

T

g

Now get{abcdef h} {g}

Keep gomg, check next two smallest edges. {abcdefh} ={abcdef h}, don't add it.

Noo

N\, :
O Gl—@

N

O—C0C
x K 15

Implementation: Union, Make-Set, Find-Set

Array member[] : member[l] isanumber j such that the ith vertex isamember of thejth set.

Example: member[1,4,1,2,2] indicates the sets S1={1,3}, S2={4,5} and SA4={2}; i.e. position in the array gives
the set number. Ideasimilar to counting sort, up to number of edge members.

Array of pointers set[] : set[l] isapointer to alist of membersfor set I.

Exampleset[1] ® 1 ® 3
w2 ® 4 ® 5
st[3] ® null
s[4 ® 2

Given these structures:

Make-Set(v)
member[v]— v
link node v to set[v]
return

Make-Set runs in constant running time for asingle set.

Find-Set(v)
Return the first element of set[member[v]]

Find-Set runsin constant time.

Example: member[1,4,1,2,2]
Find-Set(4) returns set[member[4]]
set[2]
First element of set 2is“4”
Find-Set(5) returns set[member[5]]
set[2]
First element of set 2is“4”
® 4,5insameset

Union(u,v)
link the list at setfmember[u]] to thetail of setfmember[v]]
set[member[u]] = NULL
forl=1ton
do if member[l] = uthen member[l]=v

Just a pointer move to update the set from one to another. Then
scan through the member array and update old membersto be the new set.
Running time O(n), length of member array. Algorithmsin section 22.1, 22.3.

Timefor MST-Kruskal:

Initial Loop to Make-Set O(V)
Sorting the edges takes time O(EIgE) using heapsort or mergesort
Loop for each edge:
Find-Set constant time
Adding single edgeto A constant time
Union time O(E) in our algorithm (book has O(IgE) version using trickier methods)
Total of EIgE over all edgesfor loop
Tota: O(V) + O(EIgE) + O(E IgE) ® O(EIgE) runtime.

Thisalgorithm is greedy because it always uses the best (smallest) edge next.

Anather agorithm: Prim’s MST Algorithm (also greedy)

MST-Prim(Gw,r) ; Graph G, weightsw, root r
Q- V[G
foreachvertex Ul Q dokey[u] = ¥ ;infinite*distance”
key[r] = O
Pr] = NIL
while Q<>NIL do
u- Extract-Min(Q) ; remove closest node

; Update children of u so they have a parent and amin key val
; the key isthe weight between node and parent
foreachv | Adj[u] do
if vl Q& w(u,v)<key[v] then
Pvl] = u

key[v] = w(u,v)

Example: Graph given earlier.
Q{ (e0) @¥) (b¥)(c¥)(d¥)(f¥)(9¥)(h¥)}

Extract min, vertex e. Update neighbor if in Q and weight < key.

inf
14/e 6/GD 4 int inf
et KN
14 ‘ ng
10 inf
-® —0
omnx .
Q={ (@ ¥) (b14) (c,¥) (d.¥) (f,¥)(g.¥)(h3)}

Extract min, vertex h. Update neighbor if in Q and weight < key

inf

Q={ (@¥)(b10)(c.¥)(d.¥) (8 (3.¥)}

Extract min, vertex f. Update neighbor if in Q and weight < key

inf
1o 4 o . inf
0 > c (@

14‘
2 15/f

P @ 10 @4@
omnk@ /8 L

3le
Q={ (@¥) (b10) (¢, 2) (d,¥) (9,15 }

Extract min, vertex c. Update neighbor if in Q and weight < key

4/c
Oy

6
5lc 2/f 9 9c
: 0-21Q

10 15/f

3le
Q={ (a4) (b,5) (d,9) (9.15) }

Extract min, vertex a. No keys are smaller than edges from a (4>2 on edge ac, 6>5 on edge ab) so nothing
done.

Q={ (b,5) (d,9) (9,15) }
Extract min, vertex b.

Same case, no keys are smaller than edges, so nothing is done.
Same for extracting d and g, and we are done.

Get spanning tree by connecting nodes with their parents:

4fc
s O
5/c T o 9l
5 9
[{ d)
14
2
10 15/f
-0 —0
omn\ / "
NG

3le

Note: Prim’s algorithm may give a different spanning tree than Kruskal’s, but both will be minimum spanning
trees.

Runtime:

Initialization Loop over every vertex takes O(V)
Thewhile Q loop goesup toV times
Extract-Min takes O(Ig V) timeif we use aheap
For loop over the Adjacency List will take O(E) time over all executions to go through each edge
Updating the key requires some hidden operations: updating the heap so that the
minimum isstill correct. Theimplicit timeis O(Ig V) to update the heap.

Theinner loop takes O(E Ig V) for the heap update inside the O(E) loop. Thisisover al executions, soitis
not multiplied by O(V) for the whileloop (thisisincluded in the O(E) runtime through all edges.

The Extract-Min requires O(V Ig V) time. O(Ig V) for the Extract-Min and O(V) for the while loop.

Tota runtimeisthen O(V Ig V) + O(E Ig V) which is O(E |g V) ina connected graph (a connected graph will
always have at |east as many edges as vertices).

Shortest Path Algorithms
Chapter 25

Shortest Path Algorithms

Goal: Find the shortest path between verticesin aweighted graph. We denote the shortest path between
vertex uand v asd (u,v). Thisisavery practical problem - the weights may represent the shortest distance,
shortest time, shortest cost, etc. There are several forms of this problem:

1. Single-source shortest path. Find the shortest distance from a source vertex sto every other vertex in
the graph.

2. Single-destination shortest path. Find a shortest path to a given destination vertex t from every vertex
v. Thisisjust the reverse of single-source.

3. Single-pair shortest path. Find a shortest path between a pair of vertices. No algorithm isknown for
this problem that runs asymptotically faster than the best single-source algorithms.

4. All-pairs shortest path. Find the shortest path between every vertex in the graph.

Note that BFS computes the shortest path on an unweighted graph.

Example: What isthe shortest path from g to b?

O
G s
® O—@

K@/S' 15

@

gtof tob hascost 30, but gtof toctob hascost 22. So the shortest path is gfch.
Formal definition of problem:

Input: Weighted directed graph G=(V,E) plusw: E® R, the weight function that maps from edges to weight
values (real numbers).

Output: The shortest path between any source S and all other vertices.
The weight of a path is the sum of the weights of the edges on the path.

w(u,v) isthe weight of arc that connects vertex u and v; it is hot necessarily the min.
w(p) isthe weight of some path p, it is not necessarily the min.
d (u,v) isthe weight of the shortest path that connects vertex u andv.

We will keep track of the parents of avertex in P(v) then we can output either a shortest path using
parents or a shortest path tree.

A shortest path treeis a subset of the graph with the shortest path for every vertex from a source (root).
Thisisnot unique.

We won't use negative weights— requires a different algorithm, since negative cycles can be travelled
infinitely to make the weight cost lower and lower.

6 @ 12

/
0L i@
X@)/S 15

Ex: Can travel the a,b,c loop over and over again, each time reducing weight cost by one!

Properties of Shortest Path Problem

1. Theshortest path problem has optimal substructure. That is, the subpath of a shortest pathisa
shortest path. If pisthe shortest path from | to K, then for any node j along this path such that

| £JEK, p; isthe shortest path from | to J. (If there was a shorter path from | to Jthen the IK path
wasn't the shortest!)

2. d(sv)E d(su)+wu,yv)

Relaxation: The process of relaxing an edge (u,v) consists of testing whether or not we can improve the
shortet path to v by going through some other path through u.

Example: If we have that the distance from f to b is 15 (going through the direct edge), the process of
relaxation updates the d[f] to be 7 going through c.

5107 ° @ 4
0@
A\

x@% 15

Relax(u,v,w)
if dv]>d[u]+w(u,v) then
div]— d[u]+w(u,v) ; decrement distance
Plv] = u ; indicate parent node

We have now covered enough to go through Dijkstra’ s Algorithm for finding the shortest path:

Dijkstra(G,w,s) ; Graph G, weightsw, source s
foreachvertex vl G,setdlv] = ¥ andP[v] = NIL
ds - 0
S= {}
Q- V[G

while Q not empty do
u- Extract-Min(Q)

S- SE {u}
for each vertex v | Adj[u] do
if d[v]>d[u]+w(u,v) then ; Relax node
div]— d[u]+w(u,v) ; decrement distance
Pv] = u ; indicate parent node

The set Shas al the vertices that already have a shortest path. We keep pickingu | V-Swith the minimum
path estimate so far and put it into S. This makes Dijkstra' s algorithm GREEDY sinceit picks the best
estimate so far. Then we revise path estimates or the children of that vertex by relaxing all edges|eaving u.

Example:

Initialize nodes to ¥ , parent to nil.
S={}, Q={@@¥) (¥)(c ¥)(d ¥)(e ¥) (0 (9 ¥)(h ¥)}

INF/NIL
INF/NIL © @ 4 INFINIL |NEINIL
5 1
c d
14[
INF/NIL
\INFNIL : C

INF/NIL //‘0,,\“

N

Extract Min, vertex f. S={f}, relax neighbors.
Q={(a ¥) (b15)(c.2) (d. 4) (e ¥) (9. 15) (h, ¥)}

INF/NIL
15/f 6/' 4 o af
5 1
)@
é\ ’2/ 15/f
INF/NIL\ NF/N'//CQML 15

Extract Min, vertex c. S={f c}, relax neighbors.
Q={(a6) (0,7) (d,3) (& ¥) (9,15 (h, ¥)}

@

6/c

s _O®
7lc 4 2/f 3/c
/ 5

{

R

2
‘ 15/f
INF/NIL\ INF/N oNIL 15

Bxtract Min, vertex d. S={f cd}, relax neighbors. Nothing to relax.
Q={(a6) (b,7) (e ¥) (9,15 (h, ¥)}

Extract Min, vertex a. S={f cd a}, relax neighbors. Nothing to relax.
Q{ b7 (e ¥) (9,15 (h, ¥)}

Extract Min, vertex b. S={f cd ab}, relax neighbors.
Q= (e ¥) (9,15 (h, 13)}

14 { 2
15/f
INF/NIL\ 13/b OlNI

Extract Min, vertex h. S={f cd ab h}, relax neighbors.
Q={ ((e16) (9,15}

16/h \ 13// OINIL
ENO

Extract Min, vertex g. S={f cd ab h g} relax neighbors. Nothing to relax.
Q={ ((e 16)}

Extract Min, vertex e. S={f cdabheg}, relax neighbors. Nothing to relax.

Done! Follow parent pointersto get tree:

Comment: Very similar to Prim’sM ST algorithm, but the two compute different things. Not the shortest path
in MST, but picks shortest edge overall to connect all edges (what case would the MST pick a different

edge than Dijkstra?)

Runtime of algorithm:

If queue Q isalinear array, then Extract-Min takestime O(V).
Since every vertex isin Q exactly once, Extract-Min takes time O(V?).
Thefor loop looks at each edge once over all executions, so thisis
executed at most O(E) times.
The timefor relaxation is constant.
Total time: O(V? + E) = O(VA).

If we use a heap to do the Q, then Extract-Min takes O(IgV) time, but
the relaxation step requires updating the heap O(IgE) time, instead
of constant time.

Totd time: O(VIgV + ElgV) = O((V+E)IgV).

Thisis O(ElgV) in aconnected graph. (why?)

Note we can have E=V2in afully connected graph. This method isonly
preferred in amore sparse graph.

Finding All-Pairs Shortest Path:

One solution isto run Dijkstra’ s Algorithm for every vertex. Thiswill requiretime O(V)(Time-
Dijkstra). If using alinear array for Q, thisistime O(V®). There are other ways to solve this problem using
dynamic programming which we will examine later.

